Patient Blood Management Guidelines: Module 3

Medical

Technical report

Volume 1 Review of the evidence

Note

This volume presents the main body of evidence found by a systematic literature review on medical patient blood management. Volume 2 presents the related appendixes (Appendix A to Appendix F). These two volumes cover all research questions developed for this topic.

Contents

1	Introdu	uction		1
2	Metho	ds		2
	2.1	Resear	ch question development	2
		2.1.1	Background research question	3
		2.1.2	Aboriginal and Torres Strait Islander Populations	3
	2.2	Literat	ure searches	4
		2.2.1	Electronic databases	4
		2.2.2	Manual searching of reference lists	4
		2.2.3	Expert sources	4
		2.2.4	Background question research	5
		2.2.5	Issues relevant to Aboriginal and Torres Strait Islander	
			peoples and culturally and linguistically diverse communities	
		2.2.6	Cost effectiveness	5
	2.3	Inclusi	on and exclusion criteria	5
	2.4	Classifi	ication and assessment of evidence	6
		2.4.1	Quality appraisal	8
		2.4.2	Data extraction	8
	2.5		ment of the body of evidence and formulation of mendations	8
		2.5.1 2.5.2	Use of the NHMRC evidence statement form Practice points	
3	Findin	gs of sys	tematic review	14
	3.1	Questi	on 1	14
		3.1.1	Acute coronary syndrome	
		3.1.2	Heart failure	15
		3.1.3	Community-dwelling elderly	15
		3.1.4	Cancer	16
		3.1.5	Renal	16
		3.1.6	Summary of evidence	17
	3.2	Questi	on 2	186
		3.2.1	Medical population	186
		3.2.2	Acute coronary syndrome	187
		3.2.3	Heart failure	189
		3.2.4	Cancer	
		3.2.5	Acute upper gastrointestinal blood loss	
		3.2.6	Summary of evidence	191

3.3	Question 32		
	3.3.1	Non-transfusion interventions for patients with cancer	235
	3.3.2	ESAs vs no ESAs for anaemic patients with cancer	237
	3.3.3	IV iron for anaemic patients with cancer	263
	3.3.4	Non-transfusion interventions for patients with chronic heart	
		failure	272
	3.3.5	ESAs vs standard care for anaemic patients with chronic	
		heart failure	273
	3.3.6	IV iron for chronic heart failure patients with iron deficiency	282
	3.3.7	Non-transfusion interventions for patients with chronic	
		kidney disease	292
	3.3.8	ESAs vs no ESAs for anaemic patients with chronic kidney	
		disease	294
	3.3.9	IV iron for anaemic patients with chronic kidney disease	310
	3.3.10	Non-transfusion interventions for elderly patients with	
		anaemia	
	3.3.11	Non-transfusion interventions for patients with hepatitis C	325
	3.3.12	Non-transfusion interventions for patients with HIV or AIDS	333
	3.3.13	Non-transfusion interventions for patients with	
		inflammatory bowel disease	340
	3.3.14	IV iron for anaemic patients with inflammatory bowel	
		disease	340
	3.3.15	Non-transfusion interventions for patients with	
		myelodysplastic syndrome	345
	3.3.16	ESAs vs standard care for anaemic patients with	- · -
		myelodysplastic syndrome	345
3.4	Questio	on 4	355
	3.4.1	Fresh frozen plasma	355
	3.4.2	Fibrinogen and cryoprecipitate	
	3.4.3	Platelet transfusion	
3.5	Questio	on 5	393
	3.5.1	Platelet count and prophylactic platelet transfusion in	
		patients undergoing chemotherapy and haematopoietic	
		stem cell transplantation	393
	3.5.2	Prophylactic platelet transfusion with one trigger level vs	
		another trigger level	394
	3.5.3	Risk of adverse events associated with different INR (or	
		PT/aPTT) levels	408
	3.5.4	Fibrinogen level and cryoprecipitate or fibrinogen	
		concentrate	426
3.6	Questi	on 6: Triggers for RBC transfusion in chronically transfused	
		S	435
	' 3.6.1	Thalassaemia	
	3.6.2	Myelodysplasia	
		/ /	····

4	Appen	dixes		
4.1	Appen	dix 1 – Research question structure4	1 53	
4.2	Appen	dix 2. Quality assessment4	163	
	4.2.1	Systematic reviews4	1 63	
	4.2.2	Randomised controlled trials4	1 65	
	4.2.3	Cohort studies4	1 66	
4.3	Appen	dix 3. NHMRC evidence statement form4	1 67	
4.4	Appen	dix 4. Facilitated group discussion for development of practice points4	i70	
	4.4.1	Background4	¥70	
	4.4.2	Role of the clinical/consumer reference group4	170	
	4.4.3	Chair of CRG meetings4	¥70	
	4.4.4	Pre-meeting process4	↓71	
	4.4.5	Development of practice points: overview of consensus decision-		
		making process4		
		 4.4.6 Stage 1 – Introduction		
		4.4.7 Stage 2 – Open discussion		
		4.4.9 Stage 4 – First call for consensus		
		4.4.10 Stage 5 – Consideration of group principles and values and		
		second call for consensus4	1 72	
	4.4.11	Guiding principles and values4	1 72	
	4.4.12	Ground rules4	¥72	
	4.4.13	Post-meeting process4	173	

Tables

Table 1.1	Phases of development of guideline modules	. 1
Table 2.1	NHMRC evidence hierarchy: designations of levels of evidence according to type of research question	.7
Table 2.2	NHMRC dimensions of evidence	. 7
Table 2.3	Components of the evidence statement	10
Table 2.4	Body of evidence matrix	11
Table 2.5	Definitions of NHMRC grades for recommendations	12
Table 3.1	Question 1 (ACS): Characteristics and quality of Level II evidence	18
Table 3.2	Question 1 (ACS): Results for Level II evidence – mortality (WHO or similar anaemia criteria)	21
Table 3.3	Question 1 (ACS): Results for Level II evidence – mortality (other anaemia criteria, Hb levels or change in Hb levels)	25
Table 3.4	Question 1 (ACS): Results for Level II evidence – mortality (Hb as a continuous variable)	36
Table 3.5	Question 1 (ACS): Results for Level II evidence – mortality in a composite outcome including cardiovascular outcomes (WHO or similar anaemia criteria)	41
Table 3.6	Question 1 (ACS): Results for Level II evidence – mortality in a composite outcome including cardiovascular outcomes (other anaemia criteria, Hb levels or change in Hb levels)	45
Table 3.7	Question 1 (ACS): Results for Level II evidence – mortality in a composite outcome including cardiovascular outcomes (Hb as a continuous variable)	49
Table 3.8	Question 1 (ACS): Results for Level II evidence – cardiovascular outcomes (other anaemia criteria, Hb levels or change in Hb levels)	52
Table 3.9	Question 1 (heart failure): Characteristics and quality of Level I evidence	54
Table 3.10	Question 1 (heart failure): Characteristics and quality of Level II evidence	55
Table 3.11	Question 1 (heart failure): Results for Level II evidence – mortality (WHO or similar anaemia criteria)	59
Table 3.12	Question 1 (heart failure): Results for Level II evidence – mortality (other anaemia criteria, Hb levels or change in Hb levels)	63
Table 3.13	Question 1 (heart failure): Results for Level II evidence – mortality (Hb as a continuous variable)	68
Table 3.14	Question 1 (heart failure): Results for Level II evidence – functional/performance status (other anaemia criteria, Hb levels or change in Hb levels)	73
Table 3.15	Question 1 (heart failure): Results for Level II evidence – functional/performance status (Hb as a continuous variable)	76

Table 3.16	Question 1 (elderly): Characteristics and quality of Level II evidence	79
Table 3.17	Question 1 (elderly): Results for Level II evidence – mortality (WHO or similar anaemia criteria)	81
Table 3.18	Question 1 (elderly): Results for Level II evidence – mortality (WHO or similar anaemia criteria – gender subgroup analyses)	85
Table 3.19	Question 1 (elderly): Results for Level II evidence – mortality (WHO or similar anaemia criteria – race subgroup analyses)	88
Table 3.20	Question 1 (elderly): Results for Level II evidence – mortality (WHO or similar anaemia criteria – anaemia type subgroup analyses)	91
Table 3.21	Question 1 (elderly): Results for Level II evidence – mortality (WHO or similar anaemia criteria – other subgroup analyses)	94
Table 3.22	Question 1 (elderly): Results for Level II evidence – mortality (other anaemia criteria, Hb levels or change in Hb levels)	97
Table 3.23	Question 1 (elderly): Results for Level II evidence – mortality (other anaemia criteria, Hb levels or change in Hb levels – gender subgroup analyses)	101
Table 3.24	Question 1 (elderly): Results for Level II evidence – mortality (other anaemia criteria, Hb levels or change in Hb levels – race subgroup analyses)	107
Table 3.25	Question 1 (elderly): Results for Level II evidence – mortality (other anaemia criteria, Hb levels or change in Hb levels – anaemia type subgroup analyses)	113
Table 3.26	Question 1 (elderly): Results for Level II evidence – mortality (other anaemia criteria, Hb levels or change in Hb levels – other subgroup analyses)	115
Table 3.27	Question 1 (elderly): Results for Level II evidence – functional/performance status (WHO anaemia criteria)	121
Table 3.28	Question 1 (elderly): Results for Level II evidence – functional/performance status (other anaemia criteria, Hb levels or change in Hb levels)	123
Table 3.29	Question 1 (cancer): Characteristics and quality of Level I evidence	131
Table 3.30	Question 1 (cancer): Characteristics and quality of Level II evidence	132
Table 3.31	Question 1 (cancer): Results for Level II evidence – mortality (WHO or similar anaemia criteria)	135
Table 3.32	Question 1 (cancer): Results for Level II evidence – mortality (other anaemia criteria, Hb levels or change in Hb levels)	137
Table 3.33	Question 1 (cancer): Results for Level II evidence – mortality (Hb as a continuous variable)	140
Table 3.34	Question 1 (cancer): Results for Level II evidence – functional/performance status (other anaemia criteria, Hb levels or change in Hb levels)	142

Table 3.35	Question 1 (cancer): Results for Level II evidence – functional/performance status (Hb as a continuous variable)
Table 3.36	Question 1 (renal): Characteristics and quality of Level I evidence
Table 3.37	Question 1 (renal): Characteristics and quality of Level II evidence
Table 3.38	Question 1 (renal): Results for Level II evidence – all-cause mortality (other anaemia criteria, Hb levels or change in Hb levels)
Table 3.39	Question 1 (renal): Results for Level II evidence – cardiovascular mortality (other anaemia criteria, Hb levels or change in Hb levels)
Table 3.40	Question 1 (renal): Results for Level II evidence – mortality (Hb as a continuous variable)
Table 3.41	Question 1 (renal): Results for Level II evidence – stroke (WHO or similar anaemia criteria)
Table 3.42	Question 1 (renal): Results for Level II evidence – functional/performance status (other anaemia criteria, Hb levels or change in Hb levels)
Table 3.43	Question 1 (renal): Results for Level II evidence – functional/performance status (Hb as a continuous variable)
Table 3.44	Question 1 (Medical): Characteristics and quality of Level I evidence 192
Table 3.45	Question 2 (Medical): Results for Level I evidence – mortality
Table 3.46	Question 2 (Medical): Results for Level I evidence – thromboembolic events
Table 3.47	Question 2 (Medical): Results for Level I evidence – transfusion-related adverse events
Table 3.48	Question 2 (ACS): Characteristics and quality of Level III evidence 201
Table 3.49	Question 2 (ACS): Results for Level III evidence – mortality (all ACS patients)
Table 3.50	Question 2 (ACS): Results for Level III evidence – mortality (stratified by Hct/Hb level)
Table 3.51	Question 2 (ACS) Results for Level III evidence – thromboembolic events 219
Table 3.52	Question 2 (heart failure): Characteristics and quality of Level III evidence 221
Table 3.53	Question 2 (heart failure): Results for Level III evidence - mortality 223
Table 3.54	Question 2 (cancer): Characteristics and quality of Level III evidence 224
Table 3.55	Question 2 (cancer): Results for Level III evidence – mortality 226
Table 3.56	Question 2 (cancer): Results for Level III evidence – thromboembolic events
Table 3.57	Question 2 (acute GI haemorrhage): Characteristics and quality of Level II evidence
Table 3.58	Question 2 (acute upper GI blood loss): Results for Level II evidence – mortality

Table 3.59	Question 2 (acute upper GI blood loss): Characteristics and quality of Level III evidence	232
Table 3.60	Question 2 (acute upper GI blood loss): Results for Level III evidence – mortality	233
Table 3.61	Characteristics and quality of Level I evidence	238
Table 3.62	Characteristics and quality of Level II evidence	239
Table 3.63	Characteristics and quality of socioeconomic evidence	240
Table 3.64	Results for ESAs vs no ESAs in cancer: all-cause mortality	242
Table 3.65	Results for ESAs vs no ESAs in cancer: RBC transfusion incidence and volume	247
Table 3.66	Results for ESAs vs no ESAs in cancer: thromboembolic events	252
Table 3.67	Results for ESAs vs no ESAs in cancer: functional and performance status	256
Table 3.68	Results for ESAs vs RBC transfusion in cancer: socioeconomic studies	262
Table 3.69	Characteristics and quality of Level II evidence	263
Table 3.70	Results for IV iron in cancer (mortality)	265
Table 3.71	Results for IV iron in cancer (blood transfusion)	267
Table 3.72	Results for IV iron in cancer (thromboembolic events)	269
Table 3.73	Results for IV iron in cancer (functional/performance status)	271
Table 3.74	Characteristics and quality of Level I evidence	273
Table 3.75	Results for ESAs vs no ESAs in CHF (mortality)	275
Table 3.76	Results for ESAs vs no ESAs in CHF (blood transfusion)	277
Table 3.77	Results for ESAs vs no ESAs in CHF (thromboembolic events)	279
Table 3.78	Results for ESAs vs no ESAs in CHF (functional/performance status)	281
Table 3.79	Characteristics and quality of Level II evidence	282
Table 3.80	Results for IV iron in CHF (mortality)	284
Table 3.81	Results for IV iron in CHF (thromboembolic events)	286
Table 3.82	Results for IV iron in CHF (functional/performance status)	288
Table 3.83	Characteristics and quality of Level I evidence	295
Table 3.84	Characteristics and quality of Level II evidence	296
Table 3.85	Results for ESAs vs no ESAs in CKD (mortality)	298
Table 3.86	Results for ESAs vs no ESAs in CKD (blood transfusion)	303
Table 3.87	Results for ESAs vs no ESAs in CKD (thromboembolic events)	305
Table 3.88	Results for ESAs vs no ESAs in CKD (functional/performance status)	308
Table 3.89	Characteristics and quality of Level I evidence	310
Table 3.90	Characteristics and quality of Level II evidence	311

Table 3.91	Results for IV iron in anaemic patients with chronic kidney disease (mortality)	313
Table 3.92	Results for IV iron in anaemic patients with chronic kidney disease (blood transfusion)	315
Table 3.93	Results for IV iron in anaemic patients with chronic kidney disease (functional/performance status)	317
Table 3.94	Characteristics and quality of Level II evidence	319
Table 3.95	Results for ESAs vs no ESAs in elderly patients with anaemia (mortality)	320
Table 3.96	Results for ESAs vs no ESAs in elderly patients with anaemia (thromboembolic events)	322
Table 3.97	Results for ESAs vs no ESAs in elderly patients with anaemia (functional/performance status)	324
Table 3.98	Characteristics and quality of Level II evidence	326
Table 3.99	Results for ESAs vs no ESAs in patients with HCV (mortality)	327
Table 3.100	Results for ESAs vs no ESAs in HCV (thromboembolic events)	329
Table 3.101	. Results for ESAs vs no ESAs in HCV (functional/performance status)	331
Table 3.102	Characteristics and quality of Level I evidence	333
Table 3.103	Characteristics and quality of Level II evidence	334
Table 3.104	Results for ESAs vs no ESAs in anaemic patients with HIV or AIDS (mortality)	335
Table 3.105	Results for ESAs vs no ESAs in anaemic patients with HIV or AIDS (blood transfusion)	337
Table 3.106	Results for ESAs vs no ESAs in anaemic patients with HIV or AIDS (functional/performance status)	339
Table 3.107	Characteristics and quality of Level II evidence	341
Table 3.108	Results for IV iron in IBD (mortality)	342
Table 3.109	Results for IV iron in IBD (functional/performance status)	344
Table 3.110	Characteristics and quality of Level II evidence	346
Table 3.111	Results for ESAs vs no ESAs in MDS (mortality)	347
Table 3.112	Results for ESAs vs no ESAs in MDS (blood transfusion)	350
Table 3.113	Results for ESAs vs no ESAs in MDS (thromboembolic events)	352
Table 3.114	Results for ESA vs no ESA in MDS (functional/performance status)	354
Table 3.115	Characteristics and quality of Level II evidence	357
Table 3.116	Results for FFP vs. no FFP in acute pancreatitis (mortality)	358
Table 3.117	Results for FFP vs. no FFP in acute pancreatitis (bleeding events)	360
Table 3.118	Characteristics and quality of Level II evidence	361
Table 3.119	Results for FFP vs. no FFP in patients with liver disease (mortality)	363
Table 3.120	Results for FFP vs. no FFP in in liver disease (bleeding events)	365

Table 3.121 Cl	haracteristics and quality of Level II evidence	371
Table 3.122 Cl	haracteristics and quality of Level II evidence	372
Table 3.123 Cl	haracteristics and quality of Level II evidence	373
	esults for prophylactic platelet transfusion in patients with aematological malignancies receiving chemotherapy (mortality)	375
	esults for prophylactic platelet transfusion in patients with aematological malignancies receiving chemotherapy (bleeding events)	377
ha	esults for prophylactic platelet transfusion in patients with aematological malignancies receiving chemotherapy (transfusion- elated adverse events)	379
	esults for prophylactic platelet transfusion in patients with cancer nortality)	381
	esults for prophylactic platelet transfusion in patients with cancer ransfusion-related adverse events)	383
Table 3.129 Cl	haracteristics and quality of Level II evidence	385
	esults for platelet dose in patients with haematological malignancies eceiving chemotherapy (mortality)	387
	esults for platelet dose in patients with haematological malignancies eceiving chemotherapy (bleeding events)	389
	esults for platelet dose in patients with haematological malignancies eceiving chemotherapy (transfusion-related SAEs)	392
Table 3.133 Cl	haracteristics and quality of Level II evidence	397
pı uı	esults for prophylactic platelet transfusion with one trigger level vs rophylactic platelet transfusion with another trigger level in patients ndergoing chemotherapy and haematopoietic stem cell transplantation mortality)	400
pı ul	esults for prophylactic platelet transfusion with one trigger level vs rophylactic platelet transfusion with another trigger level in patients ndergoing chemotherapy and haematopoietic stem cell transplantation pleeding events)	402
pi ui	esults for prophylactic platelet transfusion with one trigger level vs rophylactic platelet transfusion with another trigger level in patients ndergoing chemotherapy and haematopoietic stem cell transplantation RBC transfusion)	404
pi ui	esults for prophylactic platelet transfusion with one trigger level vs rophylactic platelet transfusion with another trigger level in patients ndergoing chemotherapy and haematopoietic stem cell transplantation costs)	407
Table 3.138 C	haracteristics and quality of Level II evidence	410
Table 3.139 C	haracteristics and quality of Level III evidence	411
	esults for INR (or PT/APTT) level and risk of adverse events in patients vith liver disease (mortality/survival)	413

Table 3.141	Characteristics and quality of Level III evidence	417
Table 3.142	Results for INR (or PT/APTT) level and risk of adverse events in patients with acute leukaemia (mortality)	. 418
Table 3.143	Results for INR (or PT/APTT) level and risk of adverse events in patients with acute leukaemia (bleeding events)	. 420
Table 3.144	Characteristics and quality of Level II evidence	422
Table 3.145	Results for INR (or PT/APTT) level and risk of adverse events in patients with acute coronary syndromes receiving antifibrinolytic or antiplatelet therapy (mortality)	. 423
Table 3.146	Results for INR (or PT/APTT) level and risk of adverse events in patients with acute coronary syndromes receiving antifibrinolytic or antiplatelet therapy (bleeding events)	. 425
Table 3.147	Characteristics and quality of Level II evidence	428
Table 3.148	Results for fibrinogen level and risk of adverse events in patients with liver disease (survival)	. 429
Table 3.149	Characteristics and quality of Level III evidence	.431
Table 3.150	Results for fibrinogen level and risk of adverse events in patients with acute leukaemia (mortality)	. 432
Table 3.151	Results for fibrinogen level and risk of adverse events in patients with acute leukaemia (bleeding events)	. 434
Table 3.152	Question 6 (Thalassaemia): Characteristics and quality of Level II evidence	. 436
Table 3.153	Question 6 (Thalassaemia): Characteristics and quality of Level III evidence	. 436
Table 3.154	Question 6 (Thalassaemia) – mortality/Survival	438
Table 3.155	Question 6 (Thalassaemia) – transfusion volume	. 440
Table 3.156	Question 6 (Myelodysplasia): Characteristics and quality of Level I evidence	. 442
Table 3.157	Question 6 (Myelodysplasia): Characteristics and quality of Level II evidence	. 443
Table 3.158	Question 6 (Myelodysplasia): Characteristics and quality of Level III evidence	. 444
Table 3.159	Question 6 (Myelodysplasia) – mortality/survival	. 447
Table 3.160	Question 6 (Myelodysplasia) – functional and performance status	451
Table 4.1.1	Structure of generic questions	456
Table 4.1.2	Structure of research question specific to medical patient blood management	462

Figures

Figure 3.1	Meta-analysis of ESAs vs no ESAs in cancer: all-cause mortality 244
Figure 3.2	Analysis of ESAs vs. no ESAs in chemotherapy-induced anaemia and not chemotherapy-induced anaemia: all-cause mortality
Figure 3.3	Meta-analysis of ESAs vs no ESAs in cancer: RBC transfusion incidence
Figure 3.4	Meta-analysis of ESAs vs no ESAs in cancer: all thromboembolic events 254
Figure 3.5	Mean difference meta-analysis of ESAs vs no ESAs in cancer: functional and performance status
Figure 3.6	Standardised mean difference meta-analysis of ESAs vs no ESAs in cancer: functional and performance status
Figure 3.7	Meta-analysis of IV iron in cancer (mortality)
Figure 3.8	Meta-analysis of IV iron in cancer (thromboembolic events)
Figure 3.9	Meta-analysis of IV iron in cancer (myocardial infarction)
Figure 3.10	Meta-analysis of IV iron in CHF (mortality)
Figure 3.11	Meta-analysis of ESAs vs no ESAs in CKD (mortality)
Figure 3.12	Meta-analysis of ESAs vs no ESAs in CKD (MI)
Figure 3.13	Meta-analysis of ESAs vs no ESAs in CKD (stroke)
Figure 3.14	Meta-analysis of ESAs vs no ESAs in CKD (other thromboembolic events) 307
Figure 3.15	Meta-analysis of IV vs oral iron in anaemic patients with chronic kidney disease (mortality)
Figure 3.16	Meta-analysis of IV iron in anaemic patients with chronic kidney disease (patients requiring an anaemia intervention)
Figure 3.17	Meta-analysis of ESAs vs no ESAs in MDS (mortality)
Figure 3.18	Meta-analysis of ESAs vs no ESAs in MDS (stroke)

Abbreviations and acronyms

ACS	acute coronary syndrome
AHCDO	Australian Haemophilia Centre Directors' Organisation
AHMAC	Australian Health Ministers' Advisory Council
AHMC	Australian Health Ministers' Conference
AIDS	acquired immunodeficiency syndrome
ANZSBT	Australian & New Zealand Society of Blood Transfusion
APTT	activated partial thromboplastin time
ARCBS	Australian Red Cross Blood Service
ASBT	Australasian Society of Blood Transfusion
ASCO	American Society of Clinical Oncology
ASH	American Society of Haematology
CARI	Caring for Australasians with Renal Impairment
CHF	chronic heart failure
СКD	chronic kidney disease
CRG	Clinical/Consumer Reference Group
CTEPC	Clinical, Technical and Ethical Principal Committee
DIC	disseminated intravascular coagulation
DNA	deoxyribonucleic acid
ES	evidence statement
ESA	erythropoiesis-stimulating agent
EWG	Expert Working Group
FACT	Functional Assessment of Cancer Therapy
FFP	fresh frozen plasma
FID	functional iron deficiency
GOG	Gynecologic Oncology Group
Hb	Hb
HIF	hypoxia-inducibile factor
HIV	human immunodeficiency virus
HLA	human leukocyte antigen
HSCT	hematopoietic stem cell transplantation
IBD	inflammatory bowel disease
IV	intravenous
INR	international normalised ratio
JBC	Jurisdictional Blood Committee
КССQ	Kansas City Cardiomyopathy Questionnaire
MDS	myelodysplastic syndrome
MI	myocardial infarction

MLHFQ	Minnesota Living with Heart Failure Questionnaire
NBA	National Blood Authority
NHMRC	National Health and Medical Research Council
NYHA	New York Heart Association
NZBS	New Zealand Blood Service
PBS	Pharmaceutical Benefits Scheme
PICO	population, intervention, comparator and outcome
PP	practice point
PPO	population, predictor and outcome
PRO	population, risk factor and outcome
PT	prothrombin time
QLQ-C30	Quality of Life Questionnaire-C30
R	recommendation
RBC	red blood cell
RCT	randomised controlled trial
rFVIIa	recombinant activated factor VIIa
SD	standard deviation
SF-36	Short Form-36
SHOT	Serious Hazards of Transfusion
TACO	transfusion-associated circulatory overload
TGA	Therapeutic Goods Administration
TRICC	Transfusion Requirements in Critical Care Trial
WHO	World Health Organization

1 Introduction

This document presents the methods and results relating to the findings from a systematic literature review on medical patient blood management. It is the first volume of a technical report produced as part of the development process for the *Patient blood management guidelines: Module 3 – Medical –* the third in a series of six modules that focus on evidence-based patient blood management and will replace the 2001 National Health and Medical Research Council/Australasian Society of Blood Transfusion (NHMRC/ASBT) *Clinical practice guidelines on the use of blood components*¹ The six modules of the guidelines are being developed in three phases, as shown in Table 1.1.

Phase	Modules
	Critical bleeding/massive transfusion
	Perioperative
II	Medical
	Critical care
III	Obstetrics
	Paediatric/neonatal

 Table 1.1
 Phases of development of guideline modules

This volume covers all the research questions. Volume 2 of the technical report presents the related appendixes.

The document Patient blood management guidelines: Module 3–Medical gives information on:

- governance arrangements for the guidelines
- committee memberships and affiliations
- the background research team.

2 Methods

2.1 Research question development

An Expert Working Group (EWG) met for the first time in July 2008. At this meeting members were provided with a comprehensive analysis of existing guidelines relevant to the clinical areas of focus. An independent systematic review expert provided a detailed presentation on framing clinical questions for systematic review. EWG members self-nominated to participate in relevant areas of clinical focus for each module. This action formed the basis for the establishment of a Consumer/Clinical Reference Group (CRG) for each module.

Following the July 2008 meeting, members of each CRG generated questions to be considered for inclusion in their respective guidelines. Before the next meeting, CRG members discussed first-draft questions, and acknowledged that question content would influence consideration of expanding CRG memberships to ensure relevant clinical and consumer representation. CRG members agreed that it would be appropriate to circulate draft questions to relevant clinical colleges and societies for input and feedback at an early stage and before inclusion in a statement of requirement for a systematic reviewer.

The EWG met in September 2008 to further develop and prioritise the proposed questions. During the development of research questions, it became apparent that several questions would be relevant for systematic review for all modules (Phases I to III). These became known as generic questions; six of these were ultimately developed.

Another two workshop meetings were held in November 2008. All EWG members attended these meetings, where questions were further prioritised, combined and refined. In January 2009, a meeting of the CRG Chairs finalised questions that were subsequently provided to systematic reviewers.

This process resulted in generic and specific foreground questions for systematic review and questions for background research. The background questions were to be addressed through general research undertaken by registrars supervised by CRG members. Background questions were designed to provide general information for the guidelines and to assist in providing generalised clinical practice tips. Background questions were intended to capture information that was considered to fall outside the scope of the foreground questions were further refined through consultation among the systematic reviewer/technical writer, CRG, National Blood Authority (NBA) and independent systematic review expert.

Research questions were developed for all but the critical care module. The requirement for this module was not identified until after the initial systematic review for Phase I had commenced.

Questions 1–5 are generic questions, relevant to all six modules of these guidelines; Question 6 is specific to medical transfusion (i.e. to this module):

- Question 1 In medical patients, is anaemia an independent risk factor for adverse outcomes? (Aetiological question)
- *Question 2* In medical patients, what is the effect of RBC transfusion on patient outcomes? (Interventional question)
- Question 3 In medical patients, what is the effect of non-transfusion interventions to increase Hb concentration on morbidity, mortality and need for RBC blood transfusion? (Interventional question)
- *Question 4* In medical patients, what is the effect of FFP, cryoprecipitate, fibrinogen concentrate, and/or platelet transfusion on patient outcomes? (Interventional question)
- Question 5 In medical patients, what INR (PT/APTT) for FFP, fibrinogen level for cryoprecipitate and platelet count for platelets concentrates should patients be transfused to avoid risks of significant adverse events? (Interventional and prognostic question)
- Question 6 In specific regularly and chronically transfused patients, at what Hb threshold should patients be transfused to avoid adverse outcomes? (Interventional question).

A further question – What is the effect of rFVIIa (prophylaxis or treatment) on morbidity, mortality and transfusion rate? – was not covered in this review.

Intervention questions were intended to determine the effects of various strategies that can be used in patient blood management on patient outcomes. The aetiology question was designed to determine whether the risk factor anaemia causes adverse outcomes. The prognostic question was concerned with clinical information that predicts outcomes.

2.1.1 Background research question

The background research questions developed for medical patient blood management were:

- In patients with malignancies (solid tumours) undergoing radiotherapy, do interventions (transfusion or ESAs) aimed at raising the Hb concentration during radiotherapy affect patient outcomes (e.g. response rate, tumour recurrence or tumour-free survival)?
- *Background question 2* When should a patient be retested after a transfusion to assess the response, guide if further transfusions are required and avoid over-transfusion?

Details of research question criteria are presented in **Appendix 1** of this volume.

2.1.2 Aboriginal and Torres Strait Islander Populations

Prevalence of anaemia in Aboriginal and Torres Strait Islander populations is known to be higher than in the general Australian population.² The electronic search terms did not specifically search for or limit retrieval of articles to studies that addressed socioeconomic, Aboriginal or Torres Strait Islander subgroups. However, in accordance with NHMRC guideline development requirements, the reviewers were required to isolate any papers addressing these populations for specific consideration by the CRG. No papers were identified that addressed these populations specifically.

2.2 Literature searches

NHMRC standards and procedures require that clinical practice guidelines be based on systematic identification and synthesis of the best available scientific evidence.³ Three main strategies were used to identify potentially relevant literature: electronic database searching, manual searching, and literature recommended by expert members of the CRG.

2.2.1 Electronic databases

The systematic review/technical writing group carried out searches using the following primary databases:

- EMBASE and Medline via the EMBASE.com interface
- Cochrane Library Database: a database of systematic reviews, other reviews, clinical trials, methods studies, technology assessments, economic evaluations and Cochrane Groups
- PreMedline: Medline in process, accessed via the PubMed interface.

Additional secondary databases searched, where indicated, included:

- CINAHL (Cumulative Index to Nursing and Allied Health Literature)
- AMI (Australasian Medical Index).

Dates of searching the primary and secondary databases are presented in **Appendix A** (Volume 2).

Search strategies for primary and secondary databases were developed in consultation with a specialist search strategist. All strategies were based on the population, intervention, comparator, outcome (PICO), population, predictor, outcome (PPO) or population, risk, outcome (PRO) criteria developed for the research questions (**Appendix 1** in this volume). Full details of all search strategies for these primary and secondary databases are presented in **Appendix A** (Volume 2).

The search also included websites of health technology assessment (HTA) agencies, including the UK National Institute for Health and Clinical Excellence (NICE) and the Canadian Agency for Drugs and Technologies in Health (CADTH), and relevant guidelines websites.

2.2.2 Manual searching of reference lists

Members of the systematic review/technical writing group manually searched reference lists included in relevant articles identified by the systematic literature search. This strategy identified some additional articles that were not found in electronic database searches. Additional articles found by manual searching are indicated in the literature search results presented in **Appendix C** (Volume 2).

2.2.3 Expert sources

Articles recommended by CRG members were considered for inclusion wherever inclusion and exclusion criteria were met.

2.2.4 Background question research

Research for background questions was undertaken by registrars under the supervision of CRG members. These questions were not researched by applying systematic review processes. Registrars were advised to use sources ranging from medical textbooks, grey literature, published scientific and review articles (identified through PubMed, EMBASE or Cochrane databases), series yearbooks and other relevant medical literature. Because the intention was to identify relevant information that could inform best practice, background research was not limited to evidence or general information only applicable to Australia and New Zealand.

2.2.5 Issues relevant to Aboriginal and Torres Strait Islander peoples and culturally and linguistically diverse communities

The focus of the systematic review was on physiological parameters surrounding the decision to transfuse. As such, there were no distinct physiological issues relevant to Aboriginal and Torres Strait Islander peoples and culturally and linguistically diverse communities.

The greater prevalence of certain conditions (e.g. anaemia, chronic kidney disease) in some Indigenous Australian communities has a socioeconomic, not physiological, basis. No socioeconomic literature pertaining to Australia's Indigenous population was identified in the literature searches for any research question

2.2.6 Cost effectiveness

While no published cost-effectiveness analyses on the use of a multidisciplinary, multimodal perioperative patient blood management program was identified in the literature searches, a number of studies published information about costs or savings.

When no cost-effectiveness studies relevant to a research question were identified, this is noted for that question in the technical report. Cost or savings analyses, when found, are discussed for each question in the technical report

2.3 Inclusion and exclusion criteria

Inclusion criteria were determined from the PICO, PPO or PRO criteria that formed the basis of the systematically reviewed research questions (**Appendix 1** in this volume). Studies that did not meet one or more of these criteria were excluded.

Additional reasons for excluding studies were:

- non-human studies
- non-English language studies
- non-systematic reviews, editorials, opinion pieces and letters
- research or systematic review protocols not defined.

Titles and abstracts of every record retrieved by searching the primary and secondary databases were reviewed, and full articles were retrieved for further assessment where considered to meet the inclusion criteria. Articles that could not be included or excluded on

the basis of information in the title or abstract were retrieved as full text before a final decision was made on inclusion or exclusion.

Articles reporting on the basis of the following study designs were considered for inclusion when PICO, PPO or PRO criteria were met:

- systematic reviews of randomised controlled trials (RCTs) and/or cohort studies
- RCTs or pseudo randomised controlled trials
- cohort studies
- case-control studies
- case series, pre-post or post studies
- socioeconomic studies, economic evaluations, cost-effectiveness analysis and so forth.

Studies that initially met inclusion criteria but were later excluded are documented, with reasons for their exclusion, in **Appendix B** (Volume 2). Examples of reasons for exclusion in this circumstance include different systematic reviews reporting the same primary studies, and inadequate data reporting.

2.4 Classification and assessment of evidence

Studies identified for inclusion from the literature search were classified according to the NHMRC levels of evidence hierarchy (Table 2.1). To ensure that modules were based on the best available evidence, studies of higher levels of evidence (Levels I or II) were included in preference to those presenting lower levels of evidence (Levels III or IV). This was to minimise the potential for bias in the evidence base for each systematically reviewed question. However, lower level studies were reviewed where evidence was not available in higher level studies for any of the primary outcomes.

Studies identified from the systematic literature review were assessed according to NHMRC dimensions of evidence (Table 2.2).⁴).⁴ There are three main domains: strength of the evidence, size of the effect, and relevance of the evidence. The first domain was derived directly from the literature identified for a particular intervention, aetiology or prognostic study. The other two domains were determined in consultation with the CRG as part of the study assessment process during the review of the evidence considered for module development. An aspect of the strength of the evidence domain is the level of evidence of the study, which was determined as described above using the NHMRC levels of evidence hierarchy outlined in Table 2.1.

Intervention ^a	Prognosis	Aetiology ^b	
A systematic review of Level II studies	A systematic review of Level II studies	A systematic review of Level II studies	
A randomised controlled trial	A prospective cohort study ^d	A prospective cohort study	
A pseudo randomised controlled trial (i.e. alternate allocation or some other method)	All or none ^e	All or none ^e	
A comparative study with concurrent controls:	Analysis of prognostic factors amongst persons in a single arm	A retrospective cohort study	
• non-randomised, experimental trial ^f	of a randomised controlled trial		
 cohort study 			
 case–control study 			
 interrupted time series with a control group 			
A comparative study without concurrent controls:	A retrospective cohort study	A case-control study	
 historical control study 			
 two or more single arm study^g 			
 interrupted time series without a parallel control group 			
Case series with either post-test or pre- test/post-test outcomes	Case series, or cohort study of persons at different stages of disease	A cross-sectional study or case series	
	 A systematic review of Level II studies A randomised controlled trial A pseudo randomised controlled trial (i.e. alternate allocation or some other method) A comparative study with concurrent controls: non-randomised, experimental trial^f cohort study case-control study interrupted time series with a control group A comparative study without concurrent controls: historical control study two or more single arm study^g interrupted time series without a parallel control group 	A systematic review of Level II studiesA systematic review of Level II studiesA randomised controlled trialA prospective cohort studydA pseudo randomised controlled trial (i.e. alternate allocation or some other method)All or noneeA comparative study with concurrent controls:Analysis of prognostic factors amongst persons in a single arm of a randomised controlled trial• non-randomised, experimental trialf • cohort studyAnalysis of prognostic factors amongst persons in a single arm of a randomised controlled trial• cohort study• case-control study• interrupted time series with a controls:A retrospective cohort study• historical control studyA retrospective cohort study• interrupted time series without a parallel control groupCase series, or cohort study of persons at different stages of	

Table 2.1NHMRC evidence hierarchy: designations of levels of evidence according to
type of research question

Source: NHMRC (2009)4

^a Definitions of these study designs are provided on pages 7–8, How to use the evidence: assessment and application of scientific evidence (NHMRC 2000)⁵

^b If it is possible and ethical to determine a causal relationship using experimental evidence, then the 'intervention' hierarchy of evidence should be used. If it is only possible or ethical to determine a causal relationship using observational evidence (e.g. groups cannot be allocated to a potential harmful exposure, such as nuclear radiation), then the 'aetiology' hierarchy of evidence should be utilised.

^c A systematic review will only be assigned a level of evidence as high as the studies it contains, except where those studies contain Level II evidence. Systematic reviews of Level II evidence provide more data than the individual studies, and any meta-analyses will increase the precision of the overall results, reducing the likelihood that the results are affected by chance. Systematic reviews of lower level evidence present results of likely poor internal validity and thus are rated on the likelihood that the results have been affected by bias, rather than whether the systematic review itself is of good quality. Systematic review quality should be assessed separately. A systematic review should consist of at least two studies. In systematic reviews that include different study designs, the overall level of evidence should relate to each individual outcome or result, as different studies (and study designs) might contribute to each different outcome.

^d At study inception, the cohort is either non-diseased or all at the same stage of the disease. A randomised controlled trial with persons either non-diseased or at the same stage of the disease in both arms of the trial would also meet the criterion for this level of evidence.

^e All or none of the people with the risk factor(s) experience the outcome; and the data arises from an unselected or representative case series which provides an unbiased representation of the prognostic effect. For example, no smallpox develops in the absence of the specific virus; and clear proof of the causal link has come from the disappearance of smallpox after large-scale vaccination.

¹This also includes controlled before-and-after (pre-test/post-test) studies, as well as indirect comparisons (i.e. utilise A vs. B and B vs. C to determine A vs. C).

⁹ Comparing single arm studies i.e. case series from two studies. This would also include unadjusted indirect comparisons (ie. utilise A vs. B and B vs. C to determine A vs. C, without statistical adjustment for B).

Table 2.2	NHMRC dimensions of evidence

Dimension	Definition	
Strength of evidence		
Level Each included study is assessed according to its place in the research hierarchy. This illustrates the potential of each included study to adequately answer a particular research question and indicates the		

Dimension	Definition				
	degree to which design has minimised the impact of bias on the results				
Quality	Included studies are critically appraised for methodological quality. Each study is assessed according to the potential that bias, confounding and/or chance has influenced the results				
Statistical precision	Primary outcomes of included studies are assessed to establish whether the effect is real, rather than due to chance. Using a level of significance such as a <i>p</i> -value and/or confidence interval, the precision of the estimate of the effect is evaluated. This considers the degree of certainty regarding the existence of a true effect				
Size of effect	The clinical importance of the findings of each study is assessed. This concept refers to the measure of effect or point estimate reported in the results of each study (e.g. mean difference, relative risk). For meta- analysis pooled measures of effect are assessed. Size of effect refers to the distance of the point estimate from its null value and also the values included in the corresponding 95% confidence interval. Size of effect indicates the clinical impact a particular factor or intervention will have on a patient and is considered in the context of patient relevant clinical differences				
Relevance of evidence	The translation of research evidence to clinical practice is addressed by this dimension. It is regarded as potentially the most subjective of the evidence assessments. There are two questions concerning the appropriateness of outcomes and relevance of study questions: Are the outcomes measured in the study relevant to patients?				
	How closely do the elements of the study research question match with those of the clinical question being considered?				

Source: NHMRC (2009)4

2.4.1 Quality appraisal

The methodological quality of the included studies was assessed using the criteria presented in **Appendix 3** of this volume.⁵ Quality assessment criteria varied according to whether included studies were systematic reviews, RCTs, cohort studies or case–control studies. No weighting of quality criteria was applied, but studies that met all criteria, or all but one, were considered good quality with a low risk of bias. Quality assessments of included studies for all systematically reviewed research questions are presented in **Appendix E** (Volume 2).

2.4.2 Data extraction

Data and information were extracted into evidence summary tables according to the inclusion criteria (PICO, PRO or PPO). Evidence summary tables were based on NHMRC requirements for externally developed guidelines.⁶ Extracted data and information included general study details (citation, study design, evidence level, country and setting), characteristics of study participants, details of interventions and comparators, details of internal (e.g. allocation and blinding) and external (applicability and generalisability) study validity; and results for outcomes specified in the inclusion criteria. Where relevant studies were identified, extracted data and information were used to construct study characteristics and results tables of included evidence for each systematically reviewed research question. Evidence summary tables for all included studies are presented in **Appendix F** (Volume 2).

2.5 Assessment of the body of evidence and formulation of recommendations

The body of evidence for each module recommendation was graded in accordance with the NHMRC framework for developing evidence-based recommendations.⁴ Assessment of the

body of evidence considers the dimensions of evidence of studies relevant to that recommendation (Table 2.2). The NHMRC developed an evidence statement form to be used with each clinical research question considered in guidelines development (**Appendix 3** of this volume). Before the evidence statement form was completed, included studies were critically appraised and relevant data were summarised, as described. This information was required to formulate each recommendation and determine the overall grade of the body of evidence supporting each recommendation.

The key findings from included studies were summarised as evidence statements for each systematically reviewed research question. Where required, separate evidence statements were developed for different patient populations and outcomes. CRG input helped ensure that the size of effects and relevance of evidence were considered when developing evidence statements. Where no evidence or insufficient relevant evidence was identified, this was explained in the evidence statement and an evidence statement form was not included.

Completed evidence statement forms for each research question are presented in **Appendix D** (Volume 2).

2.5.1 Use of the NHMRC evidence statement form

The NHMRC evidence statement form was applied in five steps.

Step 1 Rating each of the five components

To inform grading of recommendations, the body of evidence underpinning each evidence statement was assessed. Five key components were rated (Table 2.3). The first two components—evidence base and consistency—were derived directly from the literature identified for each research question. During review of identified evidence, CRG guidance was also required to assess the clinical impact, generalisability and applicability of included studies.

For each evidence statement, the five components presented in Table 2.3 were rated according to the matrix shown in Table 2.4. This grading system was designed to accommodate variation in the body of evidence. For example, a large number of studies with minimal bias may be included, but have limited applicability to the Australian healthcare context. Alternatively, a body of evidence may consist of a small number of trials with a moderate risk of bias, but have a very significant clinical impact and high applicability to the Australian healthcare context. Body of evidence rating results were entered into the NHMRC evidence statement form, together with any additional explanatory information relevant to each component. The results section for each research question includes the body of evidence matrix rating assessment for each evidence statement.

Component	Definition
Evidence base	
Quantity	Reflects the number of studies included as the evidence base. Also takes into account the number of patients in relation to frequency of the outcomes measured (i.e. study statistical power). Meta-analysis can be used to combine results of studies to increase the power and statistical precision of effect estimates
Level	Reflects the best study type for the specific type of research question (intervention, prognosis). Level I evidence would be the best evidence to answer each question
Quality	Reflects how well studies were designed and conducted in order to eliminate bias
Consistency	Assesses whether findings are consistent across included studies, including a range of study populations and study designs. Meta-analysis of randomised studies should present statistical analysis of heterogeneity that demonstrates little statistical difference between studies. Presentation of an I ² statistic illustrates the extent of heterogeneity between studies. Clinical heterogeneity between studies should also be explored
Clinical impact	Measures the potential benefit from application of the guidelines to a population. Several factors need to be considered when estimating clinical impact, including relevance of the evidence to the clinical question; statistical precision and size of the effect; relevance of the effect to patients compared with other management options or none. Other relevant factors are the duration of therapy required to achieve the effect, and the balance of risks and benefits (taking into account the size of the patient population)
Generalisability	Addresses how well the subjects and settings of included studies match those of the recommendation. Population issues that could affect recommendations include sex, age, ethnicity, and baseline risk or level of care (e.g. community or hospital setting). This is an important consideration when evidence comes from randomised controlled trials, where setting and entry requirements are generally narrow and therefore may not be representative of all patients to whom the recommendation may be applied in practice. In this circumstance broader-based population studies may be useful for confirming evidence from randomised controlled trials
Applicability	Addresses whether the evidence base is relevant to the Australian healthcare setting in general or to more local settings for specific recommendations (e.g. rural areas or cities). Factors that will affect the applicability of study findings include organisational factors (e.g. availability of trained staff, specialised equipment and resources) and cultural factors (e.g. attitudes to health issues, including those that may affect compliance with guidelines recommendations)

Table 2.3 (Components of the evidence statement
-------------	--------------------------------------

Source: NHMRC (2009)4

Component	А	В	С	D	
	Excellent	Good	Satisfactory	Poor	
Evidence base	Several Level I or II studies with low risk of bias	One or two Level II studies with low risk of bias or a systematic review/multiple Level III studies with low risk of bias	Level III studies with low risk of bias, or Level I or II studies with moderate risk of bias	Level IV studies, or Level I to III studies with high risk of bias	
Consistency	All studies consistent	Most studies consistent and inconsistency can be explained	Some inconsistency reflecting genuine uncertainty around clinical question	Evidence is inconsistent	
Clinical impact	Very large	Substantial	Moderate	Slight or restricted	
Generalisability	Population/s studied in body of evidence are the same as the target population for the guidelines	Population/s studied in the body of evidence are similar to the target population for the guidelines	Population/s studied in the body of evidence are different to the target population but it is clinically sensible to apply this evidence to the target population for the guidelines	Population/s studied in the body of evidence are different to the target population, and hard to judge whether it is sensible to generalise to the target population for the guidelines	
Applicability	Directly applicable to the Australian healthcare context	Applicable to Australian healthcare context with a few caveats	Probably applicable to Australian healthcare context with some caveats	Not applicable to Australian healthcare context	

Source: NHMRC (2009)4

A rating of N/A was attributed for consistency when only one study was included.

Step 2 Preparation of an evidence statement matrix

An evidence statement matrix was completed to summarise the synthesis of the evidence relating to the evidence statement(s) for each research question. This summary presented ratings for the five components of the body of evidence matrix assessed for each evidence statement. Other relevant issues and dissenting opinions could be recorded if required.

In practice, Steps 1 and 2 to complete the NHMRC evidence statement forms were conducted concurrently for each evidence statement.

Step 3 Formulation of a recommendation based on the body of evidence

Step 3 involved formulating the wording of the recommendation. This wording was intended to reflect the strength of the body evidence; that is, where the evidence base was regarded as poor or unreliable, words such as 'must' or 'should' were not used. The wording of recommendations was developed in conjunction with the CRG during meetings to review the evidence base for research questions.

Step 4 Determination of the grade for the recommendation

The overall grade for each recommendation was determined from a summary of the rating for each component of the body of evidence. Definitions of the NHMRC grades of recommendations are presented in Table 2.5. In accordance with the NHMRC framework, recommendations were not graded A or B unless the evidence base and consistency of evidence were both rated A or B unless only one study was included and consistency was rated 'N/A'. In this situation the quality, size and strength of the evidence base was relied upon to grade the recommendation. The grading of recommendations was determined in conjunction with the CRG.

Developed recommendations were entered into the NHMRC evidence statement forms to accompany the corresponding evidence statement matrix, along with the overall grade determined in this step (**Appendix D**, Volume 2).

Grade	Definition
А	Body of evidence can be trusted to guide practice
В	Body of evidence can be trusted to guide practice in most situations
С	Body of evidence provides some support for recommendation(s) but care should be taken in its application
D	Body of evidence is weak and recommendations must be applied with caution

 Table 2.5
 Definitions of NHMRC grades for recommendations

Source: NHMRC (2009)4

Step 5 Implementation of guidelines recommendations

The NHMRC framework directs that guidelines implementation should be considered at the same time that recommendations are formulated. The NHMRC evidence statement form contains questions related to the implementation of each module (**Appendix 3** in this volume). These are:

- Will this recommendation result in changes in usual care?
- Are there any resource implications associated with implementing this recommendation?
- Will the implementation of this recommendation require changes in the way care is currently organised?
- Is the guidelines development group aware of any barriers to the implementation of this recommendation?

This section of the NHMRC evidence statement form was completed in consultation with the CRG when each recommendation was formulated and graded. Implementation issues are recorded in the NHMRC evidence statement forms presented in **Appendix D** (Volume 2).

2.5.2 Practice points

Practice points were developed by the CRG through a facilitated group discussion (**Appendix 4** in this volume) in the following circumstances:

- where the underpinning evidence would have led to a grade D evidence-based recommendation
- where the CRG developed evidence-based recommendations graded C and above, but considered that additional information was required to guide clinical practice. Wherever possible, this guidance was sourced from other evidence-based guidelines assessed to be of high quality
- where insufficient evidence was identified to support the development of an evidencebased recommendation.

3 Findings of systematic review

This chapter provides the findings of the systematic review, based on the six research questions given in Chapter 2.

3.1 Question 1

Question 1 (Aetiology)

In medical patients, is anaemia an independent risk factor for adverse outcomes?

3.1.1 Acute coronary syndrome

Evidence statements – acute coronary syndrome		Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES1.1	In patients with ACS, anaemia is independently associated with all-cause mortality. (See evidence matrix EM1.A in Volume 2 of the	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{2}}$
	technical report)					
ES1.2	In patients with ACS, the effect of anaemia on cardiovascular mortality is uncertain. (See evidence matrix EM1.A in Volume 2 of the	VVV	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{2}}$
	technical report)					
ES1.3	In patients with NSTE-ACS, anaemia is independently associated with MI and recurrent ischaemia.	$\sqrt{\sqrt{1}}$	NA	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{1}}$
	(See evidence matrix EM1.B in Volume 2 of the technical report)					
ACS, acute coronary syndrome; ES, evidence statement; MI, myocardial infarction; NSTE, non-ST segment elevation $\sqrt{\sqrt{\sqrt{=}A}}; \sqrt{\sqrt{=}B}; \sqrt{=}C; X=D; NA, not applicable$						

3.1.2 Heart failure

Evide	ence statements – heart failure	Evidence	Consistency	Clinical impact	Generalisability	Applicability			
ES1.4	In patients with heart failure, anaemia is independently associated with mortality. (See evidence matrix EM1.C in Volume 2 of the technical report)	111	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{2}}$			
ES1.5	In patients with heart failure, anaemia may be independently associated with reduced functional or performance status and quality of life. (See evidence matrix EM1.D in Volume 2 of the technical report)	$\sqrt{\sqrt{1}}$	NA	X	$\sqrt{}$	$\sqrt{}$			
	ES, evidence statement $\sqrt{\sqrt{-A}}$; $\sqrt{-B}$; $\sqrt{-C}$; X=D; NA, not applicable								

3.1.3 Community-dwelling elderly

Evide	ence statements – community- dwelling elderly	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES1.6	In a community-dwelling elderly population, anaemia is independently associated with mortality. (See evidence matrix EM1.E in Volume 2 of the	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{1}}$
ES1.7	technical report) In a community-dwelling elderly population, anaemia	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	Х	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$
	may be independently associated with reduced functional or performance status and quality of life.					
	(See evidence matrix EM1.F in Volume 2 of the technical report)					
	ence statement $\sqrt{\sqrt{=B}}; \sqrt{=C}; X=D; NA, not applicable$	•	•			•

3.1.4 Cancer

Evide	ence statements – cancer	Evidence	Consistency	Clinical impact	Generalisability	Applicability			
ES1.8	In patients with cancer, anaemia is independently associated with mortality. (See evidence matrix EM1.G in Volume 2 of the technical report)	$\sqrt{}$	\checkmark	\checkmark	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{2}}$			
ES1.9	In patients with cancer, the effect of anaemia on functional or performance status and quality of life is uncertain. (See evidence matrix EM1.H in Volume 2 of the technical report)	N	N	X	$\sqrt{}$	$\sqrt{\sqrt{1}}$			
	ES, evidence statement $\sqrt{\sqrt{4}}$ =A; $\sqrt{4}$ =B; $\sqrt{-2}$ C; X=D; NA, not applicable								

3.1.5 Renal

Evide	nce statements – chronic kidney disease	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES1.10	In patients with CKD (including dialysis patients), anaemia is independently associated with all-cause or cardiovascular mortality.	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{2}}$
	(See evidence matrix EM1.I in Volume 2 of the technical report)					
ES1.11	In adults with CKD, anaemia is independently associated with stroke.	V	NA	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$
	(See evidence matrix EM1.J in Volume 2 of the technical report)					
ES1.12	In patients with CKD (including dialysis patients), Hb concentration is associated with reduced quality of life.	V	$\sqrt{\sqrt{1}}$	V	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{1}}$
	(See evidence matrix EM1.K in Volume 2 of the technical report)					
	pric kidney disease; ES, evidence statement; Hb, haemoglob $\sqrt{=}B; \sqrt{=}C; X=D; NA, not applicable$	in				

3.1.6 Summary of evidence

Five different populations were chosen for this question: (i) patients with acute coronary syndrome (ACS), (ii) patients with heart failure, (iii) a community-dwelling elderly population, (iv) patients with cancer and (v) patients with renal disease. Patients with ACS and the elderly, community-dwelling population were chosen by the CRG as being populations of particular interest. Patients with heart failure, cancer and renal disease were chosen after systematic reviews of evidence assessing the association between anaemia and adverse outcomes (including mortality) in these populations were identified during the literature search for Level I evidence.

As this is an aetiology question, the levels of evidence are as follows: Level I – a systematic review of two or more Level II studies; Level II – a prospective cohort study; Level III – (I) all or none, (II) a retrospective cohort study and (III) a case-control study; and Level IV – a cross-sectional study or case series. For this analysis, data from randomised controlled trials which have been analysed as cohort studies have been included as Level II studies, as have registries in which the data was collected prospectively. In some cases it was difficult to determine whether a cohort study was prospective or retrospective. Where data has been collected prospectively (ie, not collected from a review of medical records) the studies have been classified as prospective cohort studies. In addition, cross-sectional studies have been classified as Level II for functional/performance status outcomes only, where the outcome data has been collected prospectively.

As the question specifies it is assessing anaemia as an "independent" risk factor for adverse outcomes, only studies which have adjusted for potential confounding variables using multivariate analysis, have been included in this analysis; studies in which only univariate analyses have been undertaken have been excluded. It should be noted that the studies included for this question identified potential confounding variables in various ways. In some cases, variables have been identified which have been shown to be associated with anaemia or the specified outcome in previous studies, while in other cases a wide range of variables have been examined using univariate analysis and those shown to be associated with anaemia or the outcome have been included in the analysis. In some studies, all potential confounding variables have been used (eg, backwards or forwards stepwise regression) to include only those variables which are shown to be independent predictors in the analysis.

While the results of these adjusted analyses indicate whether or not anaemia is an independent risk factor for adverse outcomes, they do not prove that anaemia *causes* these adverse outcomes. In addition, for most analyses, only data on the relative effects of anaemia is available; there is very little evidence on the absolute effect of anaemia on adverse outcome risk. However, where this data is available, it will be noted.

ACUTE CORONARY SYNDROME

The term acute coronary syndrome refers to a range of acute myocardial ischaemic states. It encompasses unstable angina, non-ST segment elevation myocardial infarction (NSTE-ACS; ST segment elevation generally absent), and ST segment elevation infarction (STEMI; persistent ST segment elevation usually present).⁷

Of the adverse outcomes specified for this question, two are covered for this population: mortality and cardiovascular/composite outcomes.

Methods

There were 12 studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature pertaining to Australia's Indigenous population relevant to this research question.

Level I evidence

The literature search identified no systematic reviews examining the aetiology of anaemia in patients with acute coronary syndrome.

Level II evidence

The literature search identified 12 Level II studies examining aetiology of anaemia in patients with acute coronary syndrome.

Level III evidence

Due to the substantial amount of Level II evidence identified, the literature was not searched for Level III evidence.

Level IV evidence

Due to the substantial amount of Level II evidence identified, the literature was not searched for Level IV evidence.

Results

Twelve Level II studies were included for this question; ten studies provided evidence for mortality and four studies provided evidence for composite and/or cardiovascular outcomes. The characteristics of the included studies are summarised in Table 3.1. Ten of the included studies specifically examined anaemia or Hb level as a potential predictor of adverse outcomes,⁸⁻¹⁷ while the remaining two studies aimed to identify a number of potential predictors.^{18,19}

Due to the large amount of evidence available for the mortality outcome and the requirement that analyses were adjusted for multiple potential confounders, studies were limited to those including >500 subjects. This resulted in the exclusion of one study including 151 patients.²⁰ Studies with smaller patient numbers were potentially available for inclusion for the cardiovascular/composite outcomes.

Level II evidence							
Author	Study type Study quality	Population	Outcomes				
Anker et al (2009) ⁸	Cohort analysis of a double-blind RCT (OPTIMAAL) Fair	AMI complicated by heart failure N = 5010	Mortality				
Archbold et al (2006) ⁹	Prospective cohort study Fair	Diagnosis of ACS N = 2310	Mortality				
Aronson et al	Prospective cohort	Adults presenting to the coronary care unit with a	Mortality				

Table 3.1 Question 1 (ACS): Characteristics and quality of Level II evidence

Author	Study type Study quality	Population	Outcomes
(2007)10	study <i>Fai</i> r	diagnosis of MI who were alive at discharge from hospital N = 1390	
Bassand et al (2010) ¹¹	Cohort analysis of two RCTs (OASIS 5 and 6) <i>Fair</i>	Adults presenting to hospital with symptoms of NSTE- ACS or STEMI N = 32,170	Mortality Mortality/MI
Burr et al (1992) ¹⁹	Cohort analysis of a RCT (DART) <i>Poor</i>	Men without diabetes recovering from MI N = 1755	Mortality
Cavusoglu et al (2006) ¹²	Prospective cohort study Fair	Men with ACS (ST-elevation AMI, non-ST segment elevation AMI and unstable angina pectoris) N = 191	Mortality/MI
Giraldez et al (2009) ¹³	Two cohort analyses of two RCTs (InTIME II- TIMI17 and ExTRACT-TIMI) <i>Good</i>	Adults presenting within 6 hrs of onset of symptoms of MI and ECG changes compatible with STEMI N = 14,373 and 18,400	Mortality
Hasin et al (2009) ¹⁴	Prospective cohort study <i>Fair</i>	Patients with a diagnosis of AMI who survived the index hospitalisation and who received Hb measurement ≥28 days after hospital discharge N = 1065	Mortality/heart failure
Keough-Ryan et al (2005) ¹⁵	Cohort analysis of a prospective population-based registry <i>Poor</i>	Adults admitted to hospital with a discharge diagnosis of acute coronary syndrome who survived to discharge N = 5549	Mortality
Mahaffey et al (2008) ¹⁸	Cohort analysis of a RCT (SYNERGY) <i>Good</i>	High risk patients with ACS N = 9978	Mortality
Sabatine et al (2005) ¹⁶	Cohort analysis of 16 RCTs ^a <i>Fair</i>	Adults presenting to hospital with symptoms of NSTE- ACS or STEMI N = 39,922	Mortality Cardiovascular mortality/MI/recurrent ischaemia Heart failure Myocardial infarction Recurrent Ischaemia
Valeur et al (2009) ¹⁷	Cohort analysis of a RCT (TRACE) <i>Fair</i>	Patients with left ventricular systolic dysfunction 2-6 days following enzyme-verified AMI. N=1731	Mortality

ACS, acute coronary syndrome; AMI, acute myocardial infarction; CHF, congestive heart failure; ECG, electrocardiograph; Hb, haemoglobin; MI, myocardial infarction; NSTE-ACS, non-ST-segment elevation acute coronary syndrome; RCT, randomised controlled trial; RI, recurrent ischaemia; STEMI, ST-segment elevation myocardial infarction.

trial; RI, recurrent ischaemia; STEMI, ST-segment elevation myocardial infarction. ^a TIMI IIIB, 4, 9A, 9B, 10A, 10B, 11A, 11B, 12, 14, 16 (OPUS), 17 (InTIME II), 18 (TACTICS), 20 (INTEGRI), 23 (ENTIRE) and 24 (FASTER). InTIME II was included in the study by Giraldez et al (2009).¹³

Anaemia as an independent risk factor for mortality

Two studies assessed the association between **anaemia as defined by the World Health Organisation (WHO)**^a **and mortality**, as shown in Table 3.2.^{8,17} The study by Anker et al (2009)⁸ showed that anaemia was an independent risk factor for all-cause mortality and death due to progressive heart failure in patients diagnosed with acute myocardial infarction (AMI)(P<0.001 and P=0.006, respectively), but was not an independent risk factor for sudden cardiac death.

In the study by Valeur et al (2006)¹⁷, anaemia was an independent risk factor for mortality in acute coronary syndrome (ACS) patients with heart failure (P=0.048), but not in patients without heart failure (P=0.07).

^a Hb <12 g/dL for females and <13 g/dL for males.

 Table 3.2
 Question 1 (ACS): Results for Level II evidence – mortality (WHO or similar anaemia criteria)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	sample size included in analysis	Locati	Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
ACUTE CORONARY SYN	DROME								
ALL-CAUSE MORTALITY									
LONGER-TERM FOLLOW	/-UP (>1 YEAR)								
Anker 2009	1 cohort analysis	Adult patients with a	Hospital	Anaemia (WHO) vs	Mortality (median 3	NR	NR	HR 1.35 (1.16, 1.56)	Anaemia is an
Level II Fair	of a double-blind RCT (OPTIMAAL) N=5010	diagnosis of AMI	Denmark, Finland, Germany, Ireland, Norway, Sweden, UK	no anaemia	years)	Adjusted for variables known to be of prognostic value in heart failure: age, sex, randomised treatment group, baseline BMI, eGFR, baseline creatinine, baseline uric acid, Killip class, heart rate, systolic blood pressure, total cholesterol, current smoking, history of diabetes, in-hospital beta-blocker, statin, digitalis nitrate, aspirin, warfarin and diuretic use.			independent risk factor for mortality P<0.0001
Valeur 2006	,	je i i i i i i i i i i i i i i i i i i i	Hospital	Anaemia (WHO) vs	Mortality (up to12	NR	NR	HR 1.06 (0.93, 1.21)	Anaemia is <u>not</u> an
Level II Good		no anaemia	years)	Adjusted for: age, gender, history of hypertension, diabetes, atrial fibrillation, smoking, BMI, Wall Motion Index, creatinine, heart failure (all patients model only), treatment with fibrinolysis and ACEIs.			independent predictor of mortality P=0.38		
	1 cohort analysis Adults with left Hospital	Hospital	Anaemia (WHO) vs		NR	NR	HR 1.16 (1.01, 1.34)	Anaemia is an	
	of a double-blind RCT (TRACE) N=1195	ventricular systolic dysfunction 2-6 days following enzyme- verified AMI <u>/with</u> <u>heart failure</u>	Denmark no anaemia ye		Adjusted for: age, gender, history of hypertension, diabetes, atrial fibrillation, smoking, BMI, Wall Motion Index, creatinine, heart failure (all patients model only), treatment with fibrinolysis and ACEIs.			independent predictor of mortality P=0.048	
	1 cohort analysis	,	Hospital		Mortality (up to 12	NR	NR	HR 0.76 (0.57, 1.02)	Anaemia is not an
	of a double-blind ventricular systolic dysfunction 2-6 days following enzyme-verified AMI /without heart failure	no anaemia years)	years)	Adjusted for: age, gender, history of hypertension, diabetes, atrial fibrillation, smoking, BMI, Wall Motion Index, creatinine, heart failure (all patients model only), treatment with fibrinolysis and ACEIs.			independent risk factor for mortality P=0.07		

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b	
CARDIOVASCULAR MOI										
LONGER-TERM FOLLO	N-UP (>T YEAR)					•	•			
Anker 2009	1 cohort analysis	Adult patients with a	Hospital	Anaemia (WHO) vs	Sudden cardiac death	NR	NR	HR 1.14 (0.89, 1.48)	Anaemia is <u>not</u> an independent risk factor	
Level II Fair	of a double-blind RCT (OPTIMAAL) N=5010	diagnosis of AMI	Denmark, Finland, Germany, Ireland, Norway, Sweden, UK	no anaemia	(median 3 years)	randomised treatment gr uric acid, Killip class, hea smoking, history of diabe	Adjusted for variables known to be associated with heart failure: age, sex, randomised treatment group, baseline BMI, eGFR, baseline creatinine, baseline uric acid, Killip class, heart rate, systolic blood pressure, total cholesterol, current smoking, history of diabetes, in-hospital beta-blocker, statin, digitalis nitrate, aspirin, warfarin and diuretic use.			
					Death due to	NR	NR	HR 1.55 (1.13, 2.13)	Anaemia is an	
					progressive heart failure (median 3 years)	randomised treatment gr uric acid, Killip class, hea	art rate, systolic blood press etes, in-hospital beta-blocke	baseline creatinine, baseline sure, total cholesterol, current	independent risk factor for death due to progressive heart failure P=0.006	

ACEI, angiotensin-converting enzyme inhibitor; ACS, acute coronary syndrome; AMI, acute myocardial infarction; BMI, body mass index; CABG, coronary artery bypass graft; CHF, congestive heart failure; CI, confidence interval; CV, cardiovascular; dL, decilitre; ECG, electrocardiograph; eGFR, estimated glomerular filtration rate; g, grams; Hb, haemoglobin; HR, hazard ratio; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NR, not reported; NSTE-ACS, non-ST-segment elevation acute coronary syndromes; OR, odds ratio; PCI, percutaneous coronary intervention; RCT, randomised controlled trial; RI, recurrent ischemia; SBP, systolic blood pressure; SD, standard deviation; STEMI, ST-segment elevation myocardial infarction; TIA, transient ischemic attack; UK, United Kingdom; US, United States of America; WHO, World Health Organisation. Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

Six studies assessed the association between **various Hb levels and mortality**, as shown in Table 3.3.^{9,10,13,15-17} Giraldez et al (2009)¹³ examined the association between different baseline Hb levels and 30-day mortality in patients with ST-segment elevation myocardial infarction in cohorts based on two large randomised controlled trials. Five different Hb categories (<11 g/dL, 11-12 g/dL, 12-13 g/dL, 13-14 g/dL and 14-15 g/dL) were compared with a single Hb category (15-16 g/dL) in both trial cohorts. The majority of analyses showed lower Hb levels were a significant independent risk factor for 30-day mortality compared with the reference category; exceptions to this were the 14-15 g/dL category for the InTIME II-TIMI 17 trial cohort and the 13-14 g/dL and 14-15 g/dL categories for the ExTRACT-TIMI 25 trial cohort.

The study by Aronson et al $(2007)^{10}$ assessed the association between different baseline, nadir and discharge Hb levels, changes in Hb levels from baseline to discharge, and longerterm mortality (mean follow-up 2 years) in patients presenting to a coronary care unit with a diagnosis of myocardial infarction who survived to discharge. None of the analyses comparing baseline Hb showed a significant association with mortality. The authors note that because patients who died during hospitalisation were excluded from the analysis, the power to detect an association between baseline Hb level and mortality was probably reduced. Two out of three comparisons between nadir Hb (\leq 11.3 g/dL versus \geq 14.0 g/dL and 11.4-12.8 g/dL versus \geq 14.8 g/dL) and mortality showed a significant association; the final comparison of nadir Hb 12.9-13.9 g/dL with \geq 14.0 g/dL was not significant. Similarly, comparisons of discharge Hb \leq 11.9 g/dL and 12.0-13.3 g/dL with \geq 14.6 g/dL were shown to be significantly associated with mortality while a comparison between a discharge Hb of 13.3-14.5 g/dL with \geq 14.6 g/dL was not. Finally, a decrease in Hb from baseline to discharge of \geq 2.3 g/dL, compared with a decrease of \leq 0.5 g/dL, showed a significant association with mortality, while smaller decreases of 1.4-2.2 g/dL and 0.6-1.3 g/dL did not.

The study by Keough-Ryan et al (2005)¹⁵ assessed the impact of chronic renal insufficiency, cardiac interventions and anaemia on mortality in patients with a discharge diagnosis of acute coronary syndrome. Hb levels were classified as mild anaemia (10.5-12.0 g/dL), moderate anaemia (9.0-10.5 g/dL) and severe anaemia (<9.0 g/dL). Multivariate analysis showed that only severe anaemia was independently associated with long-term mortality (mean follow-up 5.6 years).

The study by Valeur et al (2006)¹⁷ assessed the association between different levels of anaemia (mild, moderate and severe) or the lowest decile of anaemia and long-term mortality, with follow-up being approximately 10-12 years. The analysis was conducted in patients with left ventricular systolic dysfunction 2-6 days following enzyme-verified AMI who had taken part in an RCT. When all patients were considered in the analysis, only severe anaemia (Hb <10 g/dL in women and <11 g/dL in men) and the lowest decile of anaemia (<11 g/dL in women and <12 g/dL in men) were shown to be independent risk factors compared with no anaemia. When the analysis was restricted to patients with heart failure, similar results were seen. Finally, when the analysis was restricted to patients without heart failure, there was no significant association between any level of anaemia and long-term mortality. Despite the long-term follow-up, the authors note that the prognostic significance of anaemia was confined to the first year following myocardial infarction; they state this is an important new finding.

Archbold et al (2006)⁹ assessed the association between four different levels of Hb and inhospital cardiac death, and in three analyses, Hb levels of 12.5-13.6 g/dL, 13.7-14.7 g/dL and >14.7 g/dL were compared with <12.5 g/dL, and showed no significant difference. There are three points to note regarding these results: (i) in this study, progressively higher Hb levels are compared to a single low Hb level – this differs from the majority of other included studies in which progressively lower Hb levels are compared to a "normal" or higher Hb level; (ii) the mortality outcome was limited to in-hospital cardiac mortality; and (iii) the authors note that a large proportion of included subjects had biomarker-negative unstable angina, which resulted in a low in-hospital mortality (3%), highlighting that this study may be insufficiently powered to show an association between Hb level and mortality.

Sabatine et al (2005)¹⁶ examined the association between different Hb levels and 30-day cardiovascular mortality in a cohort of patients from 16 RCTs; patients with STEMI and non-ST-segment elevation acute coronary syndromes (NSTE-ACS) were analysed separately. It should be noted that there is likely to be some data duplication between this study and the Giraldez et al (2009)¹³ study as data from the InTIME II study are included in both. In STEMI patients, five Hb categories (<10 g/dL; 10-11 g/dL, 11-12 g/dL, 12-13 g/dL and 13-14 g/dL) were compared with a Hb level of 14-15 g/dL. All Hb categories except 13-14 g/dL showed a significantly increased 30-day cardiovascular mortality risk compared with 14-15 g/dL Hb. When Hb levels of <14 g/dL and 14-15 g/dL were compared, there was a significant independent association with 30-day cardiovascular mortality. In NSTE-ACS patients, only Hb levels of <11 g/dL and 15-16 g/dL were compared for this outcome. This analysis suggested Hb <11 g/dL was not an independent risk factor for 30-day cardiovascular mortality in this patient group.

Table 3.3 Question 1 (ACS): Results for Level II evidence – mortality (other anaemia criteria, Hb levels or change in Hb levels)

Study	No. of trials / sample size	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a <i>Quality</i>	included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity⁵	
ACUTE CORONARY	SYNDROME		•							
ALL-CAUSE MORTAL	ITY									
SHORT-TERM FOLLO	W-UP (UP TO 1 YEAR)									
Giraldez 2009 Level II Good	1 cohort analysis of a RCT (InTime II-TIMI17) N=3667	Adults presenting within 6 hrs of onset of symptoms of MI and ECG changes compatible with STEMI	Hospital US	Hb <11 g/dL vs Hb 15-16 g/dL	Mortality (30 days)	bundle branch block	OR 2.51 (1.68, 3.74) or myocardial infarction, left , weight, prior angina, or MI and PCI during	A Hb level <11 g/dL is an independent risk factor for 30-day mortality compared with a Hb level 15-16 g/dL P<0.001		
	1 cohort analysis of a RCT	Adults presenting within 6 hrs of onset	Hospital	Hb 11-12 g/dL vs Hb 15-16 g/dL	Mortality (30 days)	NR	NR	OR 2.25 (1.62, 3.15)	A Hb level 11-12 g/dL is an independent risk	
	(InTime II-TIMI17) N=3899 1 cohort analysis of a RCT	of symptoms of MI and ECG changes compatible with STEMI	US	no 13-10 g/uL		bundle branch block	or myocardial infarction, left , weight, prior angina, or MI and PCI during	factor for 30-day mortality compared with a Hb level 15-16 g/dL P<0.001		
	1 cohort analysis of a RCT	Adults presenting	Hospital	Hb 12-13 g/dL vs Hb 15-16 g/dL	5 5 5 7	NR	NR	OR 1.83 (1.40, 2.39)	A Hb level 12-13 g/dL	
	(InTime II-TIMI17) N=4739	within 6 hrs of onset of symptoms of MI and ECG changes compatible with STEMI	oms of MI G changes			bundle branch block	or myocardial infarction, left , weight, prior angina, or MI and PCI during	 is an independent risk factor for 30-day mortality compared with a Hb level 15-16 g/dL P<0.001 		
	1 cohort analysis of a RCT	Adults presenting	Hospital	Hb 13-14 g/dL vs	Mortality (30 days)	NR	NR	OR 1.39 (1.09, 1.76)	A Hb level 13-14 g/dL	
	(InTime II-TIMI17) N=6351	within 6 hrs of onset of symptoms of MI and ECG changes compatible with STEMI	US	Hb 15-16 g/dL		Adjusted for: age, Killip class, heart rate, anterior myocardial infarction, left bundle branch block, SBP, time to thrombolysis, weight, prior angina, diabetes, hypertension, sex, race, smoking, prior MI and PCI during hospitalisation.		, weight, prior angina,	is an independent risk factor for 30-day mortality compared with a Hb level 15-16 g/dL P=0.008	
	1 cohort analysis of a RCT	Adults presenting	Hospital	Hb 14-15 g/dL vs	Mortality (30 days)	NR NR OR 1.11 (0.88, 1.40) Adjusted for: age, Killip class, heart rate, anterior myocardial infarction, left bundle branch block, SBP, time to thrombolysis, weight, prior angina, diabetes, hypertension, sex, race, smoking, prior MI and PCI during hospitalisation.		A Hb level 14-15 g/dL		
	(InTime II-TIMI17) N=7549	within 6 hrs of onset of symptoms of MI and ECG changes compatible with STEMI	US	Hb 15-16 g/dL				is not an independent		

Study	No. of trials / sample size	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
Giraldez 2009	1 cohort analysis of a RCT	Adults presenting	Hospital	Hb <11 g/dL vs Hb	Mortality (30 days)	NR	NR	OR 1.82 (1.30, 2.57)	A Hb level <11 g/dL is
Level II Good	(ExTRACT-TIMI 25) N=4449	within 6 hrs of onset of symptoms of MI and ECG changes compatible with STEMI	US	15-16 g/dL		bundle branch block,	ip class, heart rate, anteri SBP, time to thrombolysis n, sex, race, smoking, prio		an independent risk factor for 30-day mortality compared with a Hb level 15-16 g/dL P<0.01
	1 cohort analysis of a RCT	Adults presenting	Hospital	Hb 11-12 g/dL vs	Mortality (30 days)	NR	NR	OR 1.39 (1.03, 1.88)	A Hb level 11-12 g/dL
	(ExTRACT-TİMI 25) N=4848	within 6 hrs of onset of symptoms of MI and ECG changes compatible with STEMI	US	Hb 15-16 g/dL		bundle branch block,	ip class, heart rate, anteri SBP, time to thrombolysis n, sex, race, smoking, prio		is an independent risk factor for 30-day mortality compared with a Hb level 15-16 g/dL P=0.03
	1 cohort analysis of a RCT	Adults presenting	Hospital	Hb 12-13 g/dL vs	Mortality (30 days)		NR	OR 1.33 (1.04, 1.70)	A Hb level 12-13 g/dL
	(ExTRACT-TÍMI 25) N=5966	within 6 hrs of onset of symptoms of MI and ECG changes compatible with STEMI	US	Hb 15-16 g/dL		bundle branch block,	ip class, heart rate, anteri SBP, time to thrombolysis n, sex, race, smoking, prid		is an independent risk factor for 30-day mortality compared with a Hb level 15-16 g/dL P=0.02
	1 cohort analysis of a RCT	Adults presenting	Hospital	Hb 13-14 g/dL vs	Mortality (30 days)	NR	NR	OR 1.22 (0.98, 1.53)	A Hb level 13-14 g/dL
	(ExTRACT-TIMI 25) N=7676	within 6 hrs of onset of symptoms of MI and ECG changes compatible with STEMI	US	Hb 15-16 g/dL		bundle branch block,	ip class, heart rate, anteri SBP, time to thrombolysis n, sex, race, smoking, prio		is <u>not</u> an independent risk factor for 30-day mortality compared with a Hb level 15-16 g/dL P=0.08
	1 cohort analysis of a RCT	Adults presenting	Hospital	Hb 14-15 g/dL vs	Mortality (30 days)	NR	NR	OR 1.05 (0.84, 1.31)	A Hb level 14-15 g/dL
	(ExTRACT-TIMI 25) N=8911	within 6 hrs of onset of symptoms of MI and ECG changes compatible with STEMI	US	Hb 15-16 g/dL		Adjusted for: age, Killip class, heart rate, anterior myocardial infarction, left bundle branch block, SBP, time to thrombolysis, weight, prior angina, diabetes, hypertension, sex, race, smoking, prior MI and PCI during hospitalisation.		, weight, prior angina,	is <u>not</u> an independent risk factor for 30-day mortality compared with a Hb level 15-16 g/dL P=0.69
LONGER-TERM FOLL	_OW-UP (>1 YEAR)	•			•				•
Aronson 2007	1 prospective cohort study	Adults presenting to	Coronary care unit	Baseline Hb ≤13.1	Mortality (median 24	76/361 (21.1)	24/328 (7.3)	HR 1.6 (0.9, 2.6)	Baseline Hb ≤13.1

Study	No. of trials / sample size	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a <i>Quality</i>	included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b	
Level II Fair	N=689	the coronary care unit with a diagnosis of <u>MI</u> who were alive at discharge from hospital	Israel	g/dL vs baseline Hb ≥15.5 g/dL	months)	the univariate model : diabetes, smoking, ST	age, gender, eGFR, previ	nportance or with P<0.1 in lous infarction, hypertension, eart rate, blood pressure on ngth of hospital stay.	g/dL is <u>not</u> an independent risk factor for post-discharge mortality compared with Hb ≥15.5 g/dL P=0.07	
	1 prospective cohort study	Adults presenting to	Coronary care unit	Baseline Hb 13.2-	Mortality (median 24	31/345 (9.0)	24/328 (7.3)	HR 1.2 (0.8, 2.1)	Baseline Hb 13.2-14.3	
	N=673	the coronary care unit with a diagnosis of <u>MI</u> who were alive at discharge from hospital	Israel	14.3 g/dL vs baseline Hb ≥15.5 g/dL	months)	the univariate model : diabetes, smoking, ST	ed for variables thought to have clinical importance or with P<0.1 variate model : age, gender, eGFR, previous infarction, hypertens es, smoking, ST-elevation, Killip class, heart rate, blood pressure of ion, coronary revascularisation, LVEF, length of hospital stay.		g/dL is <u>not</u> an independent risk factor for post-discharge mortality compared with Hb ≥15.5 g/dL P=0.07	
	1 prospective cohort study	Adults presenting to	Coronary care unit	Baseline Hb 14.4-	Mortality (median 24	26/356 (7.3)	24/328 (7.3)	HR 1.2 (0.7, 2.1)	Baseline Hb 14.4-15.4	
	N=684	the coronary care unit with a diagnosis of <u>MI</u> who were alive at discharge from hospital	Israel	15.4 g/dL vs baseline Hb ≥15.5 g/dL	months)	Adjusted for variables thought to have clinical impo the univariate model : age, gender, eGFR, previous diabetes, smoking, ST-elevation, Killip class, heart admission, coronary revascularisation, LVEF, lengt		ous infarction, hypertension, art rate, blood pressure on	g/dL is <u>not</u> an independent risk factor for post-discharge mortality compared with Hb ≥15.5 g/dL P=0.07	
Aronson 2007	1 prospective cohort study	Adults presenting to	Coronary care unit	Decrease in Hb	Mortality (median 24	58/341 (17.0)	27/337 (8.0)	HR 1.7 (1.1, 2.8)	A decrease in Hb	
Level II Fair	N=678	the coronary care unit with a diagnosis of <u>MI</u> who were alive at discharge from hospital	Israel	during hospitalisation ≥2.3 g/dL vs decrease in Hb during hospitalisation ≤0.5 g/dL	months)	 24 58/341 (17.0) 27/337 (8.0) HR 1.7 (1.1, 2 Adjusted for variables thought to have clinical importance or with P the univariate model : age, gender, eGFR, previous infarction, hype diabetes, smoking, ST-elevation, Killip class, heart rate, blood press admission, coronary revascularisation, LVEF, length of hospital stay 		ous infarction, hypertension, art rate, blood pressure on	during hospitalisation of ≥ 2.3 g/dL is an independent risk factor for increased post- discharge mortality compared with a decrease of ≤ 0.5 g/dL P=0.03	
	1 prospective cohort study	Adults presenting to	Coronary care unit	Decrease in Hb	Mortality (median 24	39/350 (11.1)	27/337 (8.0)	HR 1.3 (0.8, 2.2)	A decrease in Hb	
	N=687	the coronary care unit with a diagnosis of <u>MI</u> who were alive at discharge from hospital	Israel	during hospitalisation 1.4- 2.2 g/dL vs decrease in Hb during hospitalisation ≤0.5 g/dL	months)	Adjusted for variables thought to have clinical importance or with P<0.1 in the univariate model : age, gender, eGFR, previous infarction, hypertension, diabetes, smoking, ST-elevation, Killip class, heart rate, blood pressure on admission, coronary revascularisation, LVEF, length of hospital stay.		during hospitalisation of 1.4-2.2 g/dL is <u>not</u> an independent risk factor for post- discharge mortality compared with a decrease of ≤ 0.5 g/dL P=0.25		

Study	No. of trials / sample size	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶
	1 prospective cohort study	Adults presenting to	Coronary care unit	Decrease in Hb	Mortality (median 24	33/362 (9.1)	27/337 (8.0)	HR 1.3 (0.7, 2.1)	A decrease in Hb
	N=699	the coronary care unit with a diagnosis of <u>MI</u> who were alive at discharge from hospital	Israel	during hospitalisation 0.6- 1.3 g/dL vs decrease in Hb during hospitalisation ≤0.5 g/dL	months)	the univariate model :	portance or with P<0.1 in ous infarction, hypertension, art rate, blood pressure on ngth of hospital stay.	during hospitalisation of 0.6-1.3 g/dL is <u>not</u> an independent risk factor for post- discharge mortality compared with a decrease of ≤0.5 g/dL P=0.25	
Aronson 2007	1 prospective cohort study	Adults presenting to	Coronary care unit	Nadir Hb ≤11.3	Mortality (median 24	88/350 (25.1)	12/341 (3.5) HR 3.3 (1.7, 6.3)		Nadir Hb ≤11.3 g/dL is
Level II Fair	N=691	the coronary care unit with a diagnosis of <u>MI</u> who were alive at discharge from hospital	Israel	g/dL vs nadir Hb ≥14.0 g/dL	months)	Adjusted for variables the univariate model : diabetes, smoking, ST admission, coronary re	an independent risk factor for increased post-discharge mortality compared with nadir Hb ≥14.0 g/dL P<0.001		
	1 prospective cohort study	Adults presenting to	Coronary care unit	Nadir Hb 11.4-12.8	Mortality (median 24	40/357 (11.2)	12/341 (3.5)	HR 2.1 (1.1, 4.1)	Nadir Hb 11.4-12.8
	N=698	the coronary care unit with a diagnosis of <u>MI</u> who were alive at discharge from hospital	Israel	g/dL vs nadir Hb ≥14.0 g/dL	months)	Adjusted for variables thought to have clinica the univariate model : age, gender, eGFR, pr diabetes, smoking, ST-elevation, Killip class, admission, coronary revascularisation, LVEF		ous infarction, hypertension, art rate, blood pressure on	g/dL is an independent risk factor for increased post- discharge mortality compared with nadir Hb ≥14.0 g/dL P=0.03
	1 prospective cohort study	Adults presenting to	Coronary care unit	Nadir Hb 12.9-13.9	Mortality (median 24	24 17/342 (5.0) 12/341 (3.5) HR 1.1 (0.5, Adjusted for variables thought to have clinical importance or with 1 the univariate model : age, gender, eGFR, previous infarction, hyp diabetes, smoking, ST-elevation, Killip class, heart rate, blood pres admission, coronary revascularisation, LVEF, length of hospital statements		HR 1.1 (0.5, 2.3)	Nadir Hb 12.9-13.9
	N=683	the coronary care unit with a diagnosis of <u>MI</u> who were alive at discharge from hospital	Israel	g/dL vs nadir Hb ≥14.0 g/dL	months)			ous infarction, hypertension, art rate, blood pressure on	g/dL is <u>not</u> an independent risk factor for increased post- discharge mortality compared with nadir Hb ≥14.0 g/dL P=0.83

Study	No. of trials / sample size	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a Quality	included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b	
Aronson 2007	1 prospective cohort study	Adults presenting to	Coronary care unit	Discharge Hb	Mortality (median 24	82/344 (23.8)	15/341 (4.4)	HR 2.6 (1.5, 4.7)	Discharge Hb ≤11.9	
Level II Fair	N=685	the coronary care unit with a diagnosis of <u>MI</u> who were alive at discharge from hospital	Israel	≤11.9 g/dL vs discharge Hb ≥14.6 g/dL	months)	the univariate model : diabetes, smoking, ST	age, gender, eGFR, previ	portance or with P<0.1 in ous infarction, hypertension, art rate, blood pressure on ngth of hospital stay.	g/dL is an independent risk factor for increased post- discharge mortality compared with discharge Hb ≥14.6 g/dL P=0.001	
	1 prospective cohort study	Adults presenting to	Coronary care unit	Discharge Hb 12.0-	Mortality (median 24	39/350 (11.1) 15/341 (4.4) HR 2.0 (1.1, 3.7)			Discharge Hb 12.0-	
	N=691	the coronary care unit with a diagnosis of <u>MI</u> who were alive at discharge from hospital	Israel	13.3 g/dL vs discharge Hb ≥14.6 g/dL	months)	the univariate model : diabetes, smoking, ST	thought to have clinical importance or with P<0.1 i age, gender, eGFR, previous infarction, hypertensi -elevation, Killip class, heart rate, blood pressure of vvascularisation, LVEF, length of hospital stay.		13.3 g/dL may be an independent risk factor for increased post- discharge mortality compared with discharge Hb ≥14.6 g/dL P=0.03	
	1 prospective cohort study	Adults presenting to	Coronary care unit	Discharge Hb 13.3- 14.5 g/dL vs	Mortality (median 24 months)	21/355 (5.9)	15/341 (4.4)	HR 1.4 (0.7, 2.7)	Discharge Hb 13.3-	
	N=696	the coronary care unit with a diagnosis of <u>MI</u> who were alive at discharge from hospital	Israel	ischarge Hb ≥14.6 g/dL	monins)	the univariate model : diabetes, smoking, ST	Adjusted for variables thought to have clinical importance or with P<0.1 in he univariate model : age, gender, eGFR, previous infarction, hypertension, liabetes, smoking, ST-elevation, Killip class, heart rate, blood pressure on admission, coronary revascularisation, LVEF, length of hospital stay.		14.5 g/dL is <u>not</u> an independent risk factor for increased post- discharge mortality compared with discharge Hb ≥14.6 g/dL P=0.32	
Keough-Ryan 2005	1 cohort analysis of a prospective population-based	Adults admitted to hospital with a	Hospital Canada	Mild anaemia (Hb 10.5-12.0 g/dL) vs	Mortality (mean 5.6 years)	NR	NR	HR 0.968 (0.924, 1.015)	Mild anaemia is <u>not</u> an independent risk factor	
Level II Poor	registry N=NR ^c	discharge diagnosis of acute coronary syndrome who		no anaemia (Hb >12.0 g/dL)			diabetes, hypertension, s , CABG, thrombolysis, me		for mortality P=NR	
		survived to discharge				Note: a large number of potential confounders not considered (including BMI, history of MI, peripheral vascular disease, cerebrovascular accident, TIA, CHF, family history of ischaemic heart disease) due to missing data.		rovascular accident, TIA,		
	1 cohort analysis of a prospective population-based	Adults admitted to hospital with a	Hospital Canada	Moderate anaemia (Hb 9.0-10.5 g/dL)	Mortality (mean 5.6 years)	NR	NR	HR 1.050 (0.965, 1.114)	Moderate anaemia is <u>not</u> an independent	
	registry N=NR ^c	discharge diagnosis of acute coronary syndrome who		vs no anaemia (Hb >12.0 g/dL)		cardiac catheterization	moking, previous CABG, edications on discharge.	risk factor for mortality P=NR		
		syndrome who survived to discharge					ot considered (including BMI, rovascular accident, TIA, due to missing data.			

Study	No. of trials / sample size	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
	1 cohort analysis of a prospective population-based	Adults admitted to hospital with a	Hospital Canada	Severe anaemia (Hb <9.0 g/dL)vs no	Mortality (mean 5.6 years)	NR	NR	HR 1.376 (1.179, 1.606)	Severe anaemia is an independent risk factor
	registry N=NR⁰	discharge diagnosis of acute coronary syndrome who		anaemia (Hb >12.0 g/dL)		cardiac catheterizatio	a, diabetes, hypertension, s n, CABG, thrombolysis, ma		for mortality P=NR
		survived to discharge				history of MI, peripher	al vascular disease, cereb ischaemic heart disease)	provascular accident, TIA,	
Valeur 2006	1 cohort analysis of a double-	Adults with left	Hospital	Mild anaemia (11.0-	Mortality (up to 12	NR	NR	HR 0.96 (0.82, 1.13)	Mild anaemia is <u>not</u> an
Level II Good	blind RCT (TRACE) N=1558	ventricular systolic dysfunction 2-6 days following enzyme- verified AMI	Denmark	<12.0 g/dL in women; 12.0-<13.0 g/dL in men) vs no anaemia	years)	smoking, BMI, Wall N		on, diabetes, atrial fibrillation, art failure (all patients model	independent predictor of mortality P=0.65
	1 cohort analysis of a double-	Adults with left	Hospital	Moderate anaemia	Mortality (up to 12 years)	NR	NR	HR 1.08 (0.86, 1.36)	Moderate anaemia
	blind RCT (TRACE) N=1408	ventricular systolic dysfunction 2-6 days following enzyme- verified AMI	Denmark	Denmark (10.0-<11.0 g/dL in y) women; 11.0-<12.0 g/dL in men) vs no anaemia		Adjusted for: age, ger smoking, BMI, Wall M only), treatment with f	is <u>not</u> an independent predictor of mortality P=0.50		
	1 cohort analysis of a double-	Adults with left	Hospital	Severe anaemia (<10.0 g/dL in women; <11.0 g/dL in men) vs no anaemia	Mortality (up to12	NR	NR	HR 1.59 (1.20, 2.11)	Severe anaemia is an
	blind RCT (TRACE) N=1353	ventricular systolic dysfunction 2-6 days following enzyme- verified AMI	Denmark		years)		on, diabetes, atrial fibrillation, art failure (all patients model	independent predictor of mortality P=0.001	
	1 cohort analysis of a double-	Adults with left	Hospital	Lowest decile	Mortality (up to12	NR	NR	HR 1.24 (1.04, 1.48)	Lowest decile anaemia
	blind RCT (TRACE) N=NR	ventricular systolic dysfunction 2-6 days following enzyme- verified AMI	Denmark	anaemia (<11.0 g/dL in women; <12.0 g/dL in men)vs no anaemia	years)	smoking, BMI, Wall N		on, diabetes, atrial fibrillation, art failure (all patients model	is an independent predictor of mortality P=0.017
Valeur 2006	1 cohort analysis of a double-	Adults with left	Hospital	Mild anaemia (11.0-	Mortality (up to12	NR	NR	HR 1.05 (0.88, 1.25)	Mild anaemia is <u>not</u> an
Level II Good	blind RCT (TRACE) N=1069	ventricular systolic dysfunction 2-6 days following enzyme- verified AMI/ <u>with heart failure</u>	Denmark	<12.0 g/dL in women; 12.0-<13.0 g/dL in men) vs no anaemia	years)	smoking, BMI, Wall N		on, diabetes, atrial fibrillation, art failure (all patients model	independent predictor of mortality P=0.60
	1 cohort analysis of a double-	Adults with left	Hospital	Moderate anaemia	Mortality (up to12	NR	NR	HR 1.20 (0.93, 1.56)	Moderate anaemia
	blind RCT (TRACE) N=960	dysfunction 2-6 days women; 11.0-		(10.0-<11.0 g/dL in women; 11.0-<12.0 g/dL in men) vs no anaemia	years)	Adjusted for: age, gender, history of hypertension, diabetes, atrial fibrillation, smoking, BMI, Wall Motion Index, creatinine, heart failure (all patients model only), treatment with fibrinolysis and ACEIs.			is <u>not</u> an independent predictor of mortality P=0.17
	1 cohort analysis of a double-	Adults with left	Hospital	Severe anaemia	Mortality (up to12	NR	NR	HR 1.65 (1.21, 2.25)	Severe anaemia is an

Study	No. of trials / sample size	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
	blind RCT (TRACE) N=928	ventricular systolic dysfunction 2-6 days following enzyme- verified AMI <u>/with</u> <u>heart failure</u>	Denmark	(<10.0 g/dL in women; <11.0 g/dL in men) vs no anaemia	years)	smoking, BMI, Wall N		n, diabetes, atrial fibrillation, art failure (all patients model	independent predictor of anaemia P=0.002
	1 cohort analysis of a double-	Adults with left	Hospital	Lowest decile	Mortality (up to12	NR	NR	HR 1.32 (1.08, 1.61)	Lowest decile anaemia
	blind RCT (TRACE) N=NR	ventricular systolic dysfunction 2-6 days following enzyme- verified AMI/ <u>with heart failure</u>	Denmark	anaemia (<11.0 g/dL in women; <12.0 g/dL in men)vs no anaemia	years)	smoking, BMI, Wall N		on, diabetes, atrial fibrillation, art failure (all patients model	is an independent predictor of mortality P=0.007
Valeur 2006	1 cohort analysis of a double- blind RCT (TRACE)	Adults with left	Hospital	Mild anaemia (11.0- <12.0 g/dL in	Mortality (up to12	NR	NR	Incorrecte	Mild anaemia is <u>not</u> an independent risk factor
Level II Good	N=489	ventricular systolic dysfunction 2-6 days following enzyme- verified AMI/ <u>without</u> <u>heart failure</u>	Denmark	vomen; 12.0-<13.0 g/dL in men) vs no anaemia	years)	Adjusted for: age, gender, history of hypertens smoking, BMI, Wall Motion Index, creatinine, h only), treatment with fibrinolysis and ACEIs.			for mortality P=0.5
	1 cohort analysis of a double-	Adults with left Hospital ventricular systolic Depmark		Moderate anaemia (10.0-<11.0 g/dL in	Mortality (up to12	NR	NR	HR 0.80 (0.49, 1.29)	Moderate anaemia is
	blind RCT (TRACE) N=448	ventricular systemic dysfunction 2-6 days following enzyme- verified AMI/ <u>without</u> <u>heart failure</u>	Denmark	yomen; 11.0-<12.0 g/dL in men) vs no anaemia	years)	smoking, BMI, Wall N	nder, history of hypertensi Aotion Index, creatinine, he fibrinolysis and ACEIs.	on, diabetes, atrial fibrillation, art failure (all patients model	not an independent risk factor for mortality P=0.36
	1 cohort analysis of a double-	Adults with left	Hospital	Severe anaemia	Mortality (up to12	NR	NR	HR 1.18 (0.58, 2.41)	Severe anaemia is not
	blind RCT (TRACE) N=425	ventricular systolic dysfunction 2-6 days following enzyme- verified AMI <u>/without</u> <u>heart failure</u>	Denmark	(<10.0 g/dL in women; <11.0 g/dL in men) vs no anaemia	years)	smoking, BMI, Wall N		on, diabetes, atrial fibrillation, art failure (all patients model	an independent risk factor for mortality P=0.64
	1 cohort analysis of a double- blind RCT (TRACE)	Adults with left	Hospital	Lowest decile anaemia (<11.0	Mortality (up to12	NR	NR	HR 0.99 (0.66, 1.49)	Lowest decile anaemia is not an independent
	N=NR	ventricular systolic dysfunction 2-6 days following enzyme- verified AMI/ <u>without</u> <u>heart failure</u>	Denmark	g/dL in women; <12.0 g/dL in men)vs no anaemia	years)	smoking, BMI, Wall N		n, diabetes, atrial fibrillation, art failure (all patients model	risk factor for mortality P=0.96
CARDIAC MORTALITY	1								
SHORT-TERM FOLLO	W-UP (UP TO 1 YEAR)								
Archbold 2006	1 prospective cohort study	Adults with a	Coronary care unit	Hb 12.5-13.6 g/dL	Cardiac mortality (in	NR	NR	OR 1.56 (0.76, 3.22)	Hb <12.5 g/dL is <u>not</u>

Study	No. of trials / sample size	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a <i>Quality</i>	included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶	
Level II Fair	N=1140	diagnosis of ACS	UK	vs Hb <12.5 g/dL	hospital)	diabetes, hypertensio			an independent risk factor for in-hospital cardiac death compared with Hb 12.5-13.6 g/dL P=NR	
	1 prospective cohort study N=1152	Adults with a diagnosis of ACS	Coronary care unit UK	Hb 13.7-14.7 g/dL vs Hb <12.5 g/dL	Cardiac mortality (in hospital)	NR Adjusted for variable v	NR	OR 1.00 (0.42, 2.36)	Hb <12.5 g/dL is <u>not</u> an independent risk	
						Adjusted for variable with P<0.1 in univariate analysis: age, so diabetes, hypertension, smoking, previous angina, previous A function, background aspirin, ACEI, diuretic, statin therapy, he reperfusion therapy and ACS presentation.		na, previous ACS, renal	factor for in-hospital cardiac death compared with Hb 13.7-14.7 g/dL P=NR	
	1 prospective cohort study	Adults with a	Coronary care unit	Hb >14.7 g/dL vs	Cardiac mortality (in	NR	NR	OR 1.73 (0.76, 3.97)	Hb <12.5 g/dL is <u>not</u>	
	N=1134	diagnosis of ACS	UK	Hb <12.5 g/dL	hospital)	Adjusted for variable with P<0.1 in univariate analysis: diabetes, hypertension, smoking, previous angina, prev function, background aspirin, ACEI, diuretic, statin ther reperfusion therapy and ACS presentation.		na, previous ACS, renal	an independent risk factor for in-hospital cardiac death compared with Hb >14.7 g/dL P=NR	
Sabatine 2005	1 cohort analysis of 16 RCTs ^d	Adults with STEMI	Hospital	Hb 13-14 g/dL vs	Cardiovascular	NR	NR	OR 1.17 (0.93, 1.47)	A Hb level of 13-14	
Level II Fair	N=12,003		Various	Hb 14-15 g/dL	mortality (30 days)	NR OR 1.17 (0.93, 1.4 Candidate variables for which there was data in 80% of subjects and that either demonstrated association with baseline Hb levels (at a significance threshold of P0.25) or were of known clinical importance were included in final model: age, gender, race, hypertension, diabetes, smoking history, creatinine clearance, prior MI, prior congestive heart failure, prior percutaneous coronary intervention, prior CABG, cerebrovascular diseas peripheral arterial disease, prior aspirin, β-blocker, ACEI, angiotensin receptor blocker, or hypolipidemic use, index hospitalisation aspirin, index revascularisation (NSTE-ACS) + anterior location of index MI (STEMI on addition)		b levels (at a significance portance were included in the ubetes, smoking history, eart failure, prior c, cerebrovascular disease, er, ACEI, angiotensin spitalisation aspirin, index	g/dL is <u>not</u> an independent risk factor for 30-day cardiovascular mortality compared with a Hb level of 14- 15 g/dL P=0.175	
	1 cohort analysis of 16 RCTs ^d	Adults with STEMI	Hospital	Hb 12-13 g/dL vs	Cardiovascular	NR	NR	OR 1.40 (1.09, 1.80)	A Hb level of 12-13	
	N=9428		Various	Hb 14-15 g/dL	mortality (30 days)	Candidate variables for which there was data in 80% of subjects and that either demonstrated association with baseline Hb levels (at a significance threshold of P0.25) or were of known clinical importance were included in the final model: age, gender, race, hypertension, diabetes, smoking history, creatinine clearance, prior MI, prior congestive heart failure, prior percutaneous coronary intervention, prior CABG, cerebrovascular disease, peripheral arterial disease, prior aspirin, B-blocker, ACEI, angiotensin receptor blocker, or hypolipidemic use, index hospitalisation aspirin, index revascularisation (NSTE-ACS) + anterior location of index MI (STEMI only addition)		b levels (at a significance portance were included in the ubetes, smoking history, eart failure, prior c, cerebrovascular disease, er, ACEI, angiotensin spitalisation aspirin, index	g/dL is an independent risk factor for 30-day cardiovascular mortalily compared with a Hb level of 14- 15 g/dL P=0.009	

Study	No. of trials / sample size	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a <i>Quality</i>	included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% Cl)	Significance P-value Heterogeneity ⁶	
	1 cohort analysis of 16 RCTsd	Adults with STEMI	Hospital	Hb 11-12 g/dL vs	Cardiovascular	NR	NR	OR 1.63 (1.19, 2.24)	A Hb level of 11-12 g/dL is an independent	
	N=7888		Various	Hb 14-15 g/dL	mortality (30 days)	either demonstrated as threshold of P0.25) or final model: age, gend, creatinine clearance, p percutaneous coronary peripheral arterial dise receptor blocker, or hy	were of known clinical imp er, race, hypertension, dia rior MI, prior congestive h ν intervention, prior CABG ase, prior aspirin, β-blocke polipidemic use, index hos	b levels (at a significance bortance were included in the betes, smoking history, eart failure, prior , cerebrovascular disease,	grdL is an independent risk factor for 30-day cardiovascular mortality compared with a Hb level of 14- 15 g/dL P=0.003	
	1 cohort analysis of 16 RCTs ^d	Adults with STEMI	Hospital	Hb 10-11 g/dL vs Hb 14-15 g/dL	Cardiovascular mortality (30 days)	NR	NR	OR 1.98 (1.24, 3.15)	A Hb level of 10-11 g/dL is an independent	
	N=7214		Various			either demonstrated as threshold of P0.25) or final model: age, gend creatinine clearance, p percutaneous coronary peripheral arterial dise receptor blocker, or hy revascularisation (NST addition)	Candidate variables for which there was data in 80% either demonstrated association with baseline Hb lew threshold of P0.25) or were of known clinical importa final model: age, gender, race, hypertension, diabete creatinine clearance, prior MI, prior congestive heart percutaneous coronary intervention, prior CABG, cer peripheral arterial disease, prior aspirin, B-blocker, A receptor blocker, or hypolipidemic use, index hospita revascularisation (NSTE-ACS) + anterior location of addition)		risk factor for 30-day cardiovascular mortality compared with a Hb level of 14- 15 g/dL P=0.004	
	1 cohort analysis of 16 RCTs ^d N=7117	Adults with STEMI	Hospital	Hb <10 g/dL vs Hb 14-15 g/dL	Cardiovascular mortality (30 days)	NR	NR	OR 2.50 (1.42, 4.39)	A Hb level of <10 g/dL is an independent risk	
			Various	14-13 g/uL		either demonstrated as threshold of P0.25) or final model: age, gend, creatinine clearance, p percutaneous coronary peripheral arterial dise receptor blocker, or hy	were of known clinical imp er, race, hypertension, dia rior MI, prior congestive h ν intervention, prior CABG ase, prior aspirin, β-blocke polipidemic use, index hos	b levels (at a significance bortance were included in the betes, smoking history, eart failure, prior , cerebrovascular disease,	factor for 30-day cardiovascular mortality compared with a Hb level of 14- 15 g/dL P=0.001	
	1 cohort analysis of 16 RCTsd	Adults with STEMI	Hospital	Hb <14 g/dL vs Hb	Cardiovascular	NR	NR	OR 1.35 (1.11, 1.64)	A Hb level <14 g/dL is	
	N=15,946		Various	14-15 g/dL	mortality (30 days)	Candidate variables for which there was data in 80% of subjects and that either demonstrated association with baseline Hb levels (at a significance threshold of P0.25) or were of known clinical importance were included in the final model: age, gender, race, hypertension, diabetes, smoking history, creatinine clearance, prior MI, prior congestive heart failure, prior percutaneous coronary intervention, prior CABG, cerebrovascular disease, peripheral arterial disease, prior aspirin, β-blocker, ACEI, angiotensin receptor blocker, or hypolipidemic use, index hospitalisation aspirin, index revascularisation (NSTE-ACS) + anterior location of index MI (STEMI only addition)			an independent risk factor for 30-day cardiovascular mortality compared with a Hb level of 14- 15 g/dL P=0.003	
Sabatine 2005	1 cohort analysis of 16 RCTs ^d	Adults with NSTE-	Hospital	Hb <11 g/dL vs Hb	Cardiovascular	NR	NR	OR 1.35 (0.74, 2.45)	A Hb level of <11 g/dL	

Study	No. of trials / sample size	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	included in analysis		Location Various			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
Level II Fair	N=2915	ACS	Various	15-16 g/dL	mortality (30 days)	either demonstrated a threshold of P0.25) or final model: age, gend creatinine clearance, p percutaneous coronar peripheral arterial dise receptor blocker, or hy	Candidate variables for which there was data in 80% of subjects and that either demonstrated association with baseline Hb levels (at a significance threshold of P0.25) or were of known clinical importance were included in the final model: age, gender, race, hypertension, diabetes, smoking history, creatinine clearance, prior MI, prior congestive heart failure, prior percutaneous coronary intervention, prior CABG, cerebrovascular disease, peripheral arterial disease, prior aspirin, β-blocker, ACEI, angiotensin receptor blocker, or hypolipidemic use, index hospitalisation aspirin, index revascularisation (NSTE-ACS) + anterior location of index MI (STEMI only		is not an independent risk factor for 30-day CV mortality compared with a Hb level of 15- 16 g/dL P=NR

ACEI, angiotensin-converting enzyme inhibitor; ACS, acute coronary syndrome; AMI, acute myocardial infarction; BMI, body mass index; CABG, coronary artery bypass graft; CHF, congestive heart failure; CI, confidence interval; CV, cardiovascular; dL, decilitre; ECG, electrocardiograph; eGFR, estimated glomerular filtration rate; g, grams; Hb, haemoglobin; HR, hazard ratio; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NR, not reported; NSTE-ACS, non-ST-segment elevation acute coronary syndromes; OR, odds ratio; PCI, percutaneous coronary intervention; RCT, randomised controlled trial; RI, recurrent ischemia; SBP, systolic blood pressure; SD, standard deviation; STEMI, ST-segment elevation myocardial infarction; TIA, transient ischemic attack; UK, United Kingdom; US, United States of America; WHO, World Health Organisation. Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^c Total included population N=5549.

^d TIMI IIIB, 4, 9Å, 9B, 10A, 10B, 11A, 11B, 12, 14, 16 (OPUS), 17 (INTIME II), 18 (TACTICS), 20 (INTEGRI), 23 (ENTIRE) and 24 (FASTER). Analysis of data from this trial was also carried out by Giraldez 2009. ^e Shown in Table 4 of publication as 0.70 (0.99, 1.00). P value = 0.5. Seven studies assessed the association between **Hb as a continuous variable and mortality**, as shown in Table 3.4.^{8,10,11,13,16,18,19} Bassand et al (2010)¹¹ examined the association between increased Hb and mortality in >28,000 patients with NSTE-ACS or STEMI. The results of their analysis showed that a 1 g/dL increase in Hb resulted in a 6% reduced risk of 30-day mortality.

Giraldez et al (2009)¹³ showed that a decrease in Hb significantly increased the risk of mortality in two large trial cohorts including patients with STEMI. In the analyses of the InTIME-TIMI17 (>14,000 patients) and ExTRACT-TIMI 25 (>18,000 patients) trials, a 1 g/dL decrease in Hb was associated with a significantly increased risk of 30-day mortality (P<0.001 for both).

The study by Mahaffey et al $(2008)^{18}$ examined the association between increased Hb and mortality in >9000 patients who took part in the SYNERGY trial. A 1 g/dL increase in Hb (truncated at 15 g/dL) was not associated with 30-day or 1-year mortality when all patients were included in the analysis. However, when the analysis was limited to patients surviving through 30 days, 1 g/dL increase in Hb (truncated at 15 g/dL) resulted in a 19.5% reduction in risk of 1-year mortality.

The study by Burr et al (1992)¹⁹ assessed the association between change in Hb and 18month mortality in 1755 non-diabetic men recovering from myocardial infarction. The results of the analysis showed that a 1 standard deviation (SD) change in Hb resulted in a significant decrease in mortality (P<0.001).

The study by Aronson et al (2007)¹⁰ assessed baseline, nadir and discharge Hb levels as continuous variables to determine their association with mortality. A 1 g/dL decrease in nadir Hb and discharge Hb results in a 36% and 27% increased risk of mortality, respectively. A 1 g/dL decrease in baseline Hb was not significantly associated with an increased risk of mortality (P=0.06); however, as discussed previously, the exclusion of subjects who died during hospitalisation may have reduced the power of this analysis. A 1 SD reduction in Hb during hospitalisation was also significantly associated with an increased risk of mortality (21%).

Anker at al (2009)⁸ showed that an increase in Hb of 1 SD resulted in a significantly decreased risk of all-cause mortality (12% reduction) and death due to progressive heart failure (20% reduction). There was no significantly decreased risk of sudden cardiac death associated with a 1 SD increase in Hb. Further analysis in patients still alive after 12 months showed that a 12-month change in Hb of 1 SD was associated with a 27% decreased risk of all-cause mortality. When broken down into 12-month increases and decreases in Hb, a 12-month 1 SD increase in Hb was associated with a 33% reduction in the risk of all-cause mortality, while a 12-month 1 SD decrease Hb was associated with a 27% increase in the risk of all-cause mortality.

Sabatine et al $(2005)^{16}$ assessed the association between a 1 g/dL decrease in Hb below 14 g/dL in patients with STEMI. The results of the analysis showed that a decrease in Hb was significantly associated with an increase in 30-day cardiovascular mortality (P<0.001).

Table 3.4Question 1 (ACS): Results for Level II evidence – mortality (Hb as a continuous variable)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶
ACUTE CORONARY S	SYNDROME								
ALL-CAUSE MORTAL	TY								
SHORT-TERM FOLLO	W-UP (UP TO 1 YEAR)								
Bassand 2010	1 cohort analysis	Adults presenting to	Hospital	Hb increase (g/dL)	Mortality (30 days)	NA	NA	OR 0.94 (0.90, 0.98)	A 1 g/dL increase in Hb results in
Level II Fair	of two RCTs (OASIS 5 and 6) N=28,907	hospital with symptoms of NSTE- ACS or STEMI	Various ^c				demographics, prior medic eatment allocation, co-inter	cal history, cardiovascular risk ventions.	a 6% decreased risk of mortality P=NR
Giraldez 2009	1 cohort analysis	Adults presenting	Hospital	Hb decrease in	Mortality (30 days)	NA	NA	OR 1.22 (1.15, 1.29)	A 1 g/dL decrease in Hb in
Level II Good	of a RCT <u>(InTime</u> <u>II-TIMI17)</u> N=14,373	within 6 hrs of onset of symptoms of MI and ECG changes compatible with STEMI	US	patients with baseline Hb <15 g/dL (1 g/dL)		bundle branch block,	p class, heart rate, anterior SBP, time to thrombolysis, e, smoking, prior MI and P	weight, prior angina, diabetes,	patients with baseline Hb <15 g/dL results in a 22% increased risk of 30-day mortality by P<0.001
	1 cohort analysis	Adults presenting	Hospital	Hb decrease in	Mortality (30 days)	NA	NA	OR 1.10 (1.04, 1.16)	A 1 g/dL decrease in Hb in
	of a RCT <u>(ExTRACT-</u> <u>TIMI 25)</u> N=18,400	within 6 hrs of onset of symptoms of MI and ECG changes compatible with STEMI	US	patients with baseline Hb <15 g/dL (1 g/dL)		bundle branch block,	p class, heart rate, anterior SBP, time to thrombolysis, e, smoking, prior MI and P	weight, prior angina, diabetes,	patients with baseline Hb <15 g/dL results in a 10% increased risk of 30-day mortality P<0.001
Mahaffey 2008	1 cohort analysis	High risk patients	Hospital	Hb increase	Mortality (30 days)	NA	NA	NR	A 1 g/dL increase in Hb (up to 15
Level II Good	of a RCT (SYNERGY) N=9978	with ACS	Australia, Belgium, Canada, New Zealand, US	truncated at 15 g/dL (1 g/dL)		symptoms to randomi clearance, Killip class elevation and depress concomitant medicatio congestive heart failur	sation, region of the world, , systolic and diastolic bloo ion, T-wave inversion, diab	d pressures, ST-segment betes, hypertension, isease, recent angina, prior	g/dL) is <u>not</u> associated with an increased risk in 30-day mortality P=NR
Mahaffey 2008	1 cohort analysis	High risk patients	Hospital	Hb increase	Mortality (1 year)	NA	NA	NR	A 1 g/dL increase in Hb (up to 15
Level II Good	of a RCT (SYNERGY) N=9978	with ACS	Australia, Belgium, Canada, New Zealand, US	truncated at 15 g/dL (1 g/dL)		symptoms to randomi clearance, Killip class elevation and depress concomitant medicatio congestive heart failur	sation, region of the world, , systolic and diastolic bloo ion, T-wave inversion, diab	d pressures, ST-segment betes, hypertension, isease, recent angina, prior	g/dL) is <u>not</u> associated with an increased risk in 1-year mortality P=NR

Include in analysis Include in analysis Include in analysis Include in analysis Significance Significancacc Significance Significance	Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results				
of a RCT (SVHERCY) N-9664 with ACS yelos (SVHERCY) N-9664 with ACS yelos (Austrolia Belgium, (Austrolia Belgium, (Austroli	Level of evidence ^a <i>Quality</i>			Location						P-value	
(SYNERCY) N=9664 Survival at leads 30 B2S Canada, New 2caland, US (190L) Fourial valuation manual second second manual concentration br>concentration concentratin concentration concentration concentratin concentrati		of a RCT	with ACS who		truncated at 15 g/dL	Mortality (1 year)	NA	NA		g/dL) is related to a 19%	
Aur 1992 1 cohort analysis of a RCT (DART) N=1755 Me without diabetes recovering from MI Community UK Hb change (1 SD) Motality (18 months) NA NA SQR 0.72 A 1 SD change in Hb is an independent risk factor for dependent br>risk factor for increased post- diatates, molts, ST-elworks, filling instruction, typeterson, datates, molts, ST-elworks, filling in hospital step: A 1 SD change in Hb dis an independent risk factor for increased post- diates for distruction, typeterson, datates, molts, ST-elworks, filling in hospital step: A 1 SD depreses in Hb during hospitalisation of 1 SD Decrease in Hb during hospital Decrease in nadir Hb of 1 gidt. Mortally (median 24 months) NA NA HR 1.20 (1.0, 1.45) hospital step: A 1 gidt decrease in nadir Hb is an independent risk factor for increased post-discharge motally Decrease in Hb during for 1 gidt. Mortally (median 24 months) NA NA <t< td=""><td></td><td></td><td></td><td>Canada, New</td><td>(1 g/dL)</td><td></td><td>symptoms to randomis clearance, Killip class, elevation and depress concomitant medicatio congestive heart failur</td><td>sation, region of the world, s , systolic and diastolic blood ion, T-wave inversion, diabe ons, prior coronary artery dis e, prior PCI, prior CABG, cr</td><td>moking status, creatinine pressures, ST-segment etes, hypertension, sease, recent angina, prior</td><td colspan="2">, , , , , , , , , , , , , , , , , , ,</td></t<>				Canada, New	(1 g/dL)		symptoms to randomis clearance, Killip class, elevation and depress concomitant medicatio congestive heart failur	sation, region of the world, s , systolic and diastolic blood ion, T-wave inversion, diabe ons, prior coronary artery dis e, prior PCI, prior CABG, cr	moking status, creatinine pressures, ST-segment etes, hypertension, sease, recent angina, prior	, , , , , , , , , , , , , , , , , , ,	
evel II boor of a RCT (DART) N-1755 recovering from MI UK Description Mathematical for adjusted for :age, smoking, energy, diet group. indegendent isk factor for decreased motality P-0.001 wonson 2007 evel II iariari airi airi A dults presenting to the convary care unit largel for wards schematical of MI who were allive at discharge from hospital Convary care unit largel for MI who were allive at discharge from hospital Convary care unit largel MI who were allive at discharge from hospital who were allive at discharge from hospital who were allive admission, coronary resourciental inportance or with P-0.1 in the univariate model :age, gender, eGFR, previous infraction, hypertension, discherge mortality P-0.06 A 1 SD decrease in Hb during hospital schematical months) Decrease in Hb during hospital who were allive phospital schematical hospital schematical hospital schematical months) Mortality (median 24 months) NA NA HR 1.20 (1.0, 1.45) Adjusted for variables hought to have clinical importance or admission, coronary resourciential tracks for variables hospital schematical months) A 1 spd. decrease in nadir Hb during hospital schematical months) Decrease in nadir Hb of 1 gdL Mortality (median 24 months) Mortality (median 24 months) NA NA RR 12.21 (1.0, 1.45) Adjusted for variables shought to have clinical importance or with P-0.	LONGER-TERM FOLL	_OW-UP (>1 YEAR)									
even in coord N=175 or OK Adjusted for saje, smoord, chergy, diel group. decreased mortality P-0.001 vooron 2007 1 prospective cohort study rair Aduits presenting the coronary care unit is alr Aduits presenting the coronary care unit rair Aduits presenting the coronary care unit rair Coronary care unit the coronary care unit with a diagnosis of ML who were alive a discharge from hospital Coronary care unit g/dL Mortality (median 24 months) NA HR 110 (0.99, 12.1) Adjusted for variables hought to have clinical importance or with P-0.0 in the univatian model : age, gender, eGFR, pervious infarction, hypertension, diabetes, smoord revacularization, LVEF, length of hospital stay. A 1 SD decrease in Hb during hospitalisation of 1 SD Decrease in Hb during hospital Decrease in Indir Ho of 1 g/dL Mortality (median 24 months) NA NA HR 121 (1.0, 1.45) A 1 SD decrease in Hb during hospitalisation of 1 SD Decrease in Indir Ho of 1 g/dL Decrease in nadir Ho of 1 g/dL Mortality (median 24 months) NA NA HR 121 (1.0, 1.45) A 1 SD decrease in nadir hodependent risk factor for increased post-discharge mortality P=0.03 Decrease in nadir Hb of 1 g/dL Decrease in nadir Hb of 1 g/dL Mortality (median 24 months) NA NA HR 127 (1.16, 1.40) A 1 g/dL decrease in nadir Hb is an independent risk factor for increased post-disch	Burr 1992			5	Hb change (1 SD)	Mortality (18 months)	NA	NA	SOR 0.72		
evel II cohort study iair he coronary care unit with a diagnosis of Mu how ever alling alischarge from hospital hsaeline Hb of 1 g/dL months) Adjusted for variables thought to have clinical importance or with P-0.1 in the univariate model : age. gender, GFR, previous infarction, hyperfension, discharge from hospital baseline Hb of 1 g/dL months) Adjusted for variables thought to have clinical importance or with P-0.1 in the univariate model : age. gender, GFR, previous infarction, hyperfension, discharge from hospital baseline may be an independent risk factor for increased post- discharge months) baseline may be an independent risk factor for increased post- discharge montality baseline may be an independent risk factor for increased post- discharge montality baseline may be an independent risk factor for increased post- discharge baseline may be an independent risk factor increased post- discharge baseline may be an independent risk factor increased post- discharge baseline may be an independent risk factor increased post- discharge baseline may be independent risk facto	Level II Poor	· ,	recovering from Mi	UK			Adjusted for: age, smo	oking, energy, diet group.		decreased mortality	
N=1390 unit with a diagnosis of ML who were alive discharge from hospital unit with a diagnosis of ML who were alive discharge from hospital g/dL Adjusted for variables modifies the quint to have clinical importance or with P-0.1 in the univariate model : age. gender, GFR, previous infarction, hypertension, diabetes, smiking, ST-elevation, Killip class, heart rate, blood pressure on admission, coronary revascularisation. UVEF, length of hospital stay. risk factor for increased post- discharge mortality P=0.06 Decrease in Hb during hospital Mortality (median 24 months) Mortality (median 24 months) NA NA HR 121 (10, 145) A 1 SD decrease in Hb during hospitalisation of 1 SD Decrease in nadir Hb of 1 g/dL Mortality (median 24 months) Mortality (median 24 months) NA NA HR 1.36 (1.19, 1.55) A 1 g/dL decrease in nadir hidependent risk factor for increased post-discharge mortality P=0.03 Decrease in nadir Hb of 1 g/dL Mortality (median 24 months) Mortality (median 24 months) NA NA HR 1.36 (1.19, 1.55) A 1 g/dL decrease in nadir Hb of 1 g/dL Decrease in nadir Hb of 1 g/dL Mortality (median 24 months) Mortality (median 24 months) NA NA HR 1.27 (1.16, 1.40) A 1 g/dL decrease in nadir Hb is an independent risk factor for increased post-discharge mortality P<0.001	Aronson 2007			Coronary care unit			NA	NA	HR 1.10 (0.99, 1.21)		
Image: Section of the section of th	Level II Fair	-	unit with a diagnosis of <u>MI</u> who were alive at discharge from	diagnosis vere alive		monurs)	univariate model : age diabetes, smoking, ST	e, gender, eGFR, previous ir -elevation, Killip class, hear	farction, hypertension, t rate, blood pressure on	risk factor for increased post- discharge mortality	
hospitalisation of 1 Nopitalisation of 1 Na experimentation of the variables modify in a vaccularisation, type rension, diabetes, smoking, ST-elevation, Killip class, heart rate, blood pressure on admission, coronary revascularisation, LVEF, length of hospital stay. independent risk factor for increased post-discharge mortality P=0.03 Decrease in nadir Mortality (median 24 NA NA HR 1.36 (1.19, 1.55) A 1 g/dL decrease in nadir Hb is an independent risk factor for increased post-discharge mortality Hb of 1 g/dL Mortality (median 24 NA NA HR 1.36 (1.19, 1.55) A 1 g/dL decrease in nadir Hb is an independent risk factor for increased post-discharge mortality Decrease in nadir Hb of 1 g/dL Mortality (median 24 NA NA HR 1.36 (1.19, 1.55) A 1 g/dL decrease in nadir Hb is an independent risk factor for increased post-discharge mortality Decrease in discharge Hb of 1 g/dL Mortality (median 24 NA NA HR 1.27 (1.16, 140) A 1 g/dL decrease in discharge mortality g/dL Mortality (median 24 Mortality (median 24 NA NA HR 1.27 (1.16, 140) A 1 g/dL decrease in discharge mortality g/dL Mortality (median 24 months) Mortality (median 24 NA NA HR 1.27 (1.16, 140) H 1 g/dL decrease in discharge mortality g/dL mon			позрна			<i>,</i> , ,	NA	NA	HR 1.21 (1.0, 1.45)		
Hb of 1 g/dL months) Adjusted for variables thought to have clinical importance or with P<0.1 in the univariate model : age, gender, eGFR, previous infarction, hypertension, increased post-discharge mortality P<0.001					hospitalisation of 1	months)	univariate model : age diabetes, smoking, ST	e, gender, eGFR, previous ir -elevation, Killip class, hear	farction, hypertension, t rate, blood pressure on	independent risk factor for increased post-discharge mortality	
Adjusted for Variables inought to have clinical importance or With P<0.1 in the univariate model : age, gender, eGFR, previous infarction, hypertension, admission, coronary revascularisation, LVEF, length of hospital stay.						<i>,</i> , ,	NA	NA	HR 1.36 (1.19, 1.55)		
discharge Hb of 1 g/dL months) months) Adjusted for variables thought to have clinical importance or with P<0.1 in the univariate model : age, gender, eGFR, previous infarction, hypertension, diabetes, smoking, ST-elevation, Killip class, heart rate, blood pressure on admission, coronary revascularisation, LVEF, length of hospital stay. Hb is an independent risk factor for increased post-discharge mortality P<0.001					Hb of Tg/dL	months)	univariate model : age diabetes, smoking, ST	e, gender, eGFR, previous ir -elevation, Killip class, hear	farction, hypertension, t rate, blood pressure on	increased post-discharge mortality	
g/dL Adjusted for variables gender, ease thought to have clinical importance or with P-0.1 in the univariate model : age, gender, ease, gender, ease, gender, ease, blood pressure on admission, coronary revascularisation, LVEF, length of hospital stay. P<0.001							NA	NA	HR 1.27 (1.16, 1.40)		
nker 2009 1 cohort analysis Adult patients with a Hospital Increase in Hb of 1 Mortality (median 3 NA NA HR 0.88 (0.83, 0.93) A one SD increase in Hb results					5	months)	univariate model : age diabetes, smoking, ST	, gender, eGFR, previous ir -elevation, Killip class, hear	farction, hypertension, t rate, blood pressure on	for increased post-discharge mortality	
	Anker 2009	1 cohort analysis	Adult patients with a	Hospital	Increase in Hb of 1	Mortality (median 3	NA	NA	HR 0.88 (0.83, 0.93)	A one SD increase in Hb results	

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶
Level II Fair	of a double-blind RCT (OPTIMAAL) N=5010	diagnosis of AMI	Denmark, Finland, Germany, Ireland, Norway, Sweden, UK	SD	years)	randomised treatment g baseline uric acid, Killip cholesterol, current smo	nown to be of prognostic v group, baseline BMI, eGFR class, heart rate, systolic l oking, history of diabetes, i Ispirin, warfarin and diuretic	blood pressure, total n-hospital beta-blocker,	in a 12% reduced risk of mortality P<0.001
	1 cohort analysis	Adult patients with a	Hospital	12-month change in	Mortality (median 3	NA	NA	HR 0.73 (0.63, 0.85)	A 12-month change of Hb of 1
	of a double-blind RCT (OPTIMAAL) N=3921	diagnosis of AMI <u>alive at 12</u> months	Denmark, Finland, Germany, Ireland, Norway, Sweden, UK	Hb of 1 SD	years)	randomised treatment of baseline uric acid, Killip cholesterol, current smo	nown to be of prognostic v group, baseline BMI, eGFR class, heart rate, systolic l oking, history of diabetes, i ispirin, warfarin and diureti	blood pressure, total n-hospital beta-blocker,	SD results in a 27% reduced risk of mortality P<0.001
				12-month <u>increase</u> in Hb of 1 SD	Mortality (median 3	NA	NA	HR 0.67 (0.51, 0.81)	A 12-month increase of Hb of 1 SD results in a 33% reduced risk
					years)	Adjusted for variables known to be of prognostic value in heart failure: age randomised treatment group, baseline BMI, eGFR, baseline creatinine, baseline uric acid, Killip class, heart rate, systolic blood pressure, total cholesterol, current smoking, history of diabetes, in-hospital beta-blocker, statin, digitalis nitrate, aspirin, warfarin and diuretic use.			of mortality P<0.01
				12-month decrease	Mortality (median 3	NA	NA	HR 1.27 (1.00, 1.60)	A 12-month decrease of Hb of 1
				in Hb of 1 SD	years)	randomised treatment g baseline uric acid, Killip cholesterol, current smo	nown to be of prognostic v group, baseline BMI, eGFR class, heart rate, systolic l oking, history of diabetes, i Ispirin, warfarin and diuretid	blood pressure, total n-hospital beta-blocker,	SD <u>may</u> result in a 27% increased risk of mortality P=0.05
CARDIOVASCULAR M	ORTALITY								
SHORT-TERM FOLLO	W-UP (UP TO 1 YEAR)								
Sabatine 2005	1 cohort analysis	Adults with STEMI	Hospital	Hb decrease below	Cardiovascular	NA	NA	OR 1.21 (1.12, 1.30)	A 1 g/dL decrease in Hb below
Level II Fair	of 16 RCTs (TIMI IIIB, 4, 9A, 9B, 10A, 10B, 11A, 11B, 12, 14, 16 (OPUS), 17 (InTIME II) ^d , 18 (TACTICS), 20 (INTEGRI), 23 (ENTIRE) and 24 (FASTER). N=NR		Various	14 g/dL in subjects with baseline Hb 14- 15 g/dL (1 g/dL)	mortality (30 days)	demonstrated associati P0.25) or were of know age, gender, race, hype clearance, prior MI, prior prior aspirin, β-blocker, use, index hospitalisati	on with baseline Hb levels n clinical importance were ertension, diabetes, smokin or congestive heart failure, G, cerebrovascular disease	prior percutaneous coronary e, peripheral arterial disease, r blocker, or hypolipidemic risation (NSTE-ACS) +	14 grdL is related to a 21% increased risk of 30-day cardiovascular mortality P<0.001
LONGER-TERM FOLL									
Anker 2009	1 cohort analysis	Adult patients with a	Hospital	Increase in Hb of 1	Sudden cardiac	NA	NA	HR 0.86 (0.80, 1.03)	A one SD increase in Hb
	i conorranaiysis	Addit patients with a	позріка					111 0.00 (0.00, 1.03)	

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶
Level II Fair	of a double-blind RCT (OPTIMAAL) N=5010	diagnosis of AMI	Denmark, Finland, Germany, Ireland, Norway, Sweden, UK	SD	death (median 3 years)	Adjusted for variables known to be of prognostic valu randomised treatment group, baseline BMI, eGFR, ba baseline uric acid, Killip class, heart rate, systolic blor cholesterol, current smoking, history of diabetes, in-h statin, digitalis nitrate, aspirin, warfarin and diuretic us		, baseline creatinine, blood pressure, total n-hospital beta-blocker,	does <u>not</u> result in a significantly reduced risk of sudden cardiac death P=0.141
					Death due to	NA	NA	HR 0.80 (0.69, 0.94)	A one SD increase in Hb results
					progressive heart failure (median 3 years)	randomised treatment g baseline uric acid, Killip cholesterol, current smo	ijusted for variables known to be of prognostic value in heart failure: age, sex, ndomised treatment group, baseline BMI, eGFR, baseline creatinine, seline uric acid, Killip class, heart rate, systolic blood pressure, total olesterol, current smoking, history of diabetes, in-hospital beta-blocker, stin, digitalis nitrate, aspirin, warfarin and diuretic use.		in a 20% reduced risk of death due to progressive heart failure P=0.006

ACEI, angiotensin-converting enzyme inhibitor; ACS, acute coronary syndrome; AMI, acute myocardial infarction; BMI, body mass index; CABG, coronary artery bypass graft; CHF, congestive heart failure; CI, confidence interval; CV, cardiovascular; dL, decilitre; ECG, electrocardiograph; eGFR, estimated glomerular filtration rate; g, grams; Hb, haemoglobin; HR, hazard ratio; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NR, not reported; NSTE-ACS, non-ST-segment elevation acute coronary syndromes; OR, odds ratio; PCI, percutaneous coronary intervention; RCT, randomised controlled trial; RI, recurrent ischemia; SBP, systolic blood pressure; SD, standard deviation; SOR, standardised odds ratio; STEMI, ST-segment elevation myocardial infarction; TIA, transient ischemic attack; UK, United Kingdom; US, United States of America; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

Two studies assessed the association between **anaemia as defined by the World Health Organisation (WHO) and mortality in a composite outcome including cardiovascular outcomes**, as shown in Table 3.5^{12,14} Cavusoglu et al (2006)¹² examined the association between anaemia and the composite outcome mortality/myocardial infarction (MI) in 191 men with acute coronary syndrome, and showed that anaemia was an independent risk factor for mortality/MI (P=0.04). One potential issue identified during the evaluation of this study is the lack of adjustment for race in the analyses, given that the largest proportion of the population were Black or Hispanic. A number of other studies have suggested differences in the association between anaemia and mortality by race.

The study by Hasin et al (2009)¹⁴ assessed the association between anaemia and mortality/heart failure in patients with acute MI who survived hospitalisation. When all patients were included in the analysis, those with new-onset anaemia or persistent anaemia had a significantly greater risk of mortality/heart failure (mean follow-up 27 months), while those with resolved anaemia had no greater risk. Similar results were seen when the analysis was restricted to those without malignancy. In patients with no anaemia at baseline, both new-onset anaemia and persistent anaemia were independent risk factors for mortality.

Table 3.5 Question 1 (ACS): Results for Level II evidence – mortality in a composite outcome including cardiovascular outcomes (WHO or similar anaemia criteria)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶
ALL-CAUSE MORTALITY									
LONGER-TERM FOLLOW	V-UP (>1 YEAR)	1	ſ	1	T		1	1	
Cavusoglu 2006	1 prospective	Men with ACS (ST-	Hospital	Anaemia (WHO) vs	Mortality/MI (2 years)	NR	NR	HR 1.86 (1.02, 3.40)	Anaemia is an
Level II Fair	cohort study N=191	elevation AMI, non-ST segment elevation AMI and unstable angina pectoris)	US	no anaemia		Adjusted for variable arteries, left ventricu	ber of diseased coronary reatinine.	independent risk factor for death/MI P=0.0429	
Hasin 2009	1 prospective	Patients with a	Hospital	Resolved anaemia	Mortality/heart failure	19/162 (11.7)	70/640 (10.9)	HR 0.8 (0.5, 1.3)	Resolved anaemia is <u>not</u>
Level II Fair	N=802 Sui ho wh me da	diagnosis of AMI who survived the index hospitalisation and who received Hb measurement ≥28 days after hospital discharge	(WHO) vs no anaemia	(mean 27 months)	Adjusted for: age, gender, history of hypertension and diabetes, smoking habit, previous infarction, presence of anterior infarction, ST elevation infarction, revascularisation during hospital course, eGFR, Killip class at admission, LVEF, medical therapy prescribed at discharge including antiplatelet agents, β blockers, ACEIs, AIIRAs and statins.			an independent risk factor for mortality or heart failure P=0.40	
	1 prospective	Patients with a	Hospital	New-onset anaemia	Mortality/heart failure	15/55 (27.3)	70/640 (10.9)	HR 1.9 (1.1, 3.3)	New-onset anaemia is an
	cohort study N=695	diagnosis of AMI who survived the index hospitalisation and who received Hb measurement ≥28 days after hospital discharge	Israel	(WHO) vs no anaemia	(mean 27 months)	previous infarction, pres revascularisation during medical therapy prescri	Adjusted for: age, gender, history of hypertension and diabetes, smoking habit, previous infarction, presence of anterior infarction, ST elevation infarction, revascularisation during hospital course, eGFR, Killip class at admission, LVEF, medical therapy prescribed at discharge including antiplatelet agents, β blockers, ACEIs, AIIRAs and statins.		independent risk factor for mortality or heart failure P=0.03
	1 prospective	Patients with a	Hospital	Persistent anaemia	Mortality/heart failure	70/208 (33.7)	70/640 (10.9)	HR 1.8 (1.2, 2.5)	Persistent anaemia is an independent risk factor
	cohort study N=848	diagnosis of AMI who survived the index hospitalisation and who received Hb measurement ≥28 days after hospital discharge	Israel	(WHO) vs no anaemia	(mean 27 months)	previous infarction, pres revascularisation during medical therapy prescri	Adjusted for: age, gender, history of hypertension and diabetes, smoking habit, previous infarction, presence of anterior infarction, ST elevation infarction, revascularisation during hospital course, eGFR, Killip class at admission, LVEF, medical therapy prescribed at discharge including antiplatelet agents, β blockers, ACEIs, AIIRAs and statins.		

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
Hasin 2009	1 prospective	Patients without	Hospital	Resolved anaemia	Mortality/heart failure	17/150 (11.3)	61/603 (10.1)	HR 0.8 (0.5, 1.4)	Resolved anaemia is <u>not</u>
Level II Fair	cohort study N=753	malignancy with a diagnosis of AMI who survived the index hospitalisation and who received Hb measurement ≥28 days after hospital discharge	Israel	(WHO) vs no anaemia		Adjusted for: age, gender, history of hypertension and diabetes, smoking habit, previous infarction, presence of anterior infarction, ST elevation infarction, revascularisation during hospital course, eGFR, Killip class at admission, LVEF, medical therapy prescribed at discharge including antiplatelet agents, β blockers, ACEIs, AIIRAs and statins.			an independent risk factor for mortality or heart failure P=0.47
	1 prospective	Patients without	Hospital	<u>New-onset</u> anaemia (WHO) vs no anaemia Mortality/heart failure (mean 27 months)		13/50 (26.0)	61/603 (10.1)	HR 1.9 (1.1, 3.6)	New-onset anaemia is an
	cohort study N=653	malignancy with a diagnosis of AMI who survived the index hospitalisation and who received Hb measurement ≥28 days after hospital discharge	Israel		previous infarction, pres revascularisation during	bed at discharge including a	nd diabetes, smoking habit, ST elevation infarction, ip class at admission, LVEF, ntiplatelet agents, β blockers,	independent risk factor for mortality or heart failure P<0.001	
	1 prospective	Patients without	Hospital	Persistent anaemia	Mortality/heart failure	61/178 (34.3)	61/603 (10.1)	HR 1.7 (1.2, 2.6)	Persistent anaemia is an
	cohort study N=781	malignancy with a diagnosis of AMI who survived the index hospitalisation and who received Hb measurement ≥28 days after hospital discharge	Israel	(WHO) vs no anaemia	(mean 27 months)	Adjusted for: age, gender, history of hypertension and diabetes, smoking habit, previous infarction, presence of anterior infarction, ST elevation infarction, revascularisation during hospital course, eGFR, Killip class at admission, LVEF, medical therapy prescribed at discharge including antiplatelet agents, β blockers, ACEIs, AIIRAs and statins.			independent risk factor for mortality or heart failure P=0.008

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶	
Hasin 2009 Level II Fair	1 prospective cohort study N=743	Patients <u>with no</u> <u>anaemia at</u> <u>baseline</u> with a diagnosis of AMI who survived the index hospitalisation and who received Hb measurement ≥28 days after hospital discharge	Hospital Israel	Resolved anaemia (WHO) vs no anaemia	(WHO) vs no (mean 27 months) anaemia		sence of anterior infarction, s g hospital course, eGFR, Kill	HR 0.7 (0.4, 1.4) and diabetes, smoking habit, ST elevation infarction, lip class at admission, LVEF, antiplatelet agents, β blockers,	, P=0.31	
	1 prospective cohort study N=659	pective Patients <u>with no</u> Hospital <u>New-or</u> study <u>anaemia at</u> Israel (WHO)	(WHO) vs no (mean 27 months) anaemia		previous infarction, pre revascularisation during	sence of anterior infarction, g hospital course, eGFR, Kill ibed at discharge including a	HR 1.7 (1.0, 3.3) and diabetes, smoking habit, ST elevation infarction, lip class at admission, LVEF, antiplatelet agents, β blockers,	New-onset anaemia <u>may</u> be an independent risk factor for mortality or heart failure P=0.05		
	1 prospective cohort study N=720	Patients <u>with no</u> <u>anaemia at</u> <u>baseline</u> with a diagnosis of AMI who survived the index hospitalisation and who received Hb measurement ≥28 days after hospital discharge	Hospital Israel	Persistent anaemia (WHO) vs no anaemia	O) vs no (mean 27 months)		sence of anterior infarction, g hospital course, eGFR, Kill	HR 1.8 (1.1, 2.8) and diabetes, smoking habit, ST elevation infarction, lip class at admission, LVEF, antiplatelet agents, β blockers,	Persistent anaemia is an independent risk factor for mortality or heart failure P=0.01	

ACEI, angiotensin-converting enzyme inhibitor; ACS, acute coronary syndrome; AIIRA, angiotensin II receptor antagonists; AMI, acute myocardial infarction; CABG, coronary artery bypass graft; CAD, coronary artery disease; CHF, congestive heart failure; CI, confidence interval; CV, cardiovascular; dL, decilitre; eGFR, estimated glomerular filtration rate; g, grams; Hb, haemoglobin; HR, hazard ratio; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NR, not reported; NSTE-ACS, non-ST-segment elevation acute coronary syndromes; OR, odds ratio; RCT, randomised controlled trial; RI, recurrent ischemia; SD, standard deviation; STEMI, ST-segment elevation myocardial infarction; US, United States of America; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

Two studies assessed the association between **various Hb levels and mortality in a composite outcome including cardiovascular outcomes**, as shown in Table 3.6.^{12,16} Cavusoglu et al $(2006)^{12}$ assessed the association between low Hb (defined as Hb <10.5 g/dL) and mortality/MI in 191 men with ACS. The results of the analysis showed no significant association between a low Hb and mortality/MI (P=0.07).

The study by Sabatine et al $(2005)^{16}$ examined the association between different Hb levels and cardiovascular mortality/MI/recurrent ischaemia in patients with NSTE-ACS. A significant association between Hb and 30-day cardiovascular mortality/MI/recurrent ischaemia was seen for Hb levels of 9-10 g/dL, 8-9 g/dL and <8 g/dL compared with 15-16 g/dL; the results were not significant for other categories up to 14-15 g/dL. The result was also significant when the categories were collapsed into a Hb <11 g/dL versus 15-16 g/dL (P<0.001).

Table 3.6 Question 1 (ACS): Results for Level II evidence – mortality in a composite outcome including cardiovascular outcomes (other anaemia criteria, Hb levels or change in Hb levels)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b	
ALL-CAUSE MORTALITY	,									
LONGER-TERM FOLLOW	V-UP (>1 YEAR)									
Cavusoglu 2006	1 prospective	Men with ACS (ST-	Hospital	Hb <10.5 g/dL vs Hb	Mortality/MI (2 years)	NR	NR	HR 2.37 (0.94, 5.99)	Hb <10.5 g/dL is <u>not</u> an	
Level II Fair	cohort study N=NR	elevation AMI, non-ST segment elevation AMI and unstable angina pectoris)	US	>12.5 g/dL		Adjusted for variables with p<0.05: age, number of diseased coronary arteries, le ventricular function, Hb, serum creatinine.			independent risk factor for death/MI compared with Hb >12.5 g/dL P=0.0681	
CARDIOVASCULAR MOR	RTALITY									
SHORT-TERM FOLLOW	UP (UP TO 1 YEAR)									
Sabatine 2005	1 cohort analysis	Adults with NSTE-	Hospital	Hb 14-15 g/dL vs Hb	Cardiovascular	NR	NR	OR 1.11 (0.93, 1.33)	A Hb level of 14-15 g/dL	
Level II Fair	of 16 RCTs ^c N=5520	ACS	Various	15-16 g/dL	mortality/MI/recurrent ischaemia (30 days)	demonstrated associati P0.25) or were of know gender, race, hypertens MI, prior congestive her CABG, cerebrovascula blocker, ACEI, angioter	k of subjects and that either at a significance threshold of included in the final model: age, pry, creatinine clearance, prior is coronary intervention, prior disease, prior aspirin, β- olipidemic use, index (FE-ACS) + anterior location of	is <u>not</u> an independent risk factor for 30-day CV mortality, MI or RI compared with a Hb level of 15-16 g/dL P=0.251		
	1 cohort analysis	Adults with NSTE-	Hospital	Hb 13-14 g/dL vs Hb	Cardiovascular	NR	NR	OR 1.04 (0.86, 1.24)	A Hb level of 13-14 g/dL	
	of 16 RCTs ^c N=5650	ACS	Various	15-16 g/dL	mortality/MI/recurrent ischaemia (30 days)	demonstrated associati P0.25) or were of know gender, race, hypertens MI, prior congestive he CABG, cerebrovascula blocker, ACEI, angioter	on with baseline Hb levels (n clinical importance were in ion, diabetes, smoking hist art failure, prior percutaneou disease, peripheral arterial isin receptor blocker, or hyp ndex revascularisation (NS		is <u>not</u> an independent risk factor for 30-day CV mortality, MI or RI compared with a Hb level of 15-16 g/dL P=0.709	
	1 cohort analysis	Adults with NSTE-	Hospital	Hb 12-13 g/dL vs Hb	Cardiovascular	NR NR OR 1.07 (0.88, 1.30)		OR 1.07 (0.88, 1.30)	A Hb level of 12-13 g/dL	
	of 16 RCTs ^c ACS Various 15-16 g/dL	mortality/MI/recurrent ischaemia (30 days)	demonstrated associati P0.25) or were of know gender, race, hypertens MI, prior congestive he. CABG, cerebrovascula blocker, ACEI, angioter	on with baseline Hb levels (n clinical importance were in ion, diabetes, smoking hist art failure, prior percutaneou ' disease, peripheral arterial isin receptor blocker, or hyp ndex revascularisation (NS		is <u>not</u> an independent risk factor for 30-day CV mortality, MI or RI compared with a Hb level of 15-16 g/dL P=0.514				

Included in analysis Included	Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
of 16 RCTs' N=3106 ACS Various 15-16 gldL motally/Mirecurrent ischaemia (30 drys) Candidate variables for which there was data in 80% of subjects and that other discriminants the levels of a subjects and that other discriminants are consume intervention. pHi- pred , rance, hypotheses, dubies, subjects and that other discriminants are consume intervention. pHi- pred , rance, hypotheses, dubies, subjects and that other discriminants are consume intervention. pHi- pred , rance, hypotheses, dubies, subjects and that other discriminants are consume intervention. pHi- pred , rance, hypotheses, dubies, subjects and that other discriminants are consume intervention. pHi- pred , rance, hypotheses, dubies, subjects and that other discriminants are consume intervention. pHi- pred , rance, hypotheses, dubies, subjects and that other discriminants are consume intervention. pHi- pred , rance, hypotheses, dubies, subjects and that other discriminants are consume intervention. pHi- pred , rance, hypotheses, dubies, subjects and that other discriminants are consume intervention. pHi- pred , rance, hypotheses, dubies, subjects and that other discriminants are consume intervention. pHi- pred and the phi- discriminants are consume intervention. pHi- pred and the phi- discriminants are consume intervention. pHi- pred and the phi- discriminant are consumer intervention. pHi- pred and the phi- discriminant are consumer intervention. pHi- discriminants are consumer intervention. pHi- discriminants are consumer intervention. pHi- pred and the phi- discriminant are consumer intervention. pHi- pred and the phi- discriminant are consumer intervention. pHi- discriminant are consumer interventinterventintereconsumeres phi- discriminant are phi- discriminant	Level of evidence ^a <i>Quality</i>	included in		Location					Risk estimate (95% CI)	P-value
N-3106 Values Values Solution Ischaeriia (30 days) Candidae values for which here was data in 80% of subjects and hai dain memoritoid account on this baseline in these key data glicitud methods product nots hypothesion. Glaboxis, moling history, constitute classice, profession CASG, evelowascular disease, profession glicitud methods in cophrage in cophra				Hospital			NR	NR	OR 1.04 (0.81, 1.34)	A Hb level of 11-12 g/dL
of 16 RCTs ⁻¹ N=2473 ACS Various 15-16 g/dL montally/Mirecurrent ischaemia (30 days) Candidate variables for which there was data in 80% of subjects and that either demonstrated association with baseline +b levels (at a significance threshold of phone thanks), care inpertension, diabetes, smoking history, creatine clearance, pro- gradificance variance was included in the first model: age gender, race. hypertension, diabetes, smoking history, creatine clearance, pro- GAEG, carebrovascular dasses, profession (HST=ACS) + anterior location of hospitalization aspin, index revescularisation (HST=ACS) + anterior location of hospitalization aspin, index reves			ACS	Various	15-16 g/dL		demonstrated associatio P0.25) or were of known gender, race, hypertensi MI, prior congestive hea CABG, cerebrovascular blocker, ACEI, angiotens hospitalisation aspirin, in	n with baseline Hb levels (a clinical importance were in on, diabetes, smoking histo t failure, prior percutaneous disease, peripheral arterial in receptor blocker, or hypo dex revascularisation (NST	t a significance threshold of cluded in the final model: age, ry, creatinine clearance, prior s coronary intervention, prior disease, prior aspirin, β - olipidemic use, index	risk factor for 30-day CV mortality, MI or RI compared with a Hb level of 15-16 g/dL
N=2473 Values Values ischaemia (30 days) Candidate values for which there was data in 80% of subjects and that either demonstrated association with baseline Fblees(a is a significance threshold of P0.25) or were of known clinical importance were included in the final model: age gender, race, hopertension, diabates, smoting history, creatine clear and, portance were included in the final model: age gender, race, hopertension, diabates, smoting history, creatine clear and, portance were included in the final model: age gender, race, hopertension, diabates, smoting history, creatine clear and, portance were included in the final model: age final setting in the restrict and the setting of the setting in the restrict and restrict and the restrict and restrict and the restre							NR	NR	OR 1.29 (0.92, 1.82)	A Hb level of 10-11 g/dL
of 16 RCTs ^c N=2472 ACS Various 15-16 g/dL mortality/Ml/recurrent ischaemia (30 days) Candidate variables for which there was data in 00% of subjects and that either demonstrated association with baseline the levels (at a ignificance threshold of P0.25) or were of known clinical importance were included in the final model: age, gender, race, hypertension, diabetes, smoking history, creating cleance, prior apprint, percentance, corronary intervention, prior AGS, cerebrowascular disease, perpheral anterial disease, prior apprin, percentance were include variables for which there was data in 80% of subjects and that either demonstrated association with baseline clean corronary intervention or index MI (STEM only addition) NR NR OR 2.45 (1.80, 3.33) A hib level of 8-9 g/d an independent ris fractor for 30-day CV mortality/MI/recurrent ischaemia (30 days) NR OR 2.45 (1.80, 3.33) A hib level of 8-9 g/d an independent ris fractor for 30-day CV mortality/MI/recurrent ischaemia (30 days) 1 cohort analysis of 16 RCTs ^c N=2436 Adults with NSTE- ACS Hospital Various Hb 8-9 g/dL vs Hb 15-16 g/dL Cardiovascular mortality/MI/recurrent ischaemia (30 days) NR NR OR 2.45 (1.80, 3.33) A hib level of 8-9 g/d an independent risk fractor for 30-day CV mortality/MI or RI condidate variables for which there was data in 80% of subjects and that either demonstrated association with baseline the learned, prior gender, race, hypertension, diabetes, smoking history, creating incere threshold of P0.250 or were included in the final model; gender, race, hypertension, diabetes, smoking history, creating incere threshold of P<0.001 P<0.001		N=2473		Valious			demonstrated association with baseline Hb levels (at a significance threshold of P0.25) or were of known clinical importance were included in the final model: age, gender, race, hypertension, diabetes, smoking history, creatinine clearance, prior MI, prior congestive heart failure, prior percutaneous coronary intervention, prior CABG, cerebrovascular disease, peripheral arterial disease, prior aspirin, β -blocker, ACEI, angiotensin receptor blocker, or hypolipidemic use, index hospitalisation aspirin, index revascularisation (NSTE-ACS) + anterior location of			risk factor for 30-day CV mortality, MI or RI compared with a Hb level of 15-16 g/dL
N=2472 N=2472 ischaemia (30 days) ischaemia (30 days) ischaemia (30 days) Candidate variables for which here was data in 80% of subjects and that either demonstrated association with baseline Hb levels (at a significance threshold of P0.25) or were of known clinical importance were included in the final model: age, gender, race, hypertension, diabetes, smoking history, creatinine coronary interventance, prior MD, prior congestive heart failure, prior percutaneous coronary interventance, prior bocker, or hypolipdemic use, index factor for 30-day CV mortality, MI or RI 1 cohort analysis of 16 RCTse Adults with NSTE- Hospital Hb 8-9 g/dL vs Hb Cardiovascular NR OR 2.45 (1.80, 3.33) A Hb level of 8-9 g/d an independent risk factor for 30-day CV mortality, MI or RI N=2436 Adults with NSTE- Hospital Hb 8-9 g/dL vs Hb Cardiovascular NR OR 2.45 (1.80, 3.33) A Hb level of 8-9 g/d an independent risk factor for 30-day CV mortality, MI or RI sequence N=2436 Adults with NSTE- Hospital Various Earlie Joint and Joint and Joint and Point an Point and Point			100	1 [1 /			NR	NR	OR 2.69 (2.01, 3.60)	A Hb level of 9-10 g/dL
of 16 RCTscACSVarious15-16 g/dLmortality/Ml/recurrent ischaemia (30 days)Candidate variables for which there was data in 80% of subjects and that either demonstrated association with baseline Hb levels (at a significance threshold of P0.25) or were of known clinical importance were included in the final model: age, gender, race, hypertension, diabetes, smoking history, creatinine clearance, prior MI, prior congestivate disease, periopheral arterial disease, prior aspirin, β- blocker, ACEI, angiotensin receptor blocker, or hypolipidemic use, index hospitalisation aspirin, index revascularisation (NSTE-ACS) + anterior location of index MI (STEMI only addition)an independent risk factor for 30-day CV mortality, MI or RI compared with a Hb level of 15-16 g/dL						demonstrated associatio P0.25) or were of known gender, race, hypertensi MI, prior congestive hea CABG, cerebrovascular blocker, ACEI, angiotens hospitalisation aspirin, in	n with baseline Hb levels (a clinical importance were in on, diabetes, smoking histo t failure, prior percutaneous disease, peripheral arterial in receptor blocker, or hypo dex revascularisation (NST	t a significance threshold of cluded in the final model: age, ry, creatinine clearance, prior s coronary intervention, prior disease, prior aspirin, β- slipidemic use, index	factor for 30-day CV mortality, MI or RI compared with a Hb level of 15-16 g/dL	
N=2436 N				•			NR	NR	OR 2.45 (1.80, 3.33)	A Hb level of 8-9 g/dL is
1 cohort analysis Adults with NSTE- Hospital Hb <8 g/dL vs Hb 15- Cardiovascular NR NR OR 3.49 (2.35, 5.20) A Hb level of <8 g/dL			Valious		demonstrated association with baseline Hb levels (at a significance threshold of P0.25) or were of known clinical importance were included in the final model: age, gender, race, hypertension, diabetes, smoking history, creatinine clearance, prior MI, prior congestive heart failure, prior percutaneous coronary intervention, prior CABG, cerebrovascular disease, peripheral arterial disease, prior aspirin, β -blocker, ACEI, angiotensin receptor blocker, or hypolipidemic use, index hospitalisation aspirin, index revascularisation (NSTE-ACS) + anterior location of			factor for 30-day CV mortality, MI or RI compared with a Hb level of 15-16 g/dL		
		1 cohort analysis	Adults with NSTE-	Hospital	Hb <8 g/dL vs Hb 15-	Cardiovascular	NR	NR	OR 3.49 (2.35, 5.20)	A Hb level of <8 g/dL is

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶
	of 16 RCTs ^c N=2267	ACS	Various	16 g/dL	mortality/MI/recurrent ischaemia (30 days)	demonstrated association P0.25) or were of known gender, race, hypertens MI, prior congestive hea CABG, cerebrovascular blocker, ACEI, angioten hospitalisation aspirin, in	Candidate variables for which there was data in 80% of subjects and that either demonstrated association with baseline Hb levels (at a significance threshold of P0.25) or were of known clinical importance were included in the final model: age, gender, race, hypertension, diabetes, smoking history, creatinine clearance, prior MJ, prior congestive heart failure, prior percutaneous coronary intervention, prior CABG, cerebrovascular disease, peripheral arterial disease, prior aspirin, β-blocker, ACEI, angiotensin receptor blocker, or hypolipidemic use, index hospitalisation aspirin, index revascularisation (NSTE-ACS) + anterior location of index MI (STEMI only addition)		an independent risk factor for 30-day CV mortality, MI or RI compared with a Hb level of 15-16 g/dL P<0.001
	1 cohort analysis	Adults with NSTE-	Hospital	Hb <11 g/dL vs Hb	Cardiovascular	NR	NR	OR 2.26 (1.83, 2.79)	A Hb level of <11 g/dL is
	of 16 RCTs ^c N=2915	ACS	Various	15-16 g/dL	mortality/MI/recurrent ischaemia (30 days)	demonstrated association P0.25) or were of known gender, race, hypertens MI, prior congestive hear CABG, cerebrovascular blocker, ACEI, angioten	on with baseline Hb levels (a clinical importance were ir ion, diabetes, smoking hist rt failure, prior percutaneou disease, peripheral arterial sin receptor blocker, or hyp ndex revascularisation (NST		an independent risk factor for 30-day CV mortality, MI or RI compared with a Hb level of 15-16 g/dL P<0.001

ACEI, angiotensin-converting enzyme inhibitor; ACS, acute coronary syndrome; AIIRA, angiotensin II receptor antagonists; AMI, acute myocardial infarction; CABG, coronary artery bypass graft; CAD, coronary artery disease; CHF, congestive heart failure; CI, confidence interval; CV, cardiovascular; dL, decilitre; eGFR, estimated glomerular filtration rate; g, grams; Hb, haemoglobin; HR, hazard ratio; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NR, not reported; NSTE-ACS, non-ST-segment elevation acute coronary syndromes; OR, odds ratio; RCT, randomised controlled trial; RI, recurrent ischemia; SD, standard deviation; STEMI, ST-segment elevation myocardial infarction; US, United States of America; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

• TIMI IIIB, 4, 9A, 9B, 10A, 10B, 11A, 11B, 12, 14, 16 (OPUS), 17 (InTIME II)^c, 18 (TACTICS), 20 (INTEGRI), 23 (ENTIRE) and 24 (FASTER). Analysis of data from this InTIME II trial was also carried out by Giraldez 2009.

Four studies assessed the association between **Hb as a continuous variable and mortality in a composite outcome including cardiovascular outcomes**, as shown in Table 3.7.^{11,12,14,16} The study by Bassand et al (2010)¹¹ assessed the association between increased Hb and mortality/MI in >28,000 patients with symptoms of STEMI OR NSTE-ACS. A 1 g/dL increase in Hb was associated with a significantly decreased risk of 30-day mortality/MI (OR 0.96; 95% CI 0.93, 0.99).

Cavusoglu et al $(2006)^{12}$ assessed the association between Hb and 2-year mortality/MI in men with ACS. A 1 g/dL increase in Hb was associated with a 26% decreased risk of mortality/MI.

The study by Hasin et al (2009)¹⁴ examined the relationship between a change in Hb from baseline to follow-up and mortality/heart failure. A 1 SD decrease in Hb was associated with a 48% increased risk of mortality/heart failure.

Sabatine et al (2005)¹⁶ assessed the association between Hb and the composite outcome 30day cardiovascular mortality/MI/recurrent ischaemia in patients with NSTE-ACS. A 1 g/dL decrease below 11 g/dL in patients with a baseline Hb of 15-16 g/dL was associated with a 45% increased risk of the composite outcome.

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b	
ALL-CAUSE MORTALITY										
SHORT-TERM FOLLOW	UP (UP TO 1 YEAR)									
Bassand 2010	1 cohort analysis	Adults presenting to	Hospital	Hb increase (g/dL)	Mortality/MI (30 days)	NA	NA	OR 0.96 (0.93, 0.99)	A 1 g/dL increase in Hb	
Level II Fair	of two RCTs (OASIS 5 and 6) N=28,907	hospital with symptoms of NSTE- ACS or STEMI	Various			Adjusted for: Baseline demographics, prior medical history, cardiovascular risk factors, randomised treatment allocation, co-interventions.			results in a 4% decreased risk of mortality/MI P=NR	
LONGER-TERM FOLLO	V-UP (>1 YEAR)									
Cavusoglu 2006	1 prospective	Men with ACS (ST-	Hospital	Hb increase (1 g/dL)	Mortality/MI (2 years)	NA	NA	HR 0.74 (0.55, 0.99)	A 1 g/dL increase in Hb	
Level II Fair	cohort study N=191	elevation AMI, non-ST segment elevation AMI and unstable angina pectoris)	US			Adjusted for variables w ventricular function, Hb,		diseased coronary arteries, left	results in a 26% decreased risk of death/MI P=0.0411	
Hasin 2009	1 prospective	Patients with a	Hospital	Hb decrease from	Mortality/heart failure	NA	NA	HR 1.48 (1.25, 1.75)	A 1 SD decrease in Hb	
Level II Fair	cohort study N=1065	diagnosis of AMI who survived the index hospitalisation and who received Hb measurement ≥28 days after hospital discharge	Israel	discharge to follow- up (1 SD)	(mean 27 months)	previous infarction, pres revascularisation during		ST elevation infarction,	between discharge and follow-up results in a 48% increased risk of mortality or heart failure P<0.001	

Table 3.7 Question 1 (ACS): Results for Level II evidence – mortality in a composite outcome including cardiovascular outcomes (Hb as a continuous variable)

		R MORTALI	ΓV
CANDIO	VASCULAR		

SHORT-TERM FOLLOW-UP (UP TO 1 YEAR)

SHORT-TERMITOLEOW	OF OF TO TILARY								
Sabatine 2005	1 cohort analysis	Adults with NSTE-	Hospital	Hb decrease below	Cardiovascular	NA	NA	OR 1.45 (1.33, 1.58)	A 1 g/dL decrease in Hb
Level II Fair	of 16 RCTs ^d N=NR	ACS	Various	11 g/dL in subjects with baseline Hb 15- 16 g/dL (1 g/dL)	mortality/MI/recurrent ischaemia (30 days)	demonstrated association P0.25) or were of known gender, race, hypertensin MI, prior congestive hear CABG, cerebrovascular of blocker, ACEI, angiotens	on, diabetes, smoking histor t failure, prior percutaneous disease, peripheral arterial c in receptor blocker, or hypo dex revascularisation (NSTE	a significance threshold of cluded in the final model: age, y, creatinine clearance, prior coronary intervention, prior disease, prior aspirin, β-	below 11 g/dL is related to a 45% increased risk of 30-day CV mortality, MI or RI P<0.001

ACEI, angiotensin-converting enzyme inhibitor; ACS, acute coronary syndrome; AIIRA, angiotensin II receptor antagonists; AMI, acute myocardial infarction; CABG, coronary artery bypass graft; CAD, coronary artery disease; CHF, congestive heart failure; CI, confidence interval; CV, cardiovascular; dL, decilitre; eGFR, estimated glomerular filtration rate; g, grams; Hb, haemoglobin; HR, hazard ratio; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NR, not reported; NSTE-ACS, non-ST-segment elevation acute coronary syndromes; OR, odds ratio; RCT, randomised controlled trial; RI, recurrent ischemia; SD, standard deviation; STEMI, ST-segment elevation myocardial infarction; US, United States of America; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^c Argentina, Australia, Austria, Belgium, Brazil, Canada, Chile, China, Croatia, Czech Republic, Denmark, Estonia, France, Germany, Greece, Hong Kong, Hungary, India, Italy, Latvia, Lithuania, Mexico, the Netherlands, Poland, Portugal, Russia, Singapore, Slovakia, South Africa, South Korea, Spain, Sweden, Switzerland, Taiwan, Ukraine, UK, US.

^d TIMI IIIB, 4, 9A, 9B, 10A, 10B, 11A, 11B, 12, 14, 16 (OPUS), 17 (INTIME II)^e, 18 (TACTICS), 20 (INTEGRI), 23 (ENTIRE) and 24 (FASTER). Analysis of data from this trial was also carried out by Giraldez 2009.

Anaemia as an independent risk factor for cardiovascular outcomes

One study assessed the association between **various Hb levels and cardiovascular outcomes**, as shown in Table 3.8.¹⁶ The study by Sabatine et al (2005)¹⁶ examined the association between different Hb levels and a selection of cardiovascular outcomes. A Hb level of <14 g/dL was shown to be an independent predictor of 30-day heart failure in patients with STEMI, when compared with a Hb level of 14-15 g/dL. In patients with NSTE-ACS, a Hb level <11 g/dL was a significant predictor of MI and recurrent ischaemia compared with a Hb level of 15-16 g/dL in patients with NTSE-ACS.

Anaemia as an independent risk factor for functional/performance status

No studies were identified which presented data on functional/performance status using validated instruments.

Summary

The majority of results presented for acute coronary syndromes suggest that anaemia/low Hb is an independent risk factor for both mortality and cardiovascular outcomes. Where no significant association between anaemia/low Hb was found, this was often when the Hb levels were not sufficiently low (eg, Hb levels corresponding to mild or negligible anaemia), where the outcome was limited to cardiovascular mortality, or where the population examined was small (eg, the Cavusoglu (2006)¹² study which included only 191 patients). Of particular interest are the analyses carried out by Valeur et al (2006)¹⁷ in which the effect of anaemia or low Hb as an independent risk factor for mortality appears to occur only in the subgroup of patients with heart failure, and not those with acute coronary syndrome without heart failure.

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
SHORT-TERM FOLLOW	-UP (UP TO 1 YEAR)							-	
Sabatine 2005 Level II Fair	1 cohort analysis of 16 RCTs ^c N=15,946	Adults with STEMI	Hospital Various	Hb <14 g/dL vs Hb 14-15 g/dL	Heart failure (30 days)	demonstrated assoc P0.25) or were of kn gender, race, hypert MI, prior congestive CABG, cerebrovasci blocker, ACEI, angio	iation with baseline Hb levels own clinical importance were ension, diabetes, smoking his heart failure, prior percutanec ular disease, peripheral arteri tensin receptor blocker, or hy n, index revascularisation (NS		A Hb level <14 g/dL is an independent risk factor for 30-day heart failure compared with a Hb level of 14-15 g/dL P=0.009
	1 cohort analysis	Adults with NSTE-	Hospital	Hb <11 g/dL vs Hb	Myocardial infarction	NR	NR	OR 1.63 (1.07, 2.48)	A Hb level of <11 g/dL is
	of 16 RCTs ^c N=2915	ACS	Various	15-16 g/dL	(30 days)	demonstrated assoc P0.25) or were of kn gender, race, hypert MI, prior congestive CABG, cerebrovasci blocker, ACEI, angio	iation with baseline Hb levels own clinical importance were ension, diabetes, smoking his heart failure, prior percutanec ular disease, peripheral arteri itensin receptor blocker, or hy n, index revascularisation (NS		an independent risk factor for 30-day myocardial infarction compared with a Hb level of 15-16 g/dL P=NR
		Adults with NSTE-	vith NSTE- Hospital	Hb <11 g/dL vs Hb	Recurrent ischaemia	NR	NR	OR 2.60 (2.08, 3.26)	A Hb level of <11 g/dL is
	of 16 RCTs N=2915	ACS	Various	15-16 g/dL	(30 days)	demonstrated assoc P0.25) or were of kn gender, race, hypert MI, prior congestive CABG, cerebrovasci blocker, ACEI, angio	iation with baseline Hb levels own clinical importance were ension, diabetes, smoking his heart failure, prior percutane ular disease, peripheral arteri itensin receptor blocker, or hy n, index revascularisation (NS		an independent risk factor for 30-day recurrent compared with a Hb level of 15-16 g/dL P=NR

Table 3.8 Question 1 (ACS): Results for Level II evidence – cardiovascular outcomes (other anaemia criteria, Hb levels or change in Hb levels)

ACEI, angiotensin-converting enzyme inhibitor; ACS, acute coronary syndrome; AIIRA, angiotensin II receptor antagonists; AMI, acute myocardial infarction; CABG, coronary artery bypass graft; CAD, coronary artery disease; CHF, congestive heart failure; CI, confidence interval; CV, cardiovascular; dL, decilitre; eGFR, estimated glomerular filtration rate; g, grams; Hb, haemoglobin; HR, hazard ratio; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NR, not reported; NSTE-ACS, non-ST-segment elevation acute coronary syndromes; OR, odds ratio; RCT, randomised controlled trial; RI, recurrent ischemia; SD, standard deviation; STEMI, ST-segment elevation myocardial infarction; US, United States of America; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^c TIMI IIIB, 4, 9A, 9B, 10A, 10B, 11A, 11B, 12, 14, 16 (OPUS), 17 (INTIME II)^c, 18 (TACTICS), 20 (INTEGRI), 23 (ENTIRE) and 24 (FASTER). Analysis of data from this INTIME II trial was also carried out by Giraldez 2009.

HEART FAILURE

Heart failure occurs when abnormal cardiac function causes failure of the heart to pump blood at a rate sufficient for metabolic requirements under normal filling pressure. It is characterised clinically by breathlessness, effort intolerance, fluid retention, and poor survival. Heart failure can be caused by systolic or diastolic dysfunction, and is associated with neurohormonal changes.^a

Of the adverse outcomes specified for this question, two are covered for this population: mortality and functional status (disability).

Methods

There were 18 studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature pertaining to Australia's Indigenous population relevant to this research question.

Level I evidence

The literature search identified three systematic reviews examining the aetiology of anaemia in patients with heart failure.

Level II evidence

The literature search identified 15 Level II studies examining aetiology of anaemia in patients with heart failure.

Level III evidence

Due to the substantial amount of Level II evidence identified, the literature was not searched for Level III evidence.

Level IV evidence

Due to the substantial amount of Level II evidence identified, the literature was not searched for Level IV evidence.

Results

Level I evidence

Three Level I studies were included for this question: all three studies provided evidence for mortality and specifically examined anaemia in heart failure patients, as summarised in Table 3.9. ²¹⁻²³ Two of the three studies included data from study types other than prospective cohort studies. ^{21,23} Only the study by He et al (2009)²² was limited to Level II studies; however, in this study the pooled analysis was not adjusted for potential confounding variables.

As such, none of these Level I studies will be used as the basis for the review of this question; however, their results will be briefly described and they will be used to help identify Level II studies.

^a http://clinicalevidence.bmj.com/ceweb/conditions/cvd/0204/0204_background.jsp

Level II evidence			
Author	Study type Study quality	Population	Outcomes
Groenveld et al (2008) ²¹	Systematic review and meta-analysis of literature. Includes data from 34 studies including 8 prospective cohort studies, 9 secondary analyses of RCTs, and 17 retrospective cohort studies. <i>Good</i>	Diagnosed with chronic heart failure (diastolic or systolic) and ≥18 years (definitions of heart failure varied between studies. N=up to 152,770	Mortality
He et al (2009) ²²	Systematic review and meta-analysis of literature. Includes data from 21 prospective observational studies. <i>Good</i>	Heart failure (LVEF ranged from <23% to ≥50% across the included studies, although most were <40). N=12,475	Mortality
Lindenfield et al (2005) ²³	Systematic review of literature. Includes data from 29 studies (3 Medicare populations), 6 hospital cohorts, 10 outpatient cohorts and 7 clinical research studies) <i>Fair</i>	Diagnosis of heart failure. N=NR	Mortality

Table 3.9 Question 1 (heart failure): Characteristics and quality of Level I evidence

LVEF, left ventricular ejection fraction; NR, not reported; RCT, randomised controlled trial.

All three identified reviews found that anaemia was associated with adverse outcomes. Groenveld et al (2008)²¹ examined the association between anaemia and mortality using data from 34 studies assessing heart failure patients. They concluded that "[anaemia] is associated with an increased risk of mortality in both systolic and diastolic heart failure". The study by He et al (2009)²² used data from 97,699 patients included in 20 studies to assess the relationship between anaemia and the prognosis of chronic heart failure. The authors concluded that "[anaemia] is associated with an increased risk of mortality..." Finally, Lindefield et al (2005)²³ reviewed data from 29 studies and found that anaemia was "consistently associated with poorer survival in all patient populations [in patients with heart failure], but there are substantial differences in the patient populations and definition of [anaemia]".

Level II evidence

Fifteen Level II studies were included for this question; 14 studies provided evidence for mortality and one study provided evidence for functional status/quality of life.^{8,24-37} The characteristics of the included studies are summarised in Table 3.10. Twelve of the included studies specifically examined anaemia or Hb level as a potential predictor of adverse outcomes^{8,24-28,31-35,37} while the remaining three studies aimed to identify a number of potential predictors.^{29,30,36}

Due to the large amount of evidence available for the mortality outcome, and the requirement that analyses were adjusted for multiple potential confounders, studies were limited to those including >500 subjects. This resulted in the exclusion of 12 studies including 26 to 442 patients.³⁸⁻⁴⁹ Studies with smaller patient numbers were potentially available for inclusion for the functional status/quality of life outcomes, although none were identified.

Level II evidenc			1
Author	Study type Study quality	Population	Outcomes
Adams et al (2009) ²⁴	Cohort analysis of a prospective registry (STAMINA-HFP) Good	Rando mLy selected outpatients with heart failure recruited from selected heart failure specialty practices and community-based cardiology practices with an interest in heart failure. N=826	Functional/performance status
Anand et al (2005) ²⁵	Cohort analysis of a double-blind RCT (Val HeFT) <i>Fair</i>	Chronic heart failure (\geq 18 years, heart failure for at least 3 months prior to screening, NYHA Class II-IV, clinically stable, fixed dose regimen of ACEI, diuretic, digoxin or β -blocker for at least 2 weeks, documented LVEF <40% and LV dilatation with an echocardiographically measured short axis internal dimension at end diastole greater than 2.9 cm per square metre of body surface area). N=5002	Mortality
Anker et al (2009) ⁸	Cohort analysis of a double-blind RCT (OPTIMAAL) <i>Fair</i>	Diagnosis of acute myocardial infarction and signs or symptoms of heart failure during the acute phase suggested by one or more of the following: treatment with diuretic or intravenous vasodilator therapy for heart failure; pulmonary rales; third heart sound; persistent sinus tachycardia (≥100 bpm); radiographic evidence of pulmonary congestion. Also, AMI and a LVEF <35% or a left-ventricular end-diastolic dimension or greater than 65 mm (optional) and/or a new Q-wave anterior wall AMI, or any reinfarction with previous pathological Q-waves in the anterior wall. N = 5010	Mortality
Baggish et al (2007) ²⁶	Prospective hospital registry <i>Fai</i> r	Community-based patients diagnosed with acute heart failure. N=690	Mortality

Table 3.10 Question 1 (heart failure): Characteristics and quality of Level II evidence

Author	Study type Study quality	Population	Outcomes
Ceresa et al (2005) ²⁷	Prospective cohort study Poor	Patients with CHF caused by ischaemia, idiopathic dilated cardiomyopathy or other disease (eg, hypertension, valvular disease) entering a heart transplant programme. N=980	Mortality
Felker et al (2003) ²⁸	Cohort analysis of a double-blind RCT (OPTIME- CHF) Good	Patients with systolic dysfunction and exacerbations of heart failure: ≥18 years and demonstrated LVEF <40%. N=906	Mortality
Garty et al (2007) ²⁹	Prospective observational survey <i>Good</i>	Hospitalised heart failure patients with stages B-D ^a according to ACC/AHA definitions. N=4102	Mortality
Hamaguchi et al (2009) ³¹	Prospective cohort study <i>Fair</i>	Patients hospitalised due to worsening heart failure as the primary cause of admission. N=1960	Mortality
Ingle et al (2007) ³⁰	Prospective cohort study <i>Fair</i>	Older patients with chronic heart failure. Patients referred to local community clinic with signs of breathlessness. Heart failure was defined as current symptoms of heart failure, or a history of symptoms controlled by medication, due to cardiac dysfunction and in the absence of any more likely cause. N=1592	Mortality
Kalra et al (2003) ³²	Prospective cohort study Fair	Patients with newly diagnosed heart failure. N=552	Mortality
Komajda et al (2006) ³³	Cohort analysis of a RCT (COMET) Good	Chronic heart failure: NYHA class II-IV, optimal background therapy with diuretics and ACEIs, LVEF <35% and a previous admission for a cardiovascular reason. N=2996	Mortality
Maggioni et al (2005) ³⁴	Cohort analysis of a RCT (Val- HeFT) ^b and prospective registry (IN-CHF) <i>Good</i>	Patients with heart failure: ≥18 years; history and clinical findings of heart failure for at least 3 months before screening; NYHA class II-IV; clinically stable; on a stable dose drug regimen that might include ACEI, diuretic, digoxin or β-blockers for at least 2 weeks; documented LVEF <40% and echocardiographically measured left ventricular internal diameter in diastole/body surface area>2.9 cm/m2 (VaIHeFT) and diagnosis of heart failure according to the criteria described by the European Society of Cardiology (IN- CHF) N=5010 and 2411	Mortality

Author Study type Study quality		Population	Outcomes	
Maraldi et al (2006) ³⁵	Prospective cohort study Good/fair ^c	Non-disabled, hospitalised with heart failure and aged ≥65 years: heart diagnosis carried out by means of the Clinical History Form, resulting in a summary score with a score of >4 corresponding to a diagnosis of heart failure. N=567	Mortality Functional status	
Poole-Wilson et al (2003) ³⁶	Cohort analysis of a RCT (ATLAS) Good	Adults with mild, moderate or severe chronic heart failure (NYHA class II-IV). N=3164	Mortality	
Young et al (2008) ³⁷	Prospective registry <i>Fair</i>	Patients hospitalised for an episode of a new or worsening heart failure as the primary cause of admission, or if significant HF symptoms developed for another primary diagnosis and HF was given as the primary discharge diagnosis. N=48,612	Mortality	

ACC, Amercian College of Carfiology; ACS, acute coronary syndrome; AHA, American Heart Assocaition; AMI, acute myocardial infarction; bpm, beats per minute; CHF, congestive heart failure; CVD, Hb, haemoglobin; MI, myocardial infarction; NSTE-ACS, non-ST-segment elevation acute coronary syndrome; NYHA, New York heart association; RI, recurrent ischaemia; STEMI, ST-segment elevation myocardial infarction.

^a Å: patients at high risk of developing heart failure, but without structural heart disease of heart failure symptoms; B: patients with structural heart disease but without heart failure symptoms; C: patients with structural heart disease with prior or current symptoms of heart failure; D: refractor heart failure patients who require specialised interventions.

^b Dataset also analysed by Anand et al (2005).²⁵

^c Quality rated as good for the mortality outcome and fair for the disability outcome.

Anaemia as an independent risk factor for mortality

Eight studies assessed the association between **anaemia as defined by the World Health Organisation (WHO)** and mortality, as shown in Table 3.11.^{8,25-27,29,33-35} The study by Garty et al (2007)²⁹ assessed the association between anaemia and in-hospital and 1-year mortality in 4102 patients with heart failure stages B-D based on ACC/AHA Guidelines. The results of the analysis showed that anaemia was an independent risk factor for 1-year mortality but not inhospital mortality.

The study by Baggish et al (2007)²⁶ assessed the association between anaemia and 60-day mortality in 690 patients diagnosed with acute heart failure. The results of the analysis showed that anaemia was an independent risk factor for 60-day mortality (P=0.032).

The study by Maggioni et al $(2006)^{34}$ examined the association between anaemia and mortality in cohorts taken from one RCT (Val-HeFT; N=5010) and one prospective registry (IN-CHF; N=2411). It should be noted that data from the Val-HeFT was also analysed by Anand et al (2005), as described above. The results of the analyses showed that anaemia was an independent risk factor for 2-year mortality in the Val-HeFT cohort and 1-year mortality in the IN-CHF cohort.

Maraldi et al (2006)³⁵ assessed the association between anaemia and 12-month mortality in a prospective cohort including 567 patients. When the cohort as a whole was examined, there was no significant association between anaemia and mortality. When the cohort was

divided into gender-based subgroups, the results showed that anaemia was an independent risk factor for mortality in women (N=266), but not in men (N=301).

The study by Anand et al (2005)²⁵ included 5002 patients with chronic heart failure, and showed that anaemia is an independent risk factor for 2-year mortality (P=0.02).

Anker et al (2009)⁸ assessed the association between anaemia and three types of mortality: all-cause mortality, sudden cardiac mortality and progressive heart failure mortality. In 5010 subjects with a diagnosis of acute myocardial infarction with signs or symptoms of heart failure during the acute phase, anaemia was shown to be independently associated with all-cause and heart failure mortality (P<0.0001 and 0.006, respectively) and not associated with sudden cardiac death during a median 3 years of follow-up.

Komajda et al (2006)³³ performed a cohort analysis of the association between anaemia and mortality in 2996 patients with chronic heart failure who took part in the COMET RCT. Over a median of 58 months of follow-up, anaemia was shown to be an independent risk factor for mortality (P<0.001).

Ceresa et al (2005)²⁷ examined the association between anaemia and cardiac mortality which included urgent heart transplantation, as it was considered that without the transplant the patient would have died. In 980 patients with chronic heart failure entering a heart transplant programme, anaemia was not shown to be an independent predictor of cardiac mortality.

Only the studies by Baggish et al (2007)²⁶ and Maraldi et al (2006)³⁵ studies provided data on the baseline risk of mortality associated with heart failure. Baggish et al (2007) showed that the unadjusted risk of mortality in patients without heart failure was 8.8%, while in patients with heart failure it was 16.4%. In the study by Maraldi (2006), the risk of mortality in patients without anaemia was 11.5%, and increased to 18.2% in patients with anaemia. However, the results were somewhat different when analysed by gender. The risk of mortality in females without anaemia was 9.1%, and this increased to 20.5% in females with anaemia. In men, the effect of anaemia seemed to be much less pronounced, with the risk increasing from 13.8% in men with anaemia compared with 16.3% in men with anaemia.

Table 3.11 Question 1 (heart failure): Results for Level II evidence – mortality (WHO or similar anaemia criteria)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^o	
ALL-CAUSE MORTAL	ITY									
SHORT-TERM FOLLO	W-UP (UP TO 1 YEAR)									
Garty 2007	1 prospective observational	Adult patients with heart failure stages	Hospital/Israel	Anaemia (Hb ≤12 g/dL) vs no	Mortality (in- hospital)	NR	NR	NR	Anaemia is <u>not</u> an independent risk factor	
Level II Good	survey N=4102	B-D ^e		anaemia	ποεριται)	current smoking, o disease, cardiomy	coronary artery disease opathy (non-ischaemic) nic obstructive pulmona	diabetes mellitus, dyslipidaemia, obesity, , acute coronary syndrome, valvular heart), atrial fibrillation, renal failure (creatinine ary disorder, stroke/transient ischaemic attack,	Independent risk factor for in-hospital mortality P≥0.05	
					Mortality (12	NR	NR	OR 1.50 (1.29, 1.75)	Anaemia is an	
					months)	current smoking, o disease, cardiomy	coronary artery disease, opathy (non-ischaemic) nic obstructive pulmona	diabetes mellitus, dyslipidaemia, obesity, , acute coronary syndrome, valvular heart), atrial fibrillation, renal failure (creatinine ary disorder, stroke/transient ischaemic attack,	independent risk factor for in-hospital mortality P<0.05	
Baggish 2007	1 cohort analysis	Adult patients	Hospital/US, the	Anaemia (WHO) vs	Mortality (60	50/305 (16.4)	34/385 (8.8)	OR 1.72 (1.05, 2.80)	Anaemia is an	
Level II Fair	of data from a registry comprising subjects from 3 clinical trials and a prospective registry (ICON) N=690	diagnosed with <u>acute</u> heart failure	Netherlands, Spain, New Zealand	no anaemia	days)	nocturnal dyspnoe	ea, fever, ECG left bund	artery disease, loop diuretic use, paroxysmal le branch block, creatinine, creatinine class, signs of haemodilution.	independent risk factor for 60-day mortality P=0.032	
Maggioni 2005	1 prospective	Adults patients with	Not stated/Italy (IN-	Anaemia (WHO) vs	Mortality (12	NR	NR	HR 1.54 (1.20, 1.97)	Anaemia is an	
Level II Good	registry (IN- CHF) N=2411	heart failure	CHF)	no anaemia	months)			YHA class, presence of coronary heart neart sound, BMI, creatinine, use of ACEIs	independent risk factor for mortality P<0.05	
Maraldi 2006	1 prospective	Adults aged ≥65	Hospital/Italy	Anaemia (WHO) vs	Mortality (12	46/253 (18.2)	36/314 (11.5)	OR 1.15 (0.69, 1.91)	Anaemia is <u>not</u> an	
Level II Good	cohort study N=567	years hospitalised with heart failure		no anaemia	months)	SBP, DBP, heart r	rate, BMI, serum albumi	s, Short Physical Performance Battery score, in, cholesterol, serum sodium, creatinine is Rating Scale score, use of ACEIs.	independent predictor of mortality compared with no anaemia P≥0.05	
	1 prospective	Females aged ≥65	Hospital/Italy	Anaemia (WHO) vs	Mortality (12	23/112 (20.5)	14/154 (9.1)	OR 2.33 (1.02, 5.30)	Anaemia is an	

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b	
	cohort study N=266 (subgroup)	years hospitalised with heart failure		no anaemia	months)	SBP, DBP, heart ra	ate, BMI, serum albumi	s, Short Physical Performance Battery score, n, cholesterol, serum sodium, creatinine s Rating Scale score, use of ACEIs.	independent predictor of mortality compared with no anaemia in females P<0.05	
	1 prospective	<u>Males</u> aged ≥65	Hospital/Italy	Anaemia (WHO) vs	Mortality (12	23/141 (16.3)	22/160 (13.8)	OR 0.65 (0.32, 1.35)	Anaemia is <u>not</u> an	
	cohort study N=301 (subgroup)	years hospitalised with heart failure		no anaemia	months)	Adjusted for: age, gender, cognitive status, S SBP, DBP, heart rate, BMI, serum albumin, c clearance, NYHA class, Cumulative Illness R		n, cholesterol, serum sodium, creatinine	independent predictor of mortality compared with no anaemia in males P≥0.05	
LONGER-TERM FOLL	OW-UP (>1 YEAR)			-	-					
Anand 2005	1 cohort analysis of a double-blind	Adult patients with chronic heart	Not stated	Anaemia (WHO) ^d vs no anaemia	Mortality (24 months)	NR NR HR 1.21		HR 1.21	Anaemia is an independent risk factor	
Level II Fair	RCT (Val-HeFT) N=5002	failure	Various countries ^c		nonuisy	BNP category, NYH baseline use of β-b	HA category, uric acid, lockers, origin (ischaer	ndently associated with anaemia at baseline: absolute neutrophil count, LVIDd/BSA, PRA, nic vs non-ischaemic), age, creatinine, NE, EF, aldosterone, treatment (valsartan vs	for 2-year mortality P=0.02	
Maggioni 2005	1 cohort analysis	Adults patients with	Not stated/Various ^c	Anaemia (WHO) vs	Mortality (2	NR	NR	HR 1.26 (1.04, 1.52) ^g	Anaemia is an	
Level II Good	of a double-blind RCT (Val- HeFT) ^g N=5010	heart failure	(Val-HeFT)	no anaemia	years)			YHA class, presence of coronary heart leart sound, BMI, creatinine, use of ACEIs	independent risk factor for mortality P<0.05	
Anker 2009	1 cohort analysis	Adult patients with a	Not stated	Anaemia (WHO) vs	Mortality	NR	NR	HR 1.35 (1.16, 1.56)	Anaemia is an	
Level II Fair	of a double-blind RCT (OPTIMAAL) N=5010	diagnosis of AMI and signs or symptoms of heart failure during the acute phase	Denmark, Finland, Germany, Ireland, Norway, Sweden, UK	no anaemia	(median 3 years)	Adjusted for: age, sex, randomised treatment group, creatinine, baseline uric acid, Killip class, heart rate, cholesterol, current smoking, history of diabetes, in-h digitalis nitrate, aspirin, warfarin and diuretic use.		heart rate, systolic blood pressure, total abetes, in-hospital beta-blocker, statin,	independent risk factor for mortality P<0.0001	
Komajda 2006	1 cohort analysis	Adults with chronic	Not stated/Various ^f	Anaemia (WHO) vs	Mortality	NR	NR	RR 1.47 (1.27, 1.71)	Anaemia is an	
Level II Good	of a double-blind RCT (COMET) N=2996	heart failure		no anaemia	(median 58 months)		SBP, NYHA class, creatinine, sodium, BMI, ogy, LVEF, lipid-lowering agent, gender,	independent risk factor for all-cause mortality P<0.001		

CARDIOVASCULAR	IORTALITY								
LONGER-TERM FOL	_ow-up (>1 year)								
Anker 2009	1 cohort analysis	Adult patients with a	Not stated	Anaemia (WHO) vs	Sudden cardiac	NR	NR	HR 1.14 (0.89, 1.48)	Anaemia is not an
Level II Fair	of a double-blind RCT (OPTIMAAL) N=5010	diagnosis of AMI and signs or symptoms of heart failure during the acute phase	Denmark, Finland, Germany, Ireland, Norway, Sweden, UK	no anaemia	<u>mortality</u> (median 3 years)	creatinine, baseline	ent group, baseline BMI, eGFR, baseline leart rate, systolic blood pressure, total betes, in-hospital beta-blocker, statin, ic use.	independent risk factor for sudden cardiac death P=0.303	
					Progressive	NR	NR	HR 1.55 (1.13, 2.13)	Anaemia is an
					<u>heart failure</u> <u>mortality</u> (median 3 years)	creatinine, baseline cholesterol, current	uric acid, Killip class, h	ent group, baseline BMI, eGFR, baseline leart rate, systolic blood pressure, total betes, in-hospital beta-blocker, statin, ic use.	independent risk factor for death due to progressive heart failure P=0.006
Ceresa 2005	1 prospective	Adults patients with	Hospital/Italy	Anaemia (Hb ≤12	Cardiac	NR	NR	NR	Anaemia is not an
Level II Poor	cohort study N=980	chronic heart failure <u>entering a</u> <u>heart transplant</u> programme		g/dL) vs no anaemia	mortality <u>or</u> <u>urgent heart</u> <u>transplant</u> (3 years)	Adjusted for: RAP, s others.	sodium, LVEF, mitral re	gurgitation, NYHA class and possibly	 independent risk factor for cardiac mortality/urgent heart transplant

6-MWT, six minute walk test; ACEI, angiotensin-converting enzyme inhibitor; AF, atrial fibrillation; AMI, acute myocardial infarction; ARB, angiotensin receptor blocker; BMI, body mass index; BNP, Brain-type natriuretic peptide; CI, confidence interval; COPD, chronic obstructive pulmonary disease; CVA/TIA, cerebrovascular accident/transient ischemic attack; DBP, diastolic blood pressure; dL, decilitre; ECG, electrocardiograph; eGFR, estimated glomerular filtration rate; g, grams; Hb, haemoglobin; HF, heart failure; HR, hazard ratio; IHD, in hospital death; LVEF, left ventricular ejection fraction; LVIDd/BSA, left ventricular internal diastolic diameter/body surface area; LVSD, left ventricular systolic dysfunction; NE, norepinephrine; NR, not reported; NT-pro-BNP, N-terminal-pro-Brain-type natriuretic peptide; NYHA, New York Heart Association; OR, odds ratio; PRA, plasma renin activity; RAP, right atrial pressure; RCT, randomised controlled trial; RR, risk ratio; SBP, systolic blood pressure; SD, standard deviation; SOB, signs of breathlessness; UK, United Kingdom; US, United States of America; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^c Australia, Belgium, Czech Republic, Denmark, Finland, France, Germany, Hungary, Italy, the Netherlands, Norway, Spain, Sweden, UK, US.

^d Hb <13 g/dL in men and <12 g/dL in women.

e According to ACC/AHA definitions. A: patients at high risk of developing heart failure, but without structural heart disease of heart failure symptoms; B: patients with structural heart disease but without heart failure; D: refractor heart failure patients who require specialised interventions.

^f Australia, Denmark, Finland, France, Germany, Hungary, Italy, the Netherlands, Norway, Portugal, Sweden, Switzerland, UK.

⁹ An analysis of the Val-HeFT study data was also conducted in the Anand 2005 study, and resulted in similar HRs (1.26 vs 1.21).

Three studies assessed the association between **various Hb levels and mortality**, as shown in Table 3.12.^{25,31,33} Anand et al $(2005)^{25}$ assessed the association between different 12-month changes in Hb level and 12-month mortality. A substantial reduction in Hb level from baseline over 12 months (mean -1.64 g/dL; range -6.3 to -0.9 g/dL) was an independent predictor of 12-month mortality compared with no change (mean 0.14 g/dL; range -0.1 to 0.4 g/dL). However, a small reduction in Hb level from baseline over 12 months (mean -0.48 g/dL; range -0.8 to -0.2 g/dL) was not associated with 12-month mortality compared with no change.

The study by Hamaguchi et al $(2009)^{31}$ assessed the association between various Hb levels and mortality in patients hospitalised due to worsening heart failure during a mean 2.4 year follow-up. The results of the analysis showed that lower Hb levels at discharge (<10.2 g/dL and 10.1-11.9 g/dL) were significantly associated with all-cause and cardiac mortality when compared with a Hb level of \geq 13.7 g/dL. There was no association between Hb levels of 12.0-13.6 g/dL compared with \geq 13.7 g/dL and all-cause or cardiac mortality.

Komajda et al (2006)³³ examined various levels and changes in Hb and their association with mortality over a median follow-up period of 58 months. Hb levels were divided into six groups and the three lowest groups (1, 2 and 3) and the two highest groups (5 and 6) were compared with Group 4. For the purposes of the results presented here, Group 1 (<11.5 g/dL male or <10.5 g/dL female) has been designated as severe/moderate anaemia, Group 2 (11.5-13.0 g/dL male or 10.5-12.0 g/dL female) has been designated as mild anaemia and Group 3 (13.0-14.0 g/dL male or 12.0-13.0 g/dL female) has been designated no anaemia. The reference group, Group 4, encompasses Hb from 14.0-15.0 g/dL for males or 13.0-14.0 g/dL for females. The results of the analysis show that severe/moderate anaemia and mild anaemia are independent risk factors for mortality compared with the Hb level in Group 4.

Komajda et al $(2006)^{33}$ also assessed the association between *change* in Hb and mortality. A reduction in Hb during the study of ≥ 3 g/dL and 2-3 g/dL were significantly associated with increased mortality compared with an increase in Hb of >0-1 g/dL. There was no significant association between reductions of 1-2 g/dL or 0-1 g/dL and increases of >0-1 g/dL.

Table 3.12 Question 1 (heart failure): Results for Level II evidence – mortality (other anaemia criteria, Hb levels or change in Hb levels)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^ø	
ALL-CAUSE MORTALIT	Ύ									
SHORT-TERM FOLLOW	V-UP (UP TO 1 YEAR)	Γ	I		1		T	-		
Anand 2005	1 cohort analysis of a double-blind	Adult patients with chronic heart	Not stated	12-month change in Hb (- 1.64 g/dL	Mortality (12 months)	NR	NR	HR 1.6 (1.16, 2.2)	A substantial reduction in Hb from baseline over	
Level II Fair	RCT (Val-HeFT) N=1499	failure	Various countries ^c	change (range -6.3 to -0.9) vs 0.14 g/dL change (range -0.1 to 0.4)	monarsy	baseline: BNP cate LVIDd/BSA, PRA, ischaemic), age, ci	egory, NYHA category, u baseline use of β-blocke	ndently associated with anaemia at ric acid, absolute neutrophil count, rs, origin (ischaemic vs non- absolute, lymphocyte count, LVEF, po).	12 months is significantly associated with an increased risk of subsequent mortality P=0.004	
	1 cohort analysis	Adult patients	Not stated	12-month change in	Mortality (12	NR	NR	HR 1.10 (0.79, 1.55)	A small reduction in Hb	
	of a double-blind RCT (Val-HeFT) N=1532	with <u>chronic</u> heart failure	Various countries ^c	Hb (-0.48 g/dL change (range -0.8 to -0.2)vs 0.14 g/dL change (range -0.1 to 0.4)	months)	Adjusted for variables shown to be in baseline: BNP category, NYHA category LVIDd/BSA, PRA, baseline use of β -ti ischaemic), age, creatinine, NE, category aldosterone, treatment (valsartan vs procession)		ric acid, absolute neutrophil count, rs, origin (ischaemic vs non- absolute, lymphocyte count, LVEF,	from baseline is <u>not</u> independently associated with an increased risk of mortality P=0.57	
LONGER-TERM FOLLO	DW-UP (>1 YEAR)	1	1	1		1		-		
Hamaguchi 2009	1 prospective cohort study	Adult patients hospitalised	Hospital/Japan	Discharge Hb <10.1 q/dL vs Hb ≥13.7	Mortality (mean	NR	NR	HR 1.963 (1.300, 2.963)	Moderate-severe anaemia (Hb <10.1	
Level II Fair	N=777	due to worsening heart failure		g/dL vs Hb ≥13.7 g/dL	2.4 years)	hypertensive, valvu (hyperuricaemia, s creatinine, NYHA f discharge and med	ular heart disease, dilate troke, smoking, chronic unctional class at discha	causes of heart failure (ischaemic, d cardiomyopathy), medical history arterial fibrillation or flutter), serum irge, BNP at discharge, LVEF at , β -blocker, digitalis, Ca channel	g/dL) is an independent risk factor for mortality compared with no anaemia (Hb \geq 13.7 g/dL) P<0.05	
	1 prospective	Adult	Hospital/Japan	Discharge Hb 10.1–	Mortality (mean	NR	NR	HR 1.606 (1.067, 2.417)	Mild-moderate anaemia	
	cohort study N=823	patients <u>hospitalised</u> <u>due to worsening</u> <u>heart failure</u>		11.9 g/dL vs Hb ≥13.7 g/dL	2.4 years)	hypertensive, valvu (hyperuricaemia, s creatinine, NYHA f discharge and med	ular heart disease, dilate troke, smoking, chronic unctional class at discha	causes of heart failure (ischaemic, d cardiomyopathy), medical history arterial fibrillation or flutter), serum irge, BNP at discharge, LVEF at β -blocker, digitalis, Ca channel	(Hb 10.1-11.9 g/dL) is an independent risk factor for all-cause mortality compared with no anaemia (Hb \geq 13.7 g/dL) P<0.05	
	1 prospective	Adult	Hospital/Japan	Discharge Hb 12.0-	Mortality (mean	NR	NR	HR 1.315 (0.858, 2.016)	Very mild anaemia (Hb	

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
	cohort study N=826	patients <u>hospitalised</u> due to worsening heart failure		13.6 g/dL vs Hb ≥13.7 g/dL	2.4 years)	hypertensive, valvula (hyperuricaemia, stro creatinine, NYHA fur discharge and medic	ir heart disease, dilated oke, smoking, chronic an ictional class at dischar	causes of heart failure (ischaemic, cardiomyopathy), medical history rterial fibrillation or flutter), serum ge, BNP at discharge, LVEF at β-blocker, digitalis, Ca channel	12.0-13.6 g/dL) is <u>not</u> an independent risk factor for mortality compared with no anaemia (Hb ≥13.7 g/dL) P≥0.05
Komajda 2006	1 cohort analysis	Adults with <u>chronic</u> heart failure	Not stated/Various ^f	Severe/moderate	Mortality (median	NR	NR	RR 1.558 (1.145, 2.121)	Severe/moderate
Level II Good	of a double-blind RCT (COMET) N=929	neartrailure		anaemia (Hb <11.5 g/dL male or <10.5 g/dL female) vs normal Hb (Hb 14.0- 15.0 g/dL male or 13.0-14.0 g/dL female)	58 months)	Adjusted for: random BMI, diabetes, durati gender, anticoagular	on of HF, ischaemic ae	3P, NYHA class, creatinine, sodium, tiology, LVEF, lipid-lowering agent,	anaemia is an independent risk factor for mortality compared with normal Hb P=0.0048
	1 cohort analysis of a double-blind	Adults with <u>chronic</u> heart failure	Not stated/Various ^f	Mild anaemia (Hb 11.5-13.0 g/dL male	Mortality (median 58 months)	NR	NR	RR 1.405 (1.16, 1.703)	Moderate anaemia is an independent risk factor
	RCT (COMET) N=1206	Tieart Tallure		or 10.5-12.0 g/dL female)vs normal Hb (Hb 14.0-15.0 g/dL male or 13.0-14.0 g/dL female)	30 11011115)	Adjusted for: randomised treatment, age, SB BMI, diabetes, duration of HF, ischaemic aeti gender, anticoagulants, aspirin.			for mortality compared with normal Hb P<0.001
	1 cohort analysis of a double-blind	Adults with <u>chronic</u> heart failure	Not stated/Various ^f	No anaemia (Hb	Mortality (median 58 months)	NR	NR	RR 0.942 (0.783, 1.134)	No anaemia is <u>not</u> an independent risk factor
	RCT (COMET) N=1463	neartrailure		13.0-14.0 g/dL male or 12.0-13.0 g/dL female)vs normal Hb (Hb 14.0-15.0 g/dL male or 13.0-14.0 g/dL female)	38 HUHUINS)	Adjusted for: random BMI, diabetes, durati gender, anticoagular	on of HF, ischaemic ae	3P, NYHA class, creatinine, sodium, tiology, LVEF, lipid-lowering agent,	for mortality compared with normal Hb P=0.529
Komajda 2006	1 cohort analysis	Adults with chronic	Not stated/Various ^f	Δ Hb \leq -3 g/dL vs Δ	Mortality (median	NR	NR	RR 3.37 (2.464, 4.611)	A large reduction in Hb
Level II Good	of a double-blind RCT (COMET) N=NR	heart failure		Hb >0-1 g/dL	58 months)	Adjusted for: random BMI, diabetes, durati gender, anticoagular	on of HF, ischaemic ae	3P, NYHA class, creatinine, sodium, tiology, LVEF, lipid-lowering agent,	over time is an independent risk factor for mortality compared with no reduction in Hb P<0.001
	1 cohort analysis	Adults with chronic	Not stated/Various ^f	Δ Hb >-3 to-2 g/dL	Mortality (median	NR	NR	RR 1.466 (1.092, 1.969)	A moderate reduction in
	of a double-blind RCT (COMET) N=NR	heart failure		vs ∆ Hb >0-1 g/dL	58 months)	Adjusted for: random BMI, diabetes, durati gender, anticoagular	on of HF, ischaemic ae	P, NYHA class, creatinine, sodium, tiology, LVEF, lipid-lowering agent,	Hb over time is an independent risk factor for mortality compared with no reduction in Hb P=0.0109
	1 cohort analysis	Adults with chronic	Not stated/Various ^f	Δ Hb >–2 to–1 g/dL	Mortality (median	NR	NR	RR 1.178 (0.944, 1.471)	A small reduction in Hb

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶	
	of a double-blind RCT (COMET) N=NR	heart failure		vs ∆ Hb >0-1 g/dL	: ∆ Hb >0-1 g/dL 58 months)		Adjusted for: randomised treatment, age, SBP, NYHA class, creatinine, sodium BMI, diabetes, duration of HF, ischaemic aetiology, LVEF, lipid-lowering agent, gender, anticoagulants, aspirin.			
	1 cohort analysis	Adults with chronic	Not stated/Various ^f	Δ Hb >–1 to 0 g/dL	Mortality (median	NR	NR	RR 1.005 (0.831, 1.215)	A very small reduction in	
	of a double-blind RCT (COMET) N=NR	heart failure		vs ∆ Hb >0-1 g/dL	58 months)		on of HF, ischaemic ael	P, NYHA class, creatinine, sodium, iology, LVEF, lipid-lowering agent,	Hb over time is <u>not</u> an independent risk factor for all-cause anaemia compared with no reduction in Hb P=0.9595	

CARDIOVASCULAR MC	ORTALITY								
LONGER-TERM FOLLO	0W-UP (>1 YEAR)								
Hamaguchi 2009	1 prospective	Adult	Hospital/Japan	Discharge Hb <10.1	Cardiac mortality	NR	NR	HR 2.155 (1.308, 3.548)	Moderate-severe
Fair N=	cohort study N=777	patients <u>hospitalised</u> due to worsening heart failure	Hospital/Japan	g/dL vs Hb ≥13.7 g/dL	(mean 2.4 years)	Adjusted for: demogr hypertensive, valvula (hyperuricaemia, stro creatinine, NYHA fur discharge and medic blocker, nitrates, anti	anaemia (Hb <10.1 g/dL) is an independent risk factor for cardiac death compared with no anaemia (Hb ≥13.7 g/dL) P<0.05		
	1 prospective	Adult	Hospital/Japan	11.9 g/dL vs Hb (mean 2.4 years)	NR NR HR 1.706 (1.039, 2.800)			Mild-moderate anaemia	
	cohort study N=823	ort study patients hospitalised 11.9 g/dL vs Hb	(mean 2.4 years)	Adjusted for: demographic (age, sex, BMI), causes of heart failure (ischaemic, hypertensive, valvular heart disease, dilated cardiomyopathy), medical history (hyperuricaemia, stroke, smoking, chronic arterial fibrillation or flutter), serum creatinine, NYHA functional class at discharge, BNP at discharge, LVEF at discharge and medication use (ACEI, ARB, β-blocker, digitalis, Ca channel blocker, nitrates, antiarrhythmic, warfarin).			(Hb 10.1-11.9 g/dL) is an independent risk factor for cardiac death compared with no anaemia (Hb ≥13.7 g/dL) P<0.05		
	1 prospective	Adult	Hospital/Japan	Discharge Hb 12.0-	Cardiac mortality	NR	NR	HR 1.39 (0.832, 2.324)	Very mild anaemia (Hb
	cohort study N=826	patients <u>hospitalised</u> due to worsening heart failure		13.6 g/dL vs Hb ≥13.7 g/dL	(mean 2.4 years)	hypertensive, valvula (hyperuricaemia, stro creatinine, NYHA fur discharge and medic	ar heart disease, dilated oke, smoking, chronic a actional class at dischar	causes of heart failure (ischaemic, d cardiomyopathy), medical history rterial fibrillation or flutter), serum ge, BNP at discharge, LVEF at β-blocker, digitalis, Ca channel	 12.0-13.6 g/dL) is not ar independent risk factor for cardiac death compared with no anaemia (Hb ≥13.7 g/dL) P≥0.05

6-MWT, six minute walk test; ACEI, angiotensin-converting enzyme inhibitor; AF, atrial fibrillation; AMI, acute myocardial infarction; ARB, angiotensin receptor blocker; BMI, body mass index; BNP, Brain-type natriuretic peptide; CI, confidence interval; COPD, chronic obstructive pulmonary disease; CVA/TIA, cerebrovascular accident/transient ischemic attack; DBP, diastolic blood pressure; dL, decilitre; ECG, electrocardiograph; eGFR, estimated glomerular filtration rate; g, grams; Hb, haemoglobin; HF, heart failure; HR, hazard ratio; IHD, in hospital death; LVEF, left ventricular ejection fraction; LVIDd/BSA, left ventricular internal diastolic diameter/body surface area; LVSD, left ventricular systolic dysfunction; NE, norepinephrine; NR, not reported; NT-pro-BNP, N-terminal-pro-Brain-type natriuretic peptide; NYHA, New York Heart Association; OR, odds ratio; PRA, plasma renin activity; RAP, right atrial pressure; RCT, randomised controlled trial; RR, risk ratio; SBP, systolic blood pressure; SD, standard deviation; SOB, signs of breathlessness; UK, United Kingdom; US, United States of America; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^c Australia, Belgium, Czech Republic, Denmark, Finland, France, Germany, Hungary, Italy, the Netherlands, Norway, Spain, Sweden, UK, US.

Eight studies assessed the association between **Hb as a continuous variable and mortality**, as shown in Table 3.13.^{8,25,28,30,32,34,36,37} Felker et al (2003)²⁸ assessed the association between Hb level and 60-day mortality in 906 patients with systolic dysfunction and exacerbation of heart failure who took part in the OPTIME-CHF RCT. The results of this study showed that a 1 g/dL increase in Hb was not associated with 60-day mortality.

Anand et al $(2005)^{25}$ assessed the association between Hb as a continuous variable and 12month mortality in two populations: (i) those with anaemia at baseline (N=668) and (ii) those without anaemia at baseline (N=2424). The results of the analysis showed that a 1 g/dL increase in Hb was associated with a substantial reduction in 12-month mortality risk in both patient populations (22% and 21% reduction, respectively).

Maggioni et al (2005)³⁴ examined the association between Hb and mortality in cohorts from one RCT (Val-HeFT) and one prospective registry (IN-CHF). As noted previously, data from the Val-HeFT trial was also used for the analysis by Anand et al (2005). Using data from the Val-HeFT trial, Maggioni et al (2005) showed that a 1 g/dL increase in Hb resulted in a significantly decreased risk of mortality at 2 years and 1 year (7.8% and 11% reductions in the risk of mortality, respectively). Similarly, analysis of data from the IN-CHF study also showed a reduction in mortality associated with an increase of 1 g/dL in Hb (9.7% reduction).

The study by Anker et al (2009)⁸ examined the association between Hb levels or change in Hb levels and mortality. A 1 SD increase in Hb was significantly associated with a 12% reduction in the risk of all-cause mortality and a 20% reduction in the risk of progressive heart failure mortality during a mean of 3 years of follow-up. There was no association between a 1 SD increase in Hb and sudden cardiac mortality. A 12-month change (increase or decrease) in Hb was significantly associated with mortality; a 12-month change was associated with a 27% reduction in mortality risk (P<0.01) while a 12-month increase was associated with a 33% reduction in mortality risk (P<0.01). A 12-month decrease in Hb level may be associated with a 27% increase in the risk of mortality (P=0.05).

The study by Ingle et al $(2007)^{30}$ aimed to examine the relationship between Hb and mortality in 1592 elderly patients with chronic heart failure. During a mean of 36.6 months of follow-up, a 1 g/dL increase in Hb was significantly associated with a 17.1% reduction in mortality.

Kalra et al (2003)³² used a prospective cohort study design to assess the association between Hb and survival in 531 adults with newly diagnosed heart failure. The results of the analysis showed there was no significant association between a 1 g/dL increase in Hb and survival.

The study by Poole-Wilson et al (2003)³⁶ examined the association between Hb and a number of different types of mortality: (all-cause mortality, cardiovascular mortality, chronic heart failure mortality, sudden death and out-of-hospital death) in 3164 patients with mild-severe heart failure taking part in the ATLAS RCT. Over a mean follow-up period of 46 months, a 1 g/dL increase in Hb was significantly associated with a reduction in chronic heart failure mortality only.

Young et al $(2008)^{37}$ assessed the association between a decrease in Hb and mortality in >48,000 patients hospitalised for new or worsening heart failure. The results of the study showed that a 1 g/dL decrease in Hb was associated with an increased risk of in-hospital mortality, but not 60-90-day mortality.

Table 3.13 Question 1 (heart failure): Results for Level II evidence – mortality (Hb as a continuous variable)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results					
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b		
ALL-CAUSE MORTALITY											
SHORT-TERM FOLLOW-	UP (UP TO 12 MONTHS)	•			-	•		-	•		
Felker 2003 Level II Good	1 cohort analysis of a double-blind RCT (OPTIME- CHF) N=906	Adult patients with systolic dysfunction and exacerbation of heart failure	Hospital/US	1 g/dL increase in Hb	Mortality (60 days)	history, co-morbid studies; to adjust fo assessed included	NA ndidate variables that refleconditions, bedside assess or varying degrees of volur presence of increased jug or a third heart sound.	ne overload, variables	A 1 g/dL increase in Hb is <u>not</u> independently associated with a change in the risk of 60-day mortality P≥0.05		
Anand 2005	1 cohort analysis	Adult patients	Not stated	Increase in Hb of 1	Mortality (12	NA	NA	HR 0.78 (0.65, 0.93)	A 1 g/dL increase in Hb		
Level II Fair	of a double-blind RCT (Val-HeFT) N=668	with <u>chronic</u> heart failure <u>with anaemia at</u> <u>baseline who survived</u> <u>12 months</u>	Various countries ^c	g/dL	months)	anaemia at baselin neutrophil count, L' (ischaemic vs non-	VIDd/BSA, PRA, baseline ischaemic), age, creatinine	ategory, uric acid, absolute use of β-blockers, origin	in patients with anaemia at baseline who survived 12 months is independently associated with a 22% reduction in the risk of 12-month mortality P=NR		
	1 cohort analysis	Adult patients	Not stated	Increase in Hb of 1	Mortality (12	NA	NA	HR 0.79 (0.71, 0.89)	A 1 g/dL increase in Hb		
	of a double-blind RCT (Val-HeFT) N=2424	with <u>chronic</u> heart failure <u>without</u> <u>anaemia at baseline</u> <u>who survived 12</u> <u>months</u>	Various countries ^c	g/dL	months)	Adjusted for variables shown to be independently associated with anaemia at baseline: BNP category, NYHA category, uric acid, absolute neutrophil count, LVIDd/BSA, PRA, baseline use of β -blockers, origin (ischaemic vs non-ischaemic), age, creatinine, NE, category, absolute, lymphocyte count, LVEF, aldosterone, treatment (valsartan vs placebo).			in patients without anaemia at baseline who survived 12 months is independently associated with a 21% reduction in the risk of 12-month mortality P=NR		
Maggioni 2005	1 cohort analysis	Adults patients with	Not stated/Various ^c	1 g/dL increase in Hb	Mortality (12	NA	NA	HR 0.89 (0.83, 0.95)	A 1 g/dL increase in Hb		
Level II Good	of a double-blind RCT (Val-HeFT)₫ N=5010	heart failure	(Val-HeFT)		months)	coronary heart dise	sex, SBP, heart rate, NYH, ease aetiology, ejection fra e of ACEIs and β-blockers	ction, third heart sound,	is independently associated with an 11% decrease in the risk of mortality P<0.05		
	1 prospective	Adults patients with	Not stated/Italy (IN-	1 g/dL increase in Hb	Mortality (12	NA	NA	HR 0.903 (0.839, 0.973)	A 1 g/dL increase in Hb		
	registry (IN-CHF) N=2411	heart failure	CHF)		months)	coronary heart dise	sex, SBP, heart rate, NYH, sase aetiology, ejection fra e of ACEIs and β-blockers	ction, third heart sound,	is independently associated with an 9.7% decrease in the risk of mortality P<0.05		

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶	
LONGER-TERM FOLLOV	V-UP (>12 MONTHS)									
Maggioni 2005	1 Cohort analysis	Adults patients with	Not stated/Various	1 g/dL increase in Hb	Mortality (2 years)	NA	NA	HR 0.922 (0.881, 0.966)	A 1 g/dL increase in Hb	
Level II Good	of a double-blind RCT (Val-HeFT) N=5010	heart failure	(Val-HeFT)			coronary heart dise	ex, SBP, heart rate, NYH ase aetiology, ejection frac e of ACEIs and β-blockers.	ction, third heart sound,	is independently associated with a 7.8% decrease in the risk of mortality P<0.05	
Anker 2009	1 cohort analysis	Adult patients with a	Not stated	Denmark, Finland, SD 3 ye	Mortality (median	NA	HR 0.88 (0.83, 0.93)	A 1 SD increase in Hb is independently associated		
Level II Fair	of a double-blind RCT (OPTIMAAL) N=5010	diagnosis of AMI and signs or symptoms of heart failure during the acute phase	Denmark, Finland, Germany, Ireland, Norway, Sweden, UK	hany, Ireland, hany, Ireland, hay, Sweden, UK		eGFR, baseline cre systolic blood press	group, baseline BMI, Killip class, heart rate, ent smoking, history of alis nitrate, aspirin, warfarin	independently associated with a 12% reduction in the risk of mortality P<0.001		
	1 cohort analysis	Adult patients with a	Not stated	12-month change in	Mortality (median	NA	NA	HR 0.73 (0.63, 0.85)	A 12-month change of	
	of a double-blind RCT (OPTIMAAL) N=3921	diagnosis of AMI and signs or symptoms of heart failure during the acute phase <u>who</u> <u>survived 12 month</u>	Denmark, Finland, Germany, Ireland, Norway, Sweden, UK	Hb of 1 SD	3 years)	eGFR, baseline cre systolic blood press	ex, randomised treatment atinine, baseline uric acid, sure, total cholesterol, curr I beta-blocker, statin, digit	Killip class, heart rate,	Hb of 1 SD is independently associated with a 27% reduction in the risk of mortality P<0.001	
				12-month increase in	Mortality (median	NA	NA	HR 0.67 (0.51, 0.81)	A 12-month increase of	
				Hb of 1 SD	3 years)	Adjusted for: age, sex, randomised treatment group, baseline BMI, eGFR, baseline creatinine, baseline uric acid, Killip class, heart rate, systolic blood pressure, total cholesterol, current smoking, history of diabetes, in-hospital beta-blocker, statin, digitalis nitrate, aspirin, warfa and diuretic use.			Hb of 1 SD is independently associated with a 33% reduction in mortality P<0.01	
				12-month decrease in	Mortality (median	NA	NA	HR 1.27 (1.00, 1.60)	A 12-month decrease in	
				Hb of 1 SD	3 years)	eGFR, baseline cre systolic blood press	ex, randomised treatment atinine, baseline uric acid, sure, total cholesterol, curr I beta-blocker, statin, digit	Killip class, heart rate,	Hb of 1 SD <u>may</u> be independently associated with a 27% increase in the risk of mortality P=0.05	
Ingle 2007	1 prospective	'Older' patients with	Community/UK	1 g/dL increase in Hb	Mortality (mean	NA	NA	HR 0.829 (0.808, 0.850)	A 1 g/dL increase in Hb	
Level II Fair	cohort study N=1592	chronic heart failure (all aged >65 years)			36.6 months)	Adjusted for: gender, age, BMI, NYHA class, LVSD, 6-MWT, sodium, potassium, urea, creatinine, LVEF, SBP, heart rate, QRS duration, log NT-pro-BNP, AF, angina, diabetes, ACEIs, β-blockers, loop diuretics, ankle swelling, SOB, fatigue.			is independently associated with a 17.1% reduction in the risk of mortality P<0.05	

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶
Kalra 2003	1 prospective	Adults with newly	Community/UK	1 g/dL increase in Hb	Survival (median	NA	NA	HR 0.98 (0.92, 1.04)	A 1 g/dL increase in Hb
Level II <i>Fair</i>	cohort study N=531	diagnosed heart failure			3 years)	Adjusted for: age, I function.	DBP, creatinine, NYHA cla	ss, left-ventricular systolic	is <u>not</u> independently associated with a change in survival. P=0.54
Poole-Wilson 2003	1 cohort analysis	Adults with mild-	Hospital and	1 g/dL increase in Hb	Mortality (mean 46	NA	NA	HR 0.983	A 1 g/dL increase in Hb
Level II Good	of a RCT (ATLAS) N=3164	severe chronic heart failure	community/various ^e		months)	Adjusted for: lisinop DBP, heart rate, dr blockers, long-actir antiarrythmics, calc	is <u>not</u> independently associated with a decrease in risk of mortality P ≥0.05		
					Sudden death	NA	HR 1.036	A 1 g/dL increase in Hb	
				(mean 46 months) D bl	Adjusted for: lisinop DBP, heart rate, dr blockers, long-actir antiarrythmics, calo	is <u>not</u> independently associated with a decrease in risk of sudden death P ≥0.05			
					Out-of-hospital	NA	NA	HR 0.983	A 1 g/dL increase in Hb is not independently
					death (mean 46 months)	DBP, heart rate, dr blockers, long-actir	Adjusted for: lisinopril dose, age, sex, IHD, LVEF, NYHA class, SBP, DBP, heart rate, drugs at randomisation including antidiabetic, aspirin, β -blockers, long-acting nitrates, short-acting nitrates, previous ACEI, antiarrythmics, calcium channel blockers, anticoagulants/warfarin.		
Young 2008	1 Prospective	Adults hospitalised for	Hospital/US	1 g/dL decrease in	Mortality (in	NA	NA	OR 1.077 (1.031, 1.126)	A 1 g/dL decrease in Hb
Level II <i>Fair</i>	registry cohort study (OPTIMIZE- HF) N=48,612	new or worsening heart failure, or if heart failure was the discharge diagnosis		Hb (up to 13 g/dL) <u>hospital</u>)	<u>hospital</u>)	failure as primary r liver disease, recer	race, heart rate, SBP, DBP eason for admission, prior nt smoker, COPD, peripher LVSD, ACEI, β-blocker.	, sodium, creatinine, heart CVA/TIA, hyperlipidaemia, al vascular disease, no	is independently associated with a 7.7% increase in the risk of in- hospital mortality P=0.001
	1 Prospective	Adults hospitalised for	Hospital/US	1 g/dL <u>decrease</u> in	<u></u>	NA	NA	OR 1.021 (0.945, 1.104)	A 1 g/dL decrease in Hb
	registry cohort study N=5791	new or worsening heart failure, or if heart failure was the discharge diagnosis		Hb (up to 13 g/dL)	<u>days)</u>		rway disease, weight, lower n, depression, β-blocker,	is <u>not</u> independently associated with a change in the risk of 60-90 day mortality P=0.5939	

ALL-CAUSE MORTALITY									
LONGER-TERM FOLLOW	V-UP (>12 MONTHS)								
Anker 2009	1 cohort analysis	Adult patients with a	Not stated	Increase in Hb of 1	Sudden cardiac	NA	NA	HR 0.86 (0.80, 1.03)	A 1 SD increase in Hb
Level II Fair	of a double-blind RCT (OPTIMAAL) N=5010	diagnosis of AMI and signs or symptoms of heart failure during the acute phase	Denmark, Finland, Germany, Ireland, Norway, Sweden, UK	SD	mortality (median 3 years)	systolic blood pressur	Killip class, heart rate,	is <u>not</u> independently associated with a reduction in the risk of sudden cardiac mortality P=0.141	
l					Progressive heart	NA	NA	HR 0.80 (0.69, 0.94)	A 1 SD increase in Hb is
					<u>failure mortality</u> (median 3 years)	eGFR, baseline creati systolic blood pressur	 randomised treatment inine, baseline uric acid, e, total cholesterol, curre peta-blocker, statin, digita 	Killip class, heart rate,	independently associated with a 20% reduction in the risk of progressive heart failure mortality P=0.006
Poole-Wilson 2003	1 cohort analysis	Adults with mild-	Hospital and	1 g/dL increase in Hb	Cardiovascular	NA	NA	HR 0.999	A 1 g/dL increase in Hb
Level II Good	of a RCT (ATLAS) N=3164	severe chronic heart failure	community/various ^e	mortality (mean 4 months)		Adjusted for: lisinopril DBP, heart rate, drugs blockers, long-acting i antiarrythmics, calciur	EF, NYHA class, SBP, ling antidiabetic, aspirin, β- ates, previous ACEI, coagulants/warfarin.	is <u>not</u> independently associated with a decrease in risk of cardiovascular mortality P ≥0.05	
					CHF mortality	NA	NA	HR 0.927	A 1 g/dL increase in Hb
				(mean 46 mon		months) Adjusted for: lisinopril dose, age, sex, IHD, LVEF, NYHA class, SBP, DBP, heart rate, drugs at randomisation including antidiabetic, aspirin, β blockers, long-acting nitrates, short-acting nitrates, previous ACEI, antiarrythmics, calcium channel blockers, anticoagulants/warfarin.			is independently associated with a 7.3% decrease in risk of CHF mortality P <0.05

6-MWT, six minute walk test; ACEI, angiotensin-converting enzyme inhibitor; AF, atrial fibrillation; AMI, acute myocardial infarction; ARB, angiotensin receptor blocker; BMI, body mass index; BNP, Brain-type natriuretic peptide; CI, confidence interval; COPD, chronic obstructive pulmonary disease; CVA/TIA, cerebrovascular accident/transient ischemic attack; DBP, diastolic blood pressure; dL, decilitre; ECG, electrocardiograph; eGFR, estimated glomerular filtration rate; g, grams; Hb, haemoglobin; HF, heart failure; HR, hazard ratio; IHD, in hospital death; LVEF, left ventricular ejection fraction; LVIDd/BSA, left ventricular internal diastolic diameter/body surface area; LVSD, left ventricular systolic dysfunction; NE, norepinephrine; NR, not reported; NT-pro-BNP, N-terminal-pro-Brain-type natriuretic peptide; NYHA, New York Heart Association; OR, odds ratio; PRA, plasma renin activity; RAP, right atrial pressure; RCT, randomised controlled trial; RR, risk ratio; SBP, systolic blood pressure; SD, standard deviation; SOB, signs of breathlessness; UK, United Kingdom; US, United States of America; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^c Australia, Belgium, Czech Republic, Denmark, Finland, France, Germany, Hungary, Italy, the Netherlands, Norway, Spain, Sweden, UK, US.

d An analysis of the Val-HeFT study data was also conducted in the Anand 2005 study, and resulted in similar HRs (1.26 vs 1.21).

e Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Hungary, Ireland, the Netherlands, Norway, Portugal, Slovak Republic, Spain, Switzerland, United Kingdom, United States.

Anaemia as an independent risk factor for stroke/MI

No studies were identified which presented data on stroke/MI.

Anaemia as an independent risk factor for functional/performance status

One study assessed the association between **various Hb levels and functional/performance status**, as shown in Table 3.14. Adams et al (2009)²⁴ assessed the association between baseline Hb and baseline quality of life, and 12-month change in Hb and 12-month change in quality of life, using two validated, disease-specific quality of life instruments: the Kansas City Cardiomyopathy Questionnaire (KCCQ) and the Minnesota Living with Heart Failure Questionnaire (MLHFQ). Based on a categorical analysis of Hb levels (with categories predominantly from 11 to 14 g/dL), baseline Hb level was shown to be significantly associated with improvements in three domains of the KCCQ (functional, P=0.0010; symptoms, P<0.001; and clinical, P=0.006) and one domain of the MLHFQ (physical, P=0.029). Table 3.14 Question 1 (heart failure): Results for Level II evidence – functional/performance status (other anaemia criteria, Hb levels or change in Hb levels)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶
HEART FAILURE									
CATEGORICAL ANALYSE	S								
Other anaemia criteria	/Hb levels/change								
Adams 2009 Level II <i>Good</i>	1 cohort analysis of a prospective registry (STAMINA-HFP) N=826	Adult patients with heart failure <u>with</u> baseline Hb and QoL	Outpatient US	Categories of Hb predominantly from 11 to 14 g/dL	KCCQ-Functional	LVEF, hypertension,	ischaemic heart disease, SBI	MD 1.1 (0.4, 1.8) abetes, duration of heart failure, P, DBP, current smoking, ACEI, c, loop diuretic and NYHA class.	Higher baseline Hb concentration is significantly associated with higher (improved) KCCQ-functional scores P=0.001
		Adult patients with	Outpatient	Categories of Hb	KCCQ-Symptoms	NR	NR	MD 1.5 (0.7, 2.3)	Higher baseline Hb
		heart failure <u>with</u> <u>baseline Hb and QoL</u>	US	predominantly from 11 to 14 g/dL		LVEF, hypertension,	ischaemic heart disease, SBI	abetes, duration of heart failure, P, DBP, current smoking, ACEI, c, loop diuretic and NYHA class.	concentration is significantly associated with higher (improved) KCCQ-symptoms scores P<0.001
		Adult patients with	Outpatient	Categories of Hb	KCCQ-Clinical	NR	NR	MD 0.9 (0.3, 1.6)	Higher baseline Hb
		heart failure <u>with</u> <u>baseline Hb and QoL</u>	US	predominantly from 11 to 14 g/dL		LVEF, hypertension,	ischaemic heart disease, SBI	abetes, duration of heart failure, P, DBP, current smoking, ACEI, c, loop diuretic and NYHA class.	concentration is significantly associated with higher (improved) KCCQ-clinical scores P=0.006
	1 cohort analysis	Adult patients with	Outpatient	Categories of Hb	MLHFQ-Physical	NR	NR	MD -0.4 (-0.8, -0.04)	Higher baseline Hb
	of a prospective registry (STAMINA-HFP) N=up to 826	heart failure <u>with</u> <u>baseline Hb and QoL</u>	US	predominantly from 11 to 14 g/dL		LVEF, hypertension,	ischaemic heart disease, SBI	abetes, duration of heart failure, P, DBP, current smoking, ACEI, c, loop diuretic and NYHA class.	concentration is significantly associated with lower (improved) MLHFQ- physical scores P=0.029
		Adult patients with	Outpatient	Categories of Hb	MLHFQ-	NR	NR	MD -0.2 (-0.4, 0.06)	Higher baseline Hb
		heart failure <u>with</u> baseline Hb and QoL	US	predominantly from 11 to 14 g/dL	Emotional	LVEF, hypertension,	ischaemic heart disease, SBI	abetes, duration of heart failure, , DBP, current smoking, ACEI, , loop diuretic and NYHA class.	concentration is <u>not</u> significantly associated with MLHFQ-emotional scores P=0.14
		Adult patients with	Outpatient	Categories of Hb	MLHFQ-Summary	NR	NR	MD -0.7 (-1.5, 0.1)	Higher baseline Hb

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶
		heart failure <u>with</u> baseline Hb and QoL	US	predominantly from 11 to 14 g/dL		LVEF, hypertension, isch	aemic heart disease, SBP, I	etes, duration of heart failure, DBP, current smoking, ACEI, oop diuretic and NYHA class.	concentration is <u>not</u> significantly associated with MLHFQ-summary scores P=0.092

CI, confidence interval; Hb, haemoglobin; KCCQ, Kansas City Cardiomyopathy Questionnaire; MD, mean difference; MLHFQ, Minnesota Living with Heart Failure Questionnaire; NR, not reported; QoL, quality of life; US, United States of America

Notes: Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

One study assessed the association between **change in Hb as a continuous variable and functional/performance status**, as shown in Table 3.15. Adams et al $(2005)^{24}$ assessed the association between change in Hb as a continuous variable and change in quality of life, as measured by the KCCQ and MLHFQ. Based on a continuous analysis of Hb, a change in Hb was shown to be significantly associated with improvements in three domains of the KCCQ (functional, P<0.0010; symptoms, P<0.001; and clinical, P<0.006) and two domains of the MLHFQ (physical, P=0.004; and summary, P=0.002).

Summary

The majority of results presented for heart failure suggest that anaemia/low Hb is an independent risk factor for mortality. Where no significant association between anaemia/low Hb was found, this was often when the Hb levels were not sufficiently low (eg, Hb levels corresponding to mild or negligible anaemia) or where the outcome was limited to cardiovascular mortality or sudden death. There were also a number of results showing no significant association between anaemia/low Hb and mortality relating to the follow-up period (60-90 days, in-hospital or specifically out-of-hospital) and one showing a difference by gender (no association in men). The results of the study which examined functional/performance status suggest that low Hb level is an independent risk factor for reduced quality of life.

Table 3.15 Question 1 (heart failure): Results for Level II evidence – functional/performance status (Hb as a continuous variable)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity®
HEART FAILURE									
Level II of a prosper registry	1 cohort analysis of a prospective registry (STAMINA-HFP)	Adult patients with heart failure <u>with</u> <u>baseline and all follow-</u> <u>up Hb and QoL</u>	Outpatient US	1 g/dL change in Hb through 12 months	KCCQ-Functional	LVEF, hypertension, i	NA NA MD 1. Adjusted for gender, race, age, eGFR, history of diabetes, dura .VEF, hypertension, ischaemic heart disease, SBP, DBP, curre ARB, ACEI or ARB, β-blocker, digoxin, any diuretic, loop diuret		A 1 g/dL change in Hb over 12 months is significantly associated with improved QoL P<0.001 A 1 g/dL change in Hb over 12 months is significantly associated with improved QoL P<0.001 A 1 g/dL change in Hb over 12 months is
	N=536	Adult patients with heart failure <u>with</u> <u>baseline and all follow-</u> <u>up Hb and QoL</u>	Outpatient US		KCCQ-Symptoms	LVEF, hypertension, i	NA ace, age, eGFR, history of di schaemic heart disease, SBF -blocker, digoxin, any diuretic	A 1 g/dL change in Hb over 12 months is significantly associated with improved QoL	
		Adult patients with heart failure <u>with</u> <u>baseline and all follow-</u> <u>up Hb and QoL</u>	Outpatient US	t 1 g/dL change in Hb through 12 months	KCCQ-Clinical	LVEF, hypertension, i	schaemic heart disease, SBF	MD 1.2 (0.7, 1.7) abetes, duration of heart failure, P, DBP, current smoking, ACEI, c, loop diuretic and NYHA class.	
	1 cohort analysis of a prospective registry (STAMINA-HFP) N=up to 536	Adult patients with heart failure with baseline and all follow- up Hb and QoL	Outpatient US	1 g/dL change in Hb through 12 months	MLHFQ-Physical	LVEF, hypertension, i	schaemic heart disease, SBF	MD -0.5 (-0.8, -0.1) abetes, duration of heart failure, P, DBP, current smoking, ACEI, c, loop diuretic and NYHA class.	A 1 g/dL change in Hb over 12 months is significantly associated with improved QoL P=0.004
		Adult patients with heart failure <u>with</u> <u>baseline and all follow-</u> <u>up Hb and QoL</u>	Outpatient US	1 g/dL change in Hb through 12 months	MLHFQ- Emotional	LVEF, hypertension, i	NA MD -0.1 (-0.3, 0.1) Adjusted for gender, race, age, eGFR, history of diabetes, duration of heart failure, LVEF, hypertension, ischaemic heart disease, SBP, DBP, current smoking, ACEI, ARB, ACEI or ARB, β-blocker, digoxin, any diuretic, loop diuretic and NYHA class.		
		Adult patients with heart failure <u>with</u> <u>baseline and all follow-</u> <u>up Hb and QoL</u>	Outpatient US	1 g/dL change in Hb through 12 months	MLHFQ-Summary	LVEF, hypertension, i	schaemic heart disease, SBF	MD -1.1 (-1.7, -0.4) abetes, duration of heart failure, P, DBP, current smoking, ACEI, I, loop diuretic and NYHA class.	A 1 g/dL change in Hb over 12 months is significantly associated with improved QoL P=0.002

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; CI, confidence interval; DBP, diastolic blood pressure; dL, decilitre; ECG, electrocardiograph; eGFR, estimated glomerular filtration rate; g, grams; Hb, haemoglobin; HF, heart failure; KCCQ, Kansas City Cardiomyopathy Questionnaire; LVEF, left ventricular ejection fraction; MD, mean difference; MLHFQ, Minnesota Living with heart Failure Questionnaire; NR, not reported; NYHA, New York Heart Association; SBP, systolic blood pressure; SD, standard deviation; SOB, signs of breathlessness; US, United States of America. Notes: Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Level I studies only. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

THE COMMUNITY-DWELLING ELDERLY

For this question, an elderly population was defined as those aged \geq 65 years who were community-dwelling and without significant morbidity.

Of the adverse outcomes specified for this question, two are covered for this population: mortality and functional status (disability).

Methods

There were 12 studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature pertaining to Australia's Indigenous population relevant to this research question.

Level I evidence

The literature search identified no systematic reviews examining the aetiology of anaemia in an elderly, community-dwelling population.

Level II evidence

The literature search identified 12 Level II studies examining aetiology of anaemia in an elderly, community-dwelling population.

Level III evidence

Due to the substantial amount of Level II evidence identified, the literature was not searched for Level III evidence.

Level IV evidence

Due to the substantial amount of Level II evidence identified, the literature was not searched for Level IV evidence.

Results

Twelve Level II studies were included for this question; ten studies provided evidence for mortality and two studies provided evidence for functional/performance status.⁵⁰⁻⁶¹ The characteristics of the included studies are summarised in Table 3.16. All of the included studies specifically examined anaemia or Hb level as a potential predictor of adverse outcomes.

Due to the large amount of evidence available for the mortality outcome, and the requirement that analyses were adjusted for multiple potential confounders, studies were limited to those including >500 subjects. This resulted in the exclusion of one study including 205 patients.⁶² Studies with smaller patient numbers were potentially available for inclusion for the functional status/quality of life. Two studies were included.

Author	Study type	Population	Outcomes
	Study quality		
Chaves et al (2004) ⁵⁰	Prospective cohort study Fair	Women aged ≥65 years, Medicare-eligible, a MMSE ≥18 and self-reported difficulty performing activities in two or more physical function domains. N=686	Mortality
Denny et al (2006) ⁵¹	Prospective cohort study Fair	Community-dwelling adults aged ≥65 years at enrolment; at the time of baseline Hb measurement (at visit 6) participants were aged ≥71 years. N=1744	Mortality
Dong et al (2008) ⁵²	Prospective cohort study <i>Fai</i> r	Rando mLy selected residents aged ≥65 years residing in three adjacent neighbourhoods in Chicago. N=1806	Mortality
Endres et al (2009) ⁵³	Prospective cohort study Good	Community-dwelling, primary-care patients aged ≥65 years, able to co-operate and provide written informed consent and a life expectancy >6 months as judged by the treating family physician. N=6880	Mortality
Izaks et al (1999) ⁵⁴	Prospective cohort study Fair	Inhabitants of Leiden, the Netherlands, aged 85 years and older at the start of the study. N=755	Mortality
Lucca et al (2009) ⁵⁵	Cross-sectional cohort study Good	Residents of Biella, Italy, aged 65-84 without neurological or psychiatric disease, severe sensory deficits, renal insufficiency, severe organ insufficiency, terminal illness, hospitalisation, institutionalisation and illiteracy. N=717	Functional/performance status
Patel et al (2007) ⁵⁶	Prospective cohort study Fair	Medicare beneficiaries living in designated areas of Pittsburgh and Memphis aged 71-82 without substantial disability. N=2601	Mortality
Patel et al (2009) ⁵⁷	Prospective cohort study Good	Civilian, non-institutionalised population aged ≥65 years who identified their race as non-Hispanic white, non-Hispanic black or Mexican American. N=4089	Mortality
Pennix et al (2006) ⁵⁸	Prospective cohort study Fair	Community-dwelling adults aged ≥65 years in East Boston, Massachusetts; New haven, Connecticut; and Iowa and Washington counties in rural Iowa. N=3607	Mortality
Riva et al (2009) ⁵⁹	Prospective cohort study Good	Residents of Biella, Italy aged 65-84 years. N=7536 (all); 4501 (participants)	Mortality
Thein et al (2009) ⁶⁰	Cross-sectional cohort study Fair	Outpatients aged ≥65 years, no previous diagnosis of cancer (excl BCC of skin), underlying blood disorder, end stage renal failure or transplant, or recipient of blood transfusion or erythropoietin within 3 months. N=328	Functional/performance status

Table 3.16 Question 1 (elderly): Characteristics and quality of Level II evidence

Level II evidence								
Author	Study type Study quality	Population	Outcomes					
Zakai et al (2005) ⁶¹	Prospective cohort study <i>Fair</i>	Community-dwelling (non-institutionalised) men and women aged ≥65 years, identified via Medicare eligibility lists. N=5797	Mortality					

MMSE, Mini-Mental State Examination

Anaemia as an independent risk factor for mortality

Due to the large amount of subgroup analysis that was carried out for this outcome, separate tables will be presented as follows: (i) the overall results; (ii) results by gender; (iii) results by race; (iv) results by anaemia subtype; and (v) results for other subgroups.

Four studies assessed the association between **anaemia as defined by the World Health Organisation (WHO)** and mortality in the **overall population**, as shown in Table 3.17.^{51,54,58,61} Penninx et al $(2006)^{58}$ examined the relationship between anaemia and mortality in 3607 community-dwelling adults aged ≥ 65 years, and found that during a mean follow-up of 4.1 years, anaemia was an independent predictor of increased mortality whether or not subjects had baseline disease. The results remained consistent when the analysis was restricted to 0-2 years follow-up or from 2+ years follow-up.

The study by Izaks et al $(1999)^{54}$ assessed the association between anaemia and mortality in 755 community dwelling adults aged \geq 85 years. After adjusting for various potential confounders including age, age and sex, age and sex and disease, age and sex and functional status, and age and sex excluding subjects with clinical disease, anaemia was shown to be an independent predictor of increased mortality during a 0-5 year follow-up period, with the mortality rate ranging from 1.74 to 2.21. When these analyses were repeated for the 5-10 year follow-up period, there was no significant association between anaemia and mortality.

Denny et al $(2006)^{51}$ examined the association between anaemia and mortality in 1701 community-dwelling adults aged ≥ 65 years. After 8 years follow-up, the results showed that anaemia is an independent risk factor for increased mortality.

Zakai et al $(2005)^{61}$ examined 5797 community-dwelling (non-institutionalised) adults aged ≥ 65 years in order to assess the association between anaemia and three types of mortality: all-cause mortality, cardiovascular mortality and non-cardiovascular mortality. Anaemia was shown to be an independent predictor of all-cause mortality and non-cardiovascular mortality but not cardiovascular mortality.

Table 3.17 Question 1 (elderly): Results for Level II evidence – mortality (WHO or similar anaemia criteria)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results					
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b		
LONGER-TERM FOLLOW	/-UP (>1 YEAR)										
Penninx 2006 Level II <i>Fair</i>	1 prospective cohort study N=3607	Community-dwelling adults aged ≥65 years	Community US	Anaemia (WHO) vs no anaemia	Mortality (0-2 years)	sex, race, education,	smoking status, BMI, coron	RR 1.63 (1.23, 2.17) ssociated with anaemia: age, ary heart disease, chronic heart ey disease and hospitalisation in	Anaemia is an independent risk factor for mortality during 0-2 years follow-up P=0.001		
					Mortality (2+ years)	NR	NR	RR 1.51 (1.19, 1.92)	Anaemia is an		
					Mortality (mean 4.1 years)		sex, race, education,	smoking status, BMI, coron	ssociated with anaemia: age, ary heart disease, chronic heart ey disease and hospitalisation in	independent risk factor for mortality during 2+ years follow-up P=0.001	
								NR	NR	RR 1.63 (1.37, 1.95)	Anaemia is an independent risk factor
						sex, race, education,	Adjusted for variables shown to be (borderline) associated with anaemia: age, sex, race, education, smoking status, BMI, coronary heart disease, chronic heart failure, diabetes, cancer, infectious disease, kidney disease and hospitalisation in past year.				
	1 prospective	Community-dwelling	Community	Anaemia (WHO) vs	Mortality (mean 4.1	NR	NR	RR 2.12 (1.48, 3.04)	Anaemia is an		
	cohort study N=1538	adults aged ≥65 years <u>without baseline</u> <u>disease</u>	US	no anaemia	years)	sex, race, education,	ssociated with anaemia: age, ary heart disease, chronic heart ey disease and hospitalisation in	independent risk factor for mortality in subjects <u>without</u> <u>baseline disease</u> P<0.001			
-	1 prospective	Community-dwelling	Community	Anaemia (WHO) vs	Mortality (mean 4.1	NR	NR	RR 1.43 (1.16, 1.76)	Anaemia is an independent risk factor		
	cohort study N=2069	adults aged ≥65 years <u>with baseline</u> <u>disease</u>	US	no anaemia	years)	sex, race, education,	Adjusted for variables shown to be (borderline) associated with anaemia: age, sex, race, education, smoking status, BMI, coronary heart disease, chronic heart failure, diabetes, cancer, infectious disease, kidney disease and hospitalisation in past year.				
Izaks 1999	1 prospective	Inhabitants of Leiden,	Community	Anaemia (WHO) vs	Mortality (0-5 years)	NR	NR	MR 1.84 (1.50, 2.25)	Anaemia is an		
Level II <i>Fai</i> r	cohort study N=755	the Netherlands, aged <u>85 years and</u> <u>older</u> at the start of the study	The Netherlands	no anaemia		Adjusted for: age and	Adjusted for: age and sex		independent risk factor for 0-5 year mortality P=NR		
	the study			NR	NR	MR 1.84 (1.49, 2.27)	Anaemia is an				
						Adjusted for: age and	independent risk factor for 0-5 year mortality P=NR				
						NR	NR	MR 1.74 (1.41, 2.15)	Anaemia is an		

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
						Adjusted for: age, sex	and functional status.		independent risk factor for 0-5 year mortality P=NR
						NR NR MR 2.21 (1.37, 3.57)			Anaemia is an
						Adjusted for: age and	sex and excludes patients w	ith clinical disease.	independent risk factor for 0-5 year mortality P=NR
					Mortality (5-10 years)	NR NR MR 0.99 (0.56, 1.76)			Anaemia is <u>not</u> an
						Adjusted for: age and	sex		independent risk factor for 5-10 year mortality P=NR
						NR	NR	MR 0.91 (0.50, 1.64)	Anaemia is <u>not</u> an
					Adjusted for: age and sex and disease.			independent risk factor for 5-10 year mortality P=NR	
						NR	NR	MR 1.07 (0.74, 2.33)	Anaemia is <u>not</u> an
						Adjusted for: age, sex and functional status.			independent risk factor for 5-10 year mortality P=NR
						NR	NR	MR 0.64 (0.15, 2.68)	Anaemia is <u>not</u> an independent risk factor
						Adjusted for: age and	Adjusted for: age and sex and excludes patients with clinical disease.		
Denny 2006	1 prospective	Community-dwelling	Community	Anaemia (WHO) vs	Mortality (8 years)	NR	NR	RR 1.4 (1.2, 1.6)	Anaemia is an
Level II Fair	cohort study N=1701	adults aged ≥65 years ^c	US	no anaemia			education, BMI, GFR, hos and health condition.	pitalisation,	independent risk factor for mortality P=NR
Zakai 2005	1 prospective	Community-dwelling	Community/US	Anaemia (WHO) vs	Mortality (mean 11.2	NR	NR	HR 1.38 (1.19, 1.59)	Anaemia (WHO) is an
Level II Fair	cohort study N=5797	(non-institutionalised) men and women aged ≥65 years		no anaemia years)	years)	failure, diabetes me	eline cardiovascular dise ellitus, prebaseline cance tus, history of cigarette sr	r, ankle-arm index, self-	independent risk factor for all-cause mortality P=NR
					Cardiovascular mortality	NR NR HR 1.20 (0.96, 1.51)		HR 1.20 (0.96, 1.51)	Anaemia (WHO) is <u>not</u>
				(mean 11.2 years)	Age, sex, race, baseline cardiovascular disease, congestive heart failure, diabetes mellitus, prebaseline cancer, ankle-arm index, self- reported health status, history of cigarette smoking and FVC.			an independent risk factor for cardiovascular mortality P=NR	
					Non-	NR	NR	HR 1.53 (1.28, 1.84)	Anaemia (WHO) is an

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶
					<u>cardiovascular</u> mortality (mean 11.2 years)	failure, diabetes mellit	ne cardiovascular disea tus, prebaseline cancer, s, history of cigarette sm	ankle-arm index, self-	independent risk factor for non-cardiovascular mortality P=NR

BMI, body mass index; CI, confidence interval; dL, decilitre; FVC, forced vital capacity; g, grams; GFR, glomerular filtration rate; Hb, haemoglobin; HR, hazard ratio; NR, not reported; RR, risk ratio; US, United States of America; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^c At the time of baseline Hb measurement all subjects were aged \geq 71 years.

Three studies assessed the association between **anaemia as defined by the World Health Organisation (WHO) and mortality by gender**, as shown in Table 3.18.^{51,53,54} Izaks et al $(1999)^{54}$ assessed the association between anaemia and mortality in men and women aged \geq 85 years followed up for 0-5 years, and showed that anaemia is an independent risk factor for increased mortality in both men and women (P<0.001 for both).

The study by Endres et al $(2009)^{53}$ analysed the relationship between anaemia and mortality in 6876 adults aged \geq 65 years with a life expectancy of greater than 6 months and in 6625 adults aged \geq 65 years with a life expectancy of greater than 6 months without potential occult early-stage cancer at baseline. The results of these analyses showed that anaemia was an independent risk factor for increased mortality in these two populations in men (P<0.001 and 0.002), but not in women.

Denny et al $(2006)^{51}$ examined the association between anaemia and mortality in community-dwelling adults aged ≥ 65 years. Analysis by gender revealed that anaemia is a significant predictor of mortality in women (RR 1.4; 95% Cl 1.2, 1.8) and may be a significant predictor in men (RR 1.3; 95% Cl 1.0, 1.7).

Only one study provided information of the risk of mortality associated with and without anaemia. Endres et al (2009) showed that the risk of mortality approximately doubled in elderly community-dwelling subjects. However, the absolute increase in risk was greater in men (14.4% in men without anaemia and 35.8% in men with anaemia) compared with women (8.8% in women without anaemia and 15.0% in women with anaemia).

Table 3.18 Question 1 (elderly): Results for Level II evidence – mortality (WHO or similar anaemia criteria – gender subgroup analyses)

Study	No. of trials /	Patient population	Setting	Risk factor Outcome Results Risk factor No risk factor Risk estim n/N (%) n/N (%) Risk estim					
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location					Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶
ANALYSES BY GENDER									
LONGER-TERM FOLLOW	/-UP (>1 YEAR)								
Level II Ca Fair N	1 prospective cohort study N=544	Inhabitants of Leiden, the Netherlands, <u>women</u> aged <u>85 years and</u> <u>older</u> at the start of the study	Community The Netherlands	Anaemia (WHO) vs no anaemia	Mortality (0-5 years)	NR Adjusted for: age	NR	MR 1.60 (1.24, 2.06)	Anaemia is an independent risk factor for 0-5 year mortality in women P <0.001
	1 prospective	Inhabitants of Leiden,	Community	Anaemia (WHO) vs	Mortality (0-5	NR	NR	MR 2.29 (1.60, 3.26)	Anaemia is an
	cohort study N=211	aged <u>85 years and</u> older at the start of the study	years)	Adjusted for: age		independent risk factor for 0-5 year mortality in men P=<0.001			
	1 prospective	Community-	Primary-care	Anaemia (WHO) vs	Mortality	36/240 (15.0)	326/3695 (8.8)	HR 1.13 (0.79, 1.61)	Anaemia is <u>not</u> an
Level II Good	cohort study N=3975	dwelling <u>women</u> , primary-care patients aged ≥65 years with life expectancy >6 months	Germany	no anaemia	(maximum 5.3 years)	backward selection	ally meaningful variables : Age, BMI, diabetes, TC/ CRP, eGFR, high-school		independent risk factor for mortality in women P= 0.51
	1 prospective	Community-	Primary-care	Anaemia (WHO) vs	Mortality	83/232 (35.8)	379/2637 (14.4)	HR 1.89 (1.47, 2.44)	Anaemia is an
	cohort study N=2901	dwelling <u>men</u> , primary- care patients aged ≥65 years with life expectancy >6 months	Germany	no anaemia	(maximum 5.3 years)	backward selection	ally meaningful variables : Age, BMI, diabetes, TC/ CRP, eGFR, high-school		independent risk factor for mortality in men P= <0.001
	1 prospective	Community-	Primary-care	Anaemia (WHO) vs	Mortality	NR	NR	HR 1.20 (0.81, 1.79)	Anaemia is <u>not</u> an
	cohort study N=3865	dwelling <u>women</u> , primary-care patients aged ≥65 years with life expectancy >6 months <u>without</u> <u>potential occult early-</u> <u>stage cancer at</u> <u>baseline</u>	Germany	no anaemia	(maximum 5.3 years)		and those with p<0.2 after HDL, MI, stroke, PAD, graduation.	independent risk factor for non-cancer mortality in women P= 0.360	

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶
	1 prospective	Community-	Primary-care Anaemia (WHO) vs		Mortality	NR	NR	HR 1.66 (1.21, 2.27)	Anaemia is an
	cohort study N=2760	dwelling <u>men</u> , primary- care patients a ged ≥65 years with life expectancy >6 months <u>without</u> <u>potential occult early- stage cancer at</u> <u>baseline</u>	Germany	no anaemia (maximum 5.3 years)		Adjusted for medically meaningful variables and those with p<0.2 after backward selection: Age, BMI, diabetes, TC/HDL, MI, stroke, PAD, smoking, HCY, hs-CRP, eGFR, high-school graduation.			independent risk factor for non-cancer mortality in men P= 0.002
Denny 2006	1 prospective	Community-	Community	Anaemia (WHO) vs	Mortality (8 years)	NR	NR	RR 1.4 (1.2, 1.8)	Anaemia is an independent risk factor
Level II <i>Fair</i>	cohort study N=1134	dwelling <u>women</u> aged ≥65 years ^c	US	no anaemia		Adjusted for: age, education, BMI, GFR, hospitalisation, institutionalisation and health condition.			
	1 prospective cohort study N=567Community- dwelling men ≥65 yearscCommunity USAnaemia (WHO) vs no anaemiaMortality (8 yearsc	Mortality (8 years)	NR	NR	RR 1.3 (1.0, 1.7)	Anaemia <u>may</u> be an			
cohoi		US	no anaemia		Adjusted for: age, education, BMI, GFR, hospitalisation, institutionalisation and health condition.			independent risk factor for mortality in men P=NR	

BMI, body mass index; CI, confidence interval; dL, decilitre; eGFR, estimated glomerular filtration rate; FEV₁, forced expiratory volume in 1 second; g, grams; GFR, glomerular filtration rate; Hb, haemoglobin; HCY, homocysteine; HR, hazard ratio; hs-CRP, high-sensitivity C-reactive protein; MI, myocardial infarction; MMSE, mini-mental state examination; NR, not reported; PAD, peripheral artery disease; RR, risk ratio; TC/HDL, total cholesterol/high-density lipoprotein cholesterol ratio; TSH, thyroid stimulating hormone; US, United States of America; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^c At the time of baseline Hb measurement all subjects were aged \geq 71 years.

Three studies assessed the association between **anaemia as defined by the World Health Organisation (WHO) and mortality by race**, as shown in Table 3.19.^{51,52,56}

The study by Dong et al $(2008)^{52}$ assessed the association between anaemia and mortality in 1806 adults aged \ge 65 years during a mean follow-up period of 3.9 years. The results of this analysis showed that anaemia is an independent risk factor for increased mortality in both African-American and Caucasian populations.

Patel et al (2007)⁵⁶ examined the relationship between anaemia, mortality and race in 2601 adults aged 71-82 without substantial disability. There was no significant association between anaemia and mortality during up to 6 years follow-up in African-Americans, regardless of whether the analysis included the full cohort (N=1018) or only those without major disease (N=395). However, in a Caucasian population anaemia was an independent risk factor for increased mortality in both the full cohort (N=1583) and the cohort without major disease (N=537). It should be noted that these analyses were adjusted for age and sex only.

Denny et al $(2006)^{51}$ examined the association between anaemia and mortality in community-dwelling adults aged ≥ 65 years. Analysis by race revealed that anaemia is a significant predictor of mortality in an African-American population (RR 1.4; 95% Cl 1.2, 1.8) and may be a significant predictor in a Caucasian population (RR 1.3; 95% Cl 1.0, 1.6).

Patel et al (2007) provide data on the risk of mortality in an elderly population with and without anaemia. In an elderly African-American population, the risk of mortality in subjects with and without anaemia was 27.2% versus 21.9%. In the same population, excluding those with major diseases, the risk of mortality with and without anaemia was 12.7% versus 15.4%. In a Caucasian population there appeared to be a much greater effect of anaemia on mortality risk. In all elderly patients, the risk of mortality in subjects without anaemia was 15.0%, while the risk in subjects with anaemia was 32.9%. In a Caucasian population without major disease, a similar increase in risk was associated with anaemia, with the risk in subjects with and without anaemia being 25.0% and 12.0%, respectively.

Table 3.19 Question 1 (elderly): Results for Level II evidence – mortality (WHO or similar anaemia criteria – race subgroup analyses)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
ANALYSES BY RACE									
LONGER-TERM FOLLOW	/-UP (>1 YEAR)				7	-	1		1
Dong 2008	1 prospective cohort study	Community dwelling <u>African-</u>	Community	Anaemia (WHO) vs no anaemia	Mortality (mean 3.9 years)	NR	NR NR HR 1.90 (1.43, 2.53)		
Level II Fair	N=897	American adults aged ≥65 years	US	Adju coro fract scal	coronary artery dis fracture, Katz ADL scale, smoking sta	Adjusted for: age, sex, education, race, global cognition, income, coronary artery disease, diabetes, hypertension, stroke, cancer, hip fracture, Katz ADL, Center for Epidemiological Study of Depression scale, smoking status, self-reported health status, BMI, GFR, serum cholesterol, mean cell volume.			
	1 prospective	Community	Community	Anaemia (WHO) vs	Mortality (mean	NR	NR	HR 1.85 (1.32, 2.59)	Anaemia is an
	cohort study N=909	dwelling <u>Caucasian</u> adults aged ≥65 years	US	no anaemia	3.9 years)	coronary artery dis fracture, Katz ADL	sex, education, race, glob, ease, diabetes, hypertens , Center for Epidemiologic tus, self-reported health si cell volume.	ion, stroke, cancer, hip al Study of Depression	independent risk factor for increased mortality in a Caucasian population P=NR
Patel 2007	1 prospective	African-	Community	Anaemia (WHO) vs	Mortality (up to 6	63/232 (27.2)	63/232 (27.2) 172/786 (21.9)		Anaemia is <u>not</u> an
Level II Fair	cohort study N=1018	American Medicare beneficiaries living in designated areas of Pittsburgh and Memphis aged 71-82 without substantial disability	US	no anaemia	years)	Adjusted for age a	nd sex only		independent risk factor for mortality in African- Americans P=NR
	1 prospective	Caucasian Medicare	Community	Anaemia (WHO) vs	Mortality (up to 6	55/167 (32.9)	212/1416 (15.0)	HR 2.19 (1.62, 2.95)	Anaemia is an
	cohort study N=1583	beneficiaries living in designated areas of Pittsburgh and Memphis aged 71-82 without substantial disability	US	no anaemia	years)	Adjusted for age and sex only			independent risk factor for mortality in Caucasians P=NR
	1 prospective	African-	Community	Anaemia (WHO) vs	Mortality (up to 6	9/71 (12.7)	50/324 (15.4)	HR 0.87 (0.43, 1.77)	Anaemia is <u>not</u> an
	cohort study N=395	American Medicare beneficiaries living in designated areas of Pittsburgh and Memphis aged 71-82 without substantial disability and <u>without</u> <u>major diseases</u>	US	no anaemia	years)	Adjusted for age a		independent risk factor for mortality in African- Americans without major diseases P=NR	

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
	1 prospective	Caucasian Medicare	Community	Anaemia (WHO) vs	Mortality (up to 6	9/36 (25.0)	60/501 (12.0)	HR 2.07 (1.01, 4.22)	Anaemia is an
	cohort study N=537	beneficiaries living in designated areas of Pittsburgh and Memphis aged 71-82 without substantial disability and <u>without</u> <u>major diseases</u>	US	no anaemia	years)	Adjusted for age and	nd sex only		independent risk factor for mortality in Caucasians without major diseases P=NR
Denny 2006	1 prospective	Community-	Community	Anaemia (WHO) vs Mortality (8 years) NR			NR	RR 1.3 (1.0, 1.6)	Anaemia <u>may</u> be an
Level II Fair	cohort study N=765	dwelling <u>Caucasian</u> <u>adults</u> aged ≥65 years ^c	US	no anaemia	Adjusted for: age, education, BMI, GFR, hospitalisation, institutionalisation and health condition.			independent risk factor for mortality in a Caucasian population P=NR	
	1 prospective	Community-	Community	Anaemia (WHO) vs	Mortality (8 years)	NR	NR	RR 1.4 (1.2, 1.8)	Anaemia is an
coh	cohort study dwelling <u>African-</u> N=936 <u>American adults</u> ageo ≥65 yearsc	American adults aged	US no anaemi	no anaemia		Adjusted for: age, edu institutionalisation and	independent risk factor for mortality in an African-American population P=NR		

ADL, activities of daily living; BMI, body mass index; CI, confidence interval; dL, decilitre; eGFR, estimated glomerular filtration rate; g, grams; GFR, glomerular filtration rate; Hb, haemoglobin; HR, hazard ratio; NR, not reported; RR, risk ratio; US, United States of America; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^c At the time of baseline Hb measurement all subjects were aged \geq 71 years.

Two studies assessed the association between **anaemia as defined by the World Health Organisation (WHO) and mortality by anaemia subtype**, as shown in Table 3.20.^{54,57} Izaks et al (1999)⁵⁴ examined the association between different types of anaemia and mortality during two time periods: 0-5 years and 5-10 years. During the 0-5 year follow-up period, microcytic anaemia and normocytic anaemia were significantly associated with increased mortality, while macrocytic anaemia was not. During the 5-10 year follow-up period, only normocytic anaemia had sufficient data to perform an analysis and this showed no association with mortality.

Patel et al $(2009)^{57}$ assessed the relationship between different anaemia types in 4089 community dwelling adults aged ≥ 65 years. Anaemia with nutrient deficiency and anaemia with chronic inflammation were both independent risk factors for increased mortality, while anaemia with reduced kidney function (estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m²), anaemia with low kidney function and chronic inflammation, and unexplained anaemia were not.

Table 3.20 Question 1 (elderly): Results for Level II evidence – mortality (WHO or similar anaemia criteria – anaemia type subgroup analyses)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶
ANALYSES BY ANAEMIA									
LONGER-TERM FOLLOW	/-UP (>1 YEAR)	-							
Izaks 1999 Level II Fair	999 1 prospective cohort study Inhabitants of Leic the Netherlands, aged <u>85 years and older</u> at the start of study		Community The Netherlands	<u>Microcytic</u> anaemia (WHO) vs no anaemia	Mortality (0-5 years)	NR Adjusted for: age	Adjusted for: age and sex		
	1 prospective	Inhabitants of Leiden,	Community	Normocytic anaemia	Mortality (0-5	NR	NR	MR 1.86 (1.51, 2.31)	Normocytic anaemia is an independent risk
	cohort study N=732	the Netherlands, aged <u>85 years and</u> <u>older</u> at the start of the study	The Netherlands	anaemia	Adjusted for: age	Adjusted for: age and sex			
	1 prospective	Inhabitants of Leiden,	Community	<u>Macrocytic</u> anaemia Mortality (0-5 (WHO) vs no years) anaemia	NR	NR	MR 1.52 (0.78, 2.96)	Macrocytic anaemia is not an independent	
	cohort study N=614	the Netherlands, aged <u>85 years and</u> <u>older</u> at the start of the study	The Netherlands		Adjusted for: age	Adjusted for: age and sex			
	1 prospective	Inhabitants of Leiden,	Community	Microcytic anaemia	Mortality (5-10	NR	NR	-	-
	cohort study N=617	the Netherlands, aged <u>85 years and</u> <u>older</u> at the start of the study	The Netherlands	(WHO) vs no anaemia	years)	-			
	1 prospective	Inhabitants of Leiden,	Community	Normocytic anaemia	Mortality (5-10	NR	NR	MR 0.90 (0.52, 1.79)	Normocytic anaemia
	cohort study N=732	the Netherlands, aged <u>85 years and</u> <u>older</u> at the start of the study	The Netherlands	(WHO) vs no anaemia	years)	Adjusted for: age	and sex		is <u>not</u> an independent risk factor for 5-10 year mortality P=NR
	1 prospective	Inhabitants of Leiden,	Community	Macrocytic anaemia	Mortality (5-10	NR	NR	-	-
	cohort study N=617	the Netherlands, aged <u>85 years and</u> <u>older</u> at the start of the study	The Netherlands	(WHO) vs no anaemia	years)	-	I		1
Patel 2009	1 prospective	spective Civilian, non- Community Anaemia (WHO)	Mortality (12	NR	NR	HR 1.73 (1.15, 2.60)	WHO-defined anaemia -		
Level II Good	cohort study N=1790	institutionalised population aged ≥65	US	with <u>nutrient</u> <u>deficiency</u> vs no anaemia	years)	Adjusted for: age, sex, education, poverty to income ratio, BMI, smoking status, C reactive protein level, cancer, congestive heart failure, heart attack, pulmonary disease, eGFR, rheumatoid arthritis, stroke and mobility limitations.			nutrient deficiency is ar independent risk factor for increased mortality P=NR

Technical report on medical patient blood management – Volume 1 April 2012

Study Level of evidence ^a <i>Quality</i>	No. of trials / sample size included in analysis	Patient population	Setting Location	Risk factor	Outcome	Results			
						Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶
	1 prospective	Civilian, non-	Community	Anaemia (WHO)	Mortality (12	NR	NR	HR 1.14 (0.68, 1.93)	WHO-defined anaemia +
	cohort study N=1743	institutionalised population aged ≥65 years	US	with <u>eGFR</u> <u><60 mL/min/1.73 m²</u> vs no anaemia	years)	Adjusted for: age, sex, education, poverty to income ratio, BMI, smoking status, C reactive protein level, cancer, congestive heart failure, heart attack, pulmonary disease, eGFR, rheumatoid arthritis, stroke and mobility limitations.			eGFR <60 mL/min/1.73m ² is <u>not</u> an independent risk factor for increased mortality P=NR
	1 prospective cohort study N=1734	Civilian, non- institutionalised population aged ≥65 years	Community US	Anaemia (WHO) with <u>chronic</u> <u>inflammation</u> vs no anaemia	Mortality (12 years)	NR	NR	HR 2.48 (1.22, 5.05)	WHO-defined anaemia +
						Adjusted for: age, sex, education, poverty to income ratio, BMI, smoking status, C reactive protein level, cancer, congestive heart failure, heart attack, pulmonary disease, eGFR, rheumatoid arthritis, stroke and mobility limitations.			chronic inflammation is an independent risk factor for increased mortality P=NR
	1 prospective cohort study N=1731	Civilian, non- institutionalised population aged ≥65 years	Community US	Anaemia (WHO) <u>with</u> <u>eGFR</u> <u><60 mL/min/1.73m²</u> <u>and chronic</u> <u>inflammation</u> vs no anaemia	Mortality (12 years)	NR	NR	HR 1.64 (0.86, 3.14)	WHO-defined anaemia
						Adjusted for: age, sex, education, poverty to income ratio, BMI, smoking status, C reactive protein level, cancer, congestive heart failure, heart attack, pulmonary disease, eGFR, rheumatoid arthritis, stroke and mobility limitations.			with eGFR <60 mL/min/1.73 m ² and chronic inflammation is <u>not</u> an independent risk factor for increased mortality P=NR
	1 prospective	Civilian, non- institutionalised population aged ≥65 years	Community US	Anaemia (WHO) <u>but</u> <u>unexplained</u> vs no anaemia	Mortality (12 years)	NR	NR	HR 1.61 (0.97, 2.67)	WHO-defined anaemia of
	cohort study N=1748					Adjusted for: age, sex, education, poverty to income ratio, BMI, smoking status, C reactive protein level, cancer, congestive heart failure, heart attack, pulmonary disease, eGFR, rheumatoid arthritis, stroke and mobility limitations.			an unexplained cause is <u>not</u> an independent risk factor for increased mortality P=NR

BMI, body mass index; CI, confidence interval; eGFR, estimated glomerular filtration rate; HR, hazard ratio; m, metre; min, minute; mL, millilitre; MR, mortality risk; NR, not reported; RR, risk ratio; US, United States of America; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

One study assessed the association between **anaemia as defined by the World Health Organisation (WHO) and mortality by other subgroups (in this case by race and gender combined)**, as shown in Table 3.21. Patel et al (2007)⁵⁶ showed that anaemia is an independent risk factor for increased mortality in Caucasian women and Caucasian men (HR 2.68; 95% CI 1.52, 4.69 and HR 1.62; 95% CI 1.08, 2.44, respectively), while anaemia was not associated with mortality in African-American women and men. These results are consistent with their separate analyses by race, as described previously.

The unadjusted risk of mortality in each population was reported in this study. In African-American women without anaemia, the risk of mortality was 17.9% while in Caucasian women it was 12.3%. However, anaemia had a greater effect on mortality in Caucasian women, increasing to 32.7%, compared with only 22.6% in African-American women. Similar results were seen in men, with risk increasing from 28.6% in African-American men without anaemia to 33.3% in African-American men with anaemia, and from 17.8% in Caucasian men without anaemia to 33.6% in Caucasian men with anaemia. The lack of effect of anaemia in the African-American population likely reflects the fact that the definition of anaemia is this population is different to the definition in the Caucasian population.

Table 3.21 Question 1 (elderly): Results for Level II evidence – mortality (WHO or similar anaemia criteria – other subgroup analyses)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b	
ANALYSES BY SEX AND I										
LONGER-TERM FOLLOW	/-UP (>1 YEAR)	•	T	1	1	1	1	1	1	
Patel 2007	1 prospective cohort study	African-American female Medicare	Community	Anaemia (WHO) vs no anaemia	Mortality (up to 6	28/124 (22.6) 83/463 (17.9) HR 1.17 (0.72, 1.89)			Anaemia is <u>not</u> an	
Level II <i>Fair</i>	N=587 beneficiaries living in designated areas of Pittsburgh and Memphis aged 71-82 without substantial disability; 03 1 prospective Caucasian female Community	US		years)	Adjusted for: age, sex, level of education, study site, BMI, smoking status, hospitalisation, albumin, creatinine, cystatin C, eGFR, cancer, cerebrovascular disease, congestive heart failure, coronary heart disease, diabetes, gastrointestinal bleed/ulcer, hypertension, peripheral arterial disease, pulmonary disease.			independent risk factor for mortality in African- American women P=NR		
			HR 2.68 (1.52, 4.69)	Anaemia is an independent risk factor for mortality in Caucasian						
	cohort study N=745	Medicare beneficiaries living in designated areas of Pittsburgh and Memphis aged 71- 82 without substantial disability;	US	no anaemia years) –	status, hospitalisation cerebrovascular disea	, level of education, stuc , albumin, creatinine, cys ise, congestive heart fail strointestinal bleed/ulcer onary disease.	statin C, eGFR, cancer,	independent risk factor for mortality in Caucasian women P=NR		
	1 prospective	African-American	Community	Anaemia (WHO) vs	Mortality (up to 6	35/105 (33.3)	89/311 (28.6)	HR 0.88 (0.56, 1.38)	Anaemia is <u>not</u> an independent risk factor	
	cohort study N=416	<u>male</u> Medicare beneficiaries living in designated areas of Pittsburgh and Memphis aged 71-82 without substantial disability;	US	no anaemia years)		status, hospitalisation cerebrovascular disea disease, diabetes, gas	Adjusted for: age, sex, level of education, study site, BMI, smoking status, hospitalisation, albumin, creatinine, cystatin C, eGFR, cancer, cerebrovascular disease, congestive heart failure, coronary heart disease, diabetes, gastrointestinal bleed/ulcer, hypertension, peripheral arterial disease, pulmonary disease.			
	1 prospective	Caucasian male	Community	Anaemia (WHO) vs	Mortality (up to 6	38/113 (33.6)	127/713 (17.8)	HR 1.62 (1.08, 2.44)	Anaemia is an	
	cohort study N=826	Medicare beneficiaries living in designated areas of Pittsburgh and Memphis aged 71- 82 without substantial disability	US	status, hospitalisati cerebrovascular dis disease, diabetes,		status, hospitalisation cerebrovascular disea	ige, sex, level of education, study site, BMI, smoking lisation, albumin, creatinine, cystatin C, eGFR, cancer, ar disease, congestive heart failure, coronary heart tes, gastrointestinal bleed/ulcer, hypertension, peripheral e, pulmonary disease.		independent risk factor for mortality in Caucasian men P=NR	

BMI, body mass index; CI, confidence interval; dL, decilitre; eGFR, estimated glomerular filtration rate; g, grams; Hb, haemoglobin; HR, hazard ratio; NR, not reported; RR, risk ratio; US, United States of America; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^c Hb <12.4 g/dL and 13.4 g/dL in non-Hispanic white women and men, respectively; <11.3 g/dL and <12.3 g/dL in non-Hispanic black women and men, respectively; <12.2 g/dL and <13.2 g/dL in Mexican American women and men, respectively.

Three studies assessed the association between **various Hb levels and mortality**, as shown in Table 3.22.^{58,59,61} Riva et al (2009)⁵⁹ examined the relationship between mild anaemia (defined as a Hb level of 10-11.9 g/dL for women and 10-12.9 g/dL for men) and mortality during various follow-up periods (0-2 years, 2-3.5 years and 0-3.5 years). In addition, each analysis was adjusted for two sets of potential confounders: (i) age, sex, education, smoking history, BMI, diabetes, hypertension, myocardial infarction, heart failure, respiratory failure, renal failure, neurological diseases, cancer and hospitalisation; and (ii) age, sex, education, smoking history, BMI, co-morbid disease severity and hospitalisation. The results of the all analyses showed that mild anaemia is an independent risk factor for increased mortality, with HRs ranging from 1.84 to 2.01.

Pennix et al (2006)⁵⁸ assessed the association between different levels of Hb and mortality during a mean of 4.1 years of follow-up; all Hb levels were assessed relative to a Hb level 1.1-2 g/dL above the WHO anaemia cut-off of 12 g/dL for women and 13 g/dL for men. Hb levels of >1 g/dL below the WHO cut-off, 0-0.9 g/dL below the WHO cut-off and 0.1 to 1.0 g/dL above the WHO cut-off were all independent risk factors for increased mortality, with the magnitude of risk reducing as the Hb levels approach the reference Hb level (RR 1.91, RR 1.66 and RR 1.32, respectively).

The study by Zakai et al (2005)⁶¹ analysed the association between Hb levels by quintiles and three mortality outcomes: all-cause mortality, cardiovascular mortality and non-cardiovascular mortality. When subjects with Hb levels in quintile 1 (\leq 12.6 g/dL for females and \leq 13.7 g/dL for males) were compared with subjects with subjects with Hb levels in quintile 4 (13.9 to 14.4 g/dL for females and 15.1 to 15.6 g/dL for males), low Hb was an independent risk factor for non-cardiovascular mortality but not all-cause mortality or cardiovascular mortality. There was no significant association between Hb level and all-cause mortality when quintile 2 (12.7 to 13.2 g/dL for females and 13.8 to 14.4 g/dL for males) and quintile 3 (13.3 to 13.8 g/dL for females and 14.5 to 15.0 g/dL for males) was compared with quintile 4.

Table 3.22 Question 1 (elderly): Results for Level II evidence – mortality (other anaemia criteria, Hb levels or change in Hb levels)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity⁰	
LONGER-TERM FOLLOW	V-UP (>1 YEAR)									
Riva 2009	1 prospective	Residents of Biella,	Community	Mild anaemia	Mortality (0-2 years)	NR	NR	HR 1.84 (1.14, 2.87)	Mild anaemia is an	
Level II Good	cohort study N=4470	Italy aged 65-84 years	Italy	(women: Hb 10.0- 11.9 g/dL; men: Hb 10.0-12.9 g/dL) vs no anaemia		hypertension, myo	history, BMI, diabetes, ailure, respiratory failure, r and hospitalisation.	independent risk factor for mortality P=NR		
						NR	NR	HR 2.01 (1.25, 3.09)	Mild anaemia is an	
						Adjusted for: age, disease severity a		history, BMI, co-morbid	independent risk factor for mortality P=NR	
					Mortality (2-3.5 years)	NR	NR	HR 1.88 (1.20, 2.85)	Mild anaemia is an independent risk factor	
					Adjusted for: age, sex, education, smoking history, BMI, diabel hypertension, myocardial infarction, heart failure, respiratory fa renal failure, neurological diseases, cancer and hospitalisation					
						NR	NR	HR 1.96 (1.26, 2.95)	Mild anaemia is an	
					Adjusted for: age, sex, education, smoking history, BMI, co-morbid disease severity and hospitalisation.		history, BMI, co-morbid	independent risk factor for mortality P=NR		
					Mortality (0-3.5 years)	NR	NR	HR 1.86 (1.34, 2.53)	Mild anaemia is an	
						hypertension, myo	sex, education, smoking ocardial infarction, heart f ological diseases, cancer	ailure, respiratory failure,	independent risk factor for mortality P=NR	
						NR	NR	HR 1.98 (1.44, 2.67)	Mild anaemia is an	
						Adjusted for: age, sex, education, smoking history, BMI, co-morbid disease severity and hospitalisation.		history, BMI, co-morbid	independent risk factor for mortality P=NR	
Penninx 2006	1 prospective	Community-dwelling	Community	Hb ≥1 g/dL below	Mortality (mean 4.1	NR	NR	RR 1.91 (1.44, 2.53)	$Hb \ge 1 g/dL$ below the	
Level II <i>Fair</i>	N=NR Ht		the WHO cut-off vs Hb 1.1-2 g/dL above the WHO cut-off	years)	Adjusted for variables shown to be (borderline) associated with anaemia: age, sex, race, education, smoking status, BMI, coronary heart disease, chronic heart failure, diabetes, cancer, infectious disease, kidney disease and hospitalisation in past year.			WHO cut-off is an independent risk factor for mortality compared with Hb 1.1-2 g/dL above the WHO cut-off P=NR		
				Hb 0-0.9 g/dL below	Mortality (mean 4.1	NR	NR	RR 1.66 (1.30, 2.12)	Hb 0-0.9 g/dL below th	

97

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
				the WHO cut-off vs years) Hb 1.1-2 g/dL above the WHO cut-off		Adjusted for variab anaemia: age, sex heart disease, chro disease, kidney dis	status, BMI, coronary , cancer, infectious	WHO cut-off is an independent risk factor for mortality compared with Hb 1.1-2 g/dL above the WHO cut-off P=NR	
				Hb 0.1-1.0 g/dL	Mortality (mean 4.1	NR	NR	RR 1.32 (1.08, 1.60)	Hb 0.1-1.0 g/dL above
				above the WHO cut- off vs Hb 1.1-2 g/dL above the WHO cut- off	years)	Adjusted for variab anaemia: age, sex, heart disease, chro disease, kidney dis	the WHO cut-off is an independent risk factor for mortality compared with Hb 1.1-2 g/dL above the WHO cut-off P=NR		
Zakai 2005	1 prospective	Community-dwelling	Community/US	Quintile 1 (female:	Mortality (mean 11.2	NR	NR	HR 1.33 (1.15, 1.54)	Anaemia (Quintile 1) is an independent risk
Level II Fair	cohort study N=2300	(non-institutionalised) men and women aged ≥65 years	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	years)	Age, sex, race, bas failure, diabetes moreported health sta	factor for mortality compared with no anaemia (Quintile 4) P=NR			
	1 prospective	Community-dwelling	Community/US	Quintile 2 (female:	Mortality (mean 11.2	NR	NR	HR 1.15 (0.99, 1.33)	Anaemia (Quintile 2)
	cohort study N=2226	(non-institutionalised) men and women aged ≥65 years		Hb 12.7 to 13.2 g/dL; male: Hb 13.8 to 14.4 g/dL) vs Ouintile 4 (female: Hb 13.9 to 14.4 g/dL; male: Hb 15.1 to 15.6 g/dL)	years)	Age, sex, race, baseline cardiovascular disease, congestive heart failure, diabetes mellitus, prebaseline cancer, ankle-arm index, self- reported health status, history of cigarette smoking and FVC.		, ankle-arm index, self-	is <u>not</u> an independent risk factor for mortality compared with no anaemia (Quintile 4) P=NR
	1 prospective	Community-dwelling	Community/US	Quintile 3 (female:	Mortality (mean 11.2	NR	NR	HR 1.03 (0.89, 1.20)	Anaemia (Quintile 3)
	cohort study N=2226(non-institutionalised) men and women aged ≥65 yearsHb 13.3 to 13.8 g/dL; male: Hb 14.5 to 15.0 g/dL) vs Quintile 4 (female: Hb 13.9 to 14.4 g/dL; male: Hb 15.1 to 15.6 g/dL)years)		years)	Age, sex, race, bas failure, diabetes m reported health sta	is <u>not</u> an independent risk factor for mortality compared with no anaemia (Quintile 4) P=NR				
				0,					

Study	No. of trials /	Patient population	Setting	Risk factor Outcome Results					
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^ø
	cohort study N=2300	(non-institutionalised) men and women aged ≥65 years		Hb ≤12.6 g/dL; male: Hb ≤13.7 g/dL) vs Quintile 4 (female: Hb 13.9 to 14.4 g/dL; male: Hb 15.1 to 15.6 g/dL)	(mean 11.2 years)	Age, sex, race, baseline cardiovascular disease, congestive heart failure, diabetes mellitus, prebaseline cancer, ankle-arm index, self- reported health status, history of cigarette smoking and FVC.		, ankle-arm index, self-	is <u>not</u> an independent risk factor for cardiovascular mortality compared with no anaemia (Quintile 4) P=NR
					Non-	NR	NR	HR 1.48 (1.23, 1.79)	Anaemia (Quintile 1) is
					cardiovascular mortality (mean 11.2 years)	Age, sex, race, baseline cardiovascular disease, congestive heart failure, diabetes mellitus, prebaseline cancer, ankle-arm index, self- reported health status, history of cigarette smoking and FVC.			an independent risk factor for non- cardiovascular mortality compared with no anaemia (Quintile 4) P=NR

BMI, body mass index; CI, confidence interval; dL, decilitre; FVC, forced vital capacity; g, grams; GFR, glomerular filtration rate; Hb, haemoglobin; HR, hazard ratio; NR, not reported; RR, risk ratio; US, United States of America; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

Two studies assessed the association between **various Hb levels and mortality by gender**, as shown in Table 3.23.^{50,51} Chaves et al (2004)⁵⁰ examined the association between different Hb levels and mortality during a median of 5 years follow-up in women aged \geq with some physical disability. Eleven different Hb categories (8 g/dL, 8.5 g/dL, 9 g/dL, 9.5 g/dL, 10 g/dL, 11 g/dL, 12.5 g/dL, 13 g/dL, 13.5 g/dL, 14 g/dL and 14.5 g/dL) were compared with a reference category of 12 g/dL, which was considered to be low-normal. When compared with the reference category, all six Hb categories below 12 g/dL were shown to be independent predictors of increased mortality. All five categories above 12 g/dL were shown to be independent predictors of decreased mortality compared with the reference category of 12 g/dL. It is important to note here that while studies were only included in the analysis if they assessed >500 subjects, in this case the subject numbers in each of the Hb subgroup categories are likely to be quite small, as there were a total of 12 Hb categories and only a total of 686 subjects included in the study.

The study by Denny et al $(2006)^{51}$ assessed the association between different Hb categories and mortality in community-dwelling adults aged ≥ 65 years. Hb categories assessed for women included 0-10 g/dL, 10-11 g/dL and 11-12 g/dL compared with a reference category of 12-13 g/dL, and for men included 0-10 g/dL, 10-11 g/dL, 11-12 g/dL and 12-13 g/dL compared with a reference category of 13-14 g/dL. With regards to women, the two lowest Hb categories (<10 g/dL and 10-11 g/dL) were significantly associated with increased mortality, while the Hb category 11-12 g/dL may be associated with increased mortality. In men, none of the Hb categories were significantly associated with increased mortality. A total of 567 men were included in the analysis for this study and the numbers within each of the five included Hb categories would be significantly less than this. The RRs for each of these analyses ranged from 1.2 to 1.7, and the lower 95% Cls ranged from 0.5 to 0.9. Therefore, it is possible that this analysis was underpowered to detect an association between Hb level and mortality in men.

Table 3.23	Question 1 (elderly): Results for Level I	I evidence – mortality (other anaemia criteria, Hb levels	or change in Hb levels – gender subgroup analyses)
	(j)		

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b	
ANALYSES BY GENDER										
LONGER-TERM FOLLOW	-up (>1 year)									
Chaves 2004 Level II <i>Fair</i>	evel II cohort study years, a MMSE ≥18 and self-reported	Community US	Hb 8 g/dL vs Hb 12 g/dL (low-normal)	Mortality (median 5 years)	nity osteoarthritis, rheuma	ilure, peripheral artery ease, hip fracture, diabetes matoid arthritis, cancer, epression Scale score, Short				
					BMI.	blesterol, serum albumin,				
					Mortality (median	NR NR HR 2.0 (1.2, 3.4)			A Hb of 8.5 g/dL is an independent risk factor for <u>increased</u> mortality compared with a low- normal Hb P=NR	
					coronary artery disea disease, chronic or re mellitus, lower-extrer comorbidity index, M Physical battery scor	Adjusted for: age, race, education, smoking status, drinking habits, coronary artery disease, congestive heart failure, peripheral artery disease, chronic or restrictive pulmonary disease, hip fracture, diabetes mellitus, lower-extremity osteoarthritis, rheumatoid arthritis, cancer, comorbidity index, MMSE, short Geriatric Depression Scale score, Short Physical battery score, creatinine clearance, FEV1, ankle-arm index, TSH, total serum cholesterol, serum albumin, serum interleukin-6 and BMI.				
				Hb 9.0 g/dL vs Hb 12	Mortality (median	NR	NR	HR 1.8 (1.2, 2.8)	A Hb of 9 g/dL is an	
					5 years)	Adjusted for: age, race, education, smoking status, drinking habits, coronary artery disease, congestive heart failure, peripheral artery disease, chronic or restrictive pulmonary disease, hip fracture, diabetes mellitus, lower-extremity osteoarthritis, rheumatoid arthritis, cancer, comorbidity index, MMSE, short Geriatric Depression Scale score, Short Physical battery score, creatinine clearance, FEV1, ankle-arm index, TSH, total serum cholesterol, serum albumin, serum interleukin-6 and BMI.			independent risk factor for <u>increased</u> mortality compared with a low- normal Hb P=NR	
				Hb 9.5 g/dL vs Hb 12	Mortality (median	NR	NR	HR 1.7 (1.2, 2.4)	A Hb of 9.5 g/dL is an	
				g/dL (low-normal)	5 years)	Adjusted for: age, rad coronary artery disea disease, chronic or ra mellitus, lower-extrer comorbidity index, M Physical battery scor TSH, total serum cho BMI.	independent risk factor for <u>increased</u> mortality compared with a low- normal Hb P=NR			

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results					
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶		
				Risk factor No risk fan/N (%) Hb 10 g/dL vs Hb 12 g/dL (low-normal) Mortality (median 5 years) NR NR Adjusted for: age, race, education coronary artery disease, comgestin disease, chronic or restrictive pulm mellitus, lower-extremity osteoarth comorbidity index, MMSE, short G Physical battery score, creatinine TSH, total serum cholesterol, seru BMI. Hb 11 g/dL vs Hb 12 g/dL (low-normal) Mortality (median 5 years) NR NR Hb 11 g/dL vs Hb 12 g/dL (low-normal) Mortality (median 5 years) NR NR Hb 12.5 g/dL vs Hb 12 g/dL (low-normal) Mortality (median 5 years) NR NR Hb 12.5 g/dL vs Hb 12 g/dL (low-normal) Mortality (median 5 years) NR NR Hb 12.5 g/dL vs Hb 12 g/dL (low-normal) Mortality (median 5 years) NR NR Hb 12.5 g/dL vs Hb 12 g/dL (low-normal) Mortality (median 5 years) NR NR Hb 13.0 g/dL vs Hb 12 g/dL (low-normal) Mortality (median 5 years) NR NR Hb 13.0 g/dL vs Hb 12 g/dL (low-normal) Mortality (median 5 years) NR NR Hb 13.0 g/dL vs Hb 12 g/dL (low-normal) Mortality (median 5 years) NR NR Adjusted for: age, race, education coronary artery disease, congestin disease, chronic or restrictive pulm mellitus, lower-extremity oste	NR	HR 1.5 (1.1, 2.0)	A Hb of 10 g/dL is an				
			g/uL (low-hornal)	5 years)	Adjusted for: age, race, education, smoking status, drinking habits, coronary artery disease, congestive heart failure, peripheral artery disease, chronic or restrictive pulmonary disease, hip fracture, diabetes mellitus, lower-extremity osteoarthritis, rheumatoid arthritis, cancer, comorbidity index, MMSE, short Geriatric Depression Scale score, Short Physical battery score, creatinine clearance, FEV1, ankle-arm index, TSH, total serum cholesterol, serum albumin, serum interleukin-6 and BMI.			for <u>increased</u> mortality compared with a low- normal Hb P=NR			
						NR	NR	HR 1.2 (1.1, 1.4)	A Hb of 11 g/dL is an		
			grat (ow-normal)		coronary artery dise disease, chronic or r mellitus, lower-extre comorbidity index, M Physical battery sco TSH, total serum ch	ase, congestive heart failu restrictive pulmonary dise mity osteoarthritis, rheum IMSE, short Geriatric Dep re, creatinine clearance, f	ure, peripheral artery ase, hip fracture, diabetes atoid arthritis, cancer, pression Scale score, Short FEV1, ankle-arm index,	P-value Heterogeneity ^b A Hb of 10 g/dL is an independent risk factor for <u>increased</u> mortality compared with a low- normal Hb P=NR			
						NR	NR	HR 0.90 (0.84, 0.97)			
				12 g/dL (low-normal)	5 years)	coronary artery dise disease, chronic or r mellitus, lower-extre comorbidity index, M Physical battery sco TSH, total serum ch	ase, congestive heart failu restrictive pulmonary dise mity osteoarthritis, rheum IMSE, short Geriatric Dep re, creatinine clearance, f	ure, peripheral artery ase, hip fracture, diabetes atoid arthritis, cancer, pression Scale score, Short EV1, ankle-arm index,	for <u>decreased</u> mortality compared with a low- normal Hb		
						NR	NR	HR 0.82 (0.71, 0.94)			
	12 g/dL (lov	12 g/dL (low-normal) 5 years)		Adjusted for: age, race, education, smoking status, drinking habits, coronary artery disease, congestive heart failure, peripheral artery disease, chronic or restrictive pulmonary disease, hip fracture, diabetes mellitus, lower-extremity osteoarthritis, rheumatoid arthritis, cancer, comorbidity index, MMSE, short Geriatric Depression Scale score, Short Physical battery score, creatinine clearance, FEV1, ankle-arm index, TSH, total serum cholesterol, serum albumin, serum interleukin-6 and BML.			for <u>decreased</u> mortality compared with a low- normal Hb				

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results	Results				
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶		
				Hb 13.5 g/dL vs Hb 12 g/dL (low-normal)	Mortality (median	NR	NR	HR 0.76 (0.63, 0.92)	A Hb of 13.5 g/dL is an		
				Hb 14.0 g/dL vs Hb 12 g/dL (low-pormal)	5 years)	coronary artery disea disease, chronic or ro mellitus, lower-extrer comorbidity index, M Physical battery scor	nity osteoarthritis, rheuma	ire, peripheral artery ase, hip fracture, diabetes atoid arthritis, cancer, ression Scale score, Short EV1, ankle-arm index,	independent risk factor for <u>decreased</u> mortality compared with a low- normal Hb P=NR		
					Mortality (median	NR	NR	HR 0.74 (0.59, 0.92)	A Hb of 14 g/dL is an		
				12 g/dL (low-normal)	5 years)	coronary artery disea disease, chronic or ro mellitus, lower-extrer comorbidity index, M Physical battery scor	nity osteoarthritis, rheuma	ire, peripheral artery ase, hip fracture, diabetes atoid arthritis, cancer, ression Scale score, Short EV1, ankle-arm index,	independent risk factor for <u>decreased</u> mortality compared with a low- normal Hb P=NR		
				Hb 14.5 g/dL vs Hb	Mortality (median	NR	NR	HR 0.75 (0.57, 0.98)	A Hb of 14.5 g/dL is an		
				12 g/dL (low-normal)	5 years)	Adjusted for: age, race, education, smoking status, drinking habits, coronary artery disease, congestive heart failure, peripheral artery disease, chronic or restrictive pulmonary disease, hip fracture, diabetes mellitus, lower-extremity osteoarthritis, rheumatoid arthritis, cancer, comorbidity index, MMSE, short Geriatric Depression Scale score, Short Physical battery score, creatinine clearance, FEV1, ankle-arm index, TSH, total serum cholesterol, serum albumin, serum interleukin-6 and BMI.			independent risk factor for <u>decreased</u> mortality compared with a low- normal Hb P=NR		
Denny 2006	1 prospective	Community-	Community	Hb 0-10 g/dL vs Hb	Mortality (8 years)	NR	NR	RR 1.9 (1.2, 3.0)	Hb 0-10 g/dL is an		
Level II Fair	cohort study N=NR ^d	dwelling <u>women</u> aged ≥65 years ^e	US	12-13 g/dL		Adjusted for: age, ed institutionalisation an	ucation, BMI, GFR, hospi d health condition.	italisation,	independent risk factor for mortality in women P=NR		
				Hb 10-11 g/dL vs Hb Morta 12-13 g/dL	Mortality (8 years)	NR	NR	RR 2.2 (1.5, 3.1) ^f	Hb 10-11 g/dL is an		
						Adjusted for: age, ed institutionalisation an	ucation, BMI, GFR, hospi d health condition.	italisation,	independent risk factor for mortality in women compared with Hb 12-13 g/dL P=NR		
				Hb 11-12 g/dL vs Hb	Mortality (8 years)	NR	NR	RR 1.2 (1.0, 1.8)	Hb 11-12 g/dL may be an		

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b	
				10.14		Adjusted for: age, education, BMI, GFR, hospitalisation, institutionalisation and health condition.			independent risk factor for mortality in women compared with Hb 12-13 g/dL P=NR	
	1 prospective	Community-	Community		Mortality (8 years)	NR	NR	RR 1.3 (0.5, 3.3)	Hb 0-10 g/dL is <u>not</u> an independent risk factor	
	cohort study N=NR ^d	dwelling <u>men</u> aged ≥65 years ^e	US	13-14 g/dL Hb 10-11 g/dL vs Hb	•		Adjusted for: age, education, BMI, GFR, hospitalisation, institutionalisation and health condition.			
					Mortality (8 years)	NR	NR	RR 1.7 (0.9, 3.3)	Hb 10-11 g/dL is <u>not</u> an	
				13-14 g/dL		Adjusted for: age, education, BMI, GFR, hospitalisation, institutionalisation and health condition.			independent risk factor for mortality in men compared with Hb 13-14 g/dL P=NR	
				Hb 11-12 g/dL vs Hb	Mortality (8 years)	NR	NR	RR 1.3 (0.7, 2.4)	Hb 11-12 g/dL is <u>not</u> an	
				13-14 g/dĽ Hb 12-13 g/dL vs Hb		Adjusted for: age, institutionalisation	education, BMI, GFR, hos and health condition.	spitalisation,	independent risk factor for mortality in men compared with Hb 13-14 g/dL P=NR	
					Mortality (8 years)	NR	NR	RR 1.2 (0.9, 1.7)	Hb 12-13 g/dL is <u>not</u> an	
				13-14 g/dL		Adjusted for: age, education, BMI, GFR, hospitalisation, institutionalisation and health condition.			independent risk factor for mortality in men compared with Hb 13-14 g/dL P=NR	

BMI, body mass index; CI, confidence interval; dL, decilitre; eGFR, estimated glomerular filtration rate; FEV₁, forced expiratory volume in 1 second; g, grams; GFR, glomerular filtration rate; Hb, haemoglobin; HCY, homocysteine; HR, hazard ratio; hs-CRP, high-sensitivity C-reactive protein; MI, myocardial infarction; MMSE, mini-mental state examination; NR, not reported; PAD, peripheral artery disease; RR, risk ratio; TC/HDL, total cholesterol/high-density lipoprotein cholesterol ratio; TSH, thyroid stimulating hormone; US, United States of America; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^c Total study includes 686 women.

^d Total study includes 1134 women and 567 men.

^e At the time of baseline Hb measurement all subjects were aged ≥71 years.

^f Different RRs shown in the table (2.2) and text (2.1) of this publication. The table RR has been used here.

Two studies assessed the association between **various Hb levels and mortality by race**, as shown in Table 3.24.^{52,57} Dong et al (2008)⁵² assessed the association between different Hb levels below the WHO anaemia cut-off (12 g/dL for women and 13 g/dL for men) and mortality during a mean follow-up of 3.9 years. In an African-American population, a Hb level >1 g/dL below the WHO cut-off was an independent predictor of increased mortality compared with a Hb level 1-1.2 g/dL above the WHO cut-off, while a Hb level 0-0.9 g/dL below the WHO cut-off was not an independent predictor if mortality. In a Caucasian population both Hb levels below the WHO cut-off were independent predictors for increased mortality.

The study by Patel et al $(2009)^{57}$ also examined the relationship between different Hb levels relative to the WHO cut-off and mortality, in this case during 12 years of follow-up. Four Hb categories relative to the WHO cut-off (>1.0 g/dL below, 0.51-1 g/dL below, 0.01-0.5 g/dL below and 0-0.99 g/dL below) were compared with a reference category of 1.0-1.9 g/dL above the WHO cut-off in three populations: Caucasians, African-Americans and Hispanics. In a Caucasian population, all four categories below the WHO cut-off were associated with a significant increased risk of mortality compared with the reference category. In the African-American and Hispanic populations, only a Hb level of >1 g/dL below the WHO cut-off was significantly associated with an increased risk of mortality compared with the reference Hb level. However, the subject numbers included in the analyses for these populations were small, ranging from 237 to 427 for the African-American population and 18 to 347 for the Hispanic population. Patel et al (2009) conclude that "the Hb threshold below which mortality rises significantly is a full g/dL lower in [African-Americans] than in [Caucasians] and [Hispanics]" and suggest that a revised definition of anaemia is needed that takes race into account.

Table 3.24 Ques	estion 1 (elderly): Results for Level II e	evidence – mortality (other anaemia criteria, Hb levels	s or change in Hb levels – race subgroup analyses)	
			J J J J J	

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶
ANALYSES BY RACE									
LONGER-TERM FOLLOW		I			1			1	Hb >1 g/dL below the
	1 prospective cohort study N=NR	Community dwelling <u>African-</u> <u>American</u> adults aged ≥65 years	Illing <u>African-</u> US WHO cut-off vs Hb 3.9 ye trican adults aged 1.1-2 g/dL above the		Mortality (mean 3.9 years)				
		Community	Community	Hb >1 g/dL below the	Mortality (mean	NR	NR	HR 2.17 (1.28, 3.65)	Hb >1 g/dL below the
		dwelling <u>Caucasian</u> adults aged ≥65 years		1.1-2 g/dL above the	3.9 years)	Adjusted for: age, sex coronary artery disea fracture, Katz ADL, C scale, smoking status cholesterol, mean cel	WHO cut-off is an independent risk factor for increased mortality compared with Hb 1.1-2 g/dL above the WHO cut- off in a Caucasian population P=NR		
		Community	Community	Hb 0-0.9 g/dL below	Mortality (mean	NR	NR	HR 1.35 (0.88, 2.05)	Hb 0-0.9 g/dL below the
		dwelling <u>African-</u> <u>American</u> adults aged ≥65 years	US	the WHO cut-off vs Hb 1.1-2 g/dL above the WHO cut-off	3.9 years)	Adjusted for: age, sex, education, race, global cognition, income, coronary artery disease, diabetes, hypertension, stroke, cancer, hip fracture, Katz ADL, Center for Epidemiological Study of Depression scale, smoking status, self-reported health status, BMI, GFR, serum cholesterol, mean cell volume.		on, stroke, cancer, hip al Study of Depression	WHO cut-off is <u>not</u> an independent risk factor for increased mortality compared with Hb 1.1-2 g/dL above the WHO cut- off in an African- American population P=NR
		Community	Community	Hb 0-0.9 g/dL below	Mortality (mean	NR	NR	HR 2.14 (1.39, 3.30)	Hb 0-0.9 g/dL below the
		dwelling <u>Caucasian</u> adults aged ≥65 years	US	the WHO cut-off vs Hb 1.1-2 g/dL above the WHO cut-off	3.9 years)	Adjusted for: age, sex, education, race, global cognition, income, coronary artery disease, diabetes, hypertension, stroke, cancer, hip fracture, Katz ADL, Center for Epidemiological Study of Depression scale, smoking status, self-reported health status, BMI, GFR, serum cholesterol, mean cell volume.			WHO cut-off is an independent risk factor for increased mortality compared with Hb 1.1-2 g/dL above the WHO cut- off in a Caucasian population P=NR

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidenceª <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
Patel 2009	1 prospective	Civilian, non-	Community	Hb >1.0 g/dL below	Mortality (12	NR	NR	HR 2.11 (1.51, 2.94)	P-value Heterogeneity* A Hb level >1 g/dL below the WHO cut-off is an independent risk factor for mortality in a Caucasian population compared with a Hb level 1.0-1.99 g/dL above the WHO cut-off P=NR A Hb level 0.51-1 g/dL below the WHO cut-off is an independent risk factor for mortality in a Caucasian population compared with a Hb level 1.0-1.99 g/dL above the WHO cut-off P=NR A Hb level 0.01-0.5 g/dL below the WHO cut-off is an independent risk factor for mortality in a Caucasian population compared with a Hb level 1.0-1.99 g/dL above the WHO cut-off P=NR A Hb level 0.01-0.5 g/dL below the WHO cut-off is an independent risk factor for mortality in a Caucasian population compared with a Hb level 1.0-1.99 g/dL above the WHO cut-off P=NR A Hb level 0.00-0.99 g/dL A Hb level 0.00-0.99 g/dL
Level II Good	cohort study N=1018	institutionalised population aged ≥65 years who identified their race as <u>Caucasian</u>		the WHO cut-off vs 1.0-1.99 g/dL above the WHO cut-off		status, C reactive pr	stive heart failure, heart	independent risk factor for mortality in a Caucasian population compared with a Hb level 1.0-1.99 g/dL above the WHO cut-off	
	1 prospective	Civilian, non-	Community	Hb 0.51-1 g/dL below	Mortality (12	NR	NR	HR 2.04 (1.47, 2.84)	
	cohort study N=994institutionalised population aged ≥65 years who identified their race as CaucasianUS1 prospectiveCivilian, non-Community	the WHO cut-off 1.0-1.99 g/dL above the WHO cut-off	years)	status, C reactive pr	an independent risk factor for mortality in a Caucasian population compared with a Hb level 1.0-1.99 g/dL above the WHO cut-off				
	1 prospective	Civilian, non- institutionalised	Community	the WHO cut-off vs 1.0-1.99 g/dL above the WHO cut-off years) Adjusted for: age, sex, education, poverty to income ratio, BMI, smoking status, C reactive protein level, cancer, congestive heart failure, heart attack, pulmonary disease, eGFR, rheumatoid arthritis, stroke and mobility limitations. nunity Hb 0.51-1 g/dL below the WHO cut-off vs 1.0-1.99 g/dL above the WHO cut-off Mortality (12 years) NR NR HR 2.04 (1.47, 2.84) Adjusted for: age, sex, education, poverty to income ratio, BMI, smoking status, C reactive protein level, cancer, congestive heart failure, heart attack, pulmonary disease, eGFR, rheumatoid arthritis, stroke and mobility limitations. nunity Hb 0.01-0.5 g/dL below the WHO cut- off vs 1.0-1.99 g/dL above the WHO cut- off Mortality (12 years) NR NR HR 1.43 (1.07, 1.92) Adjusted for: age, sex, education, poverty to income ratio, BMI, smoking status, C reactive protein level, cancer, congestive heart failure, heart attack, pulmonary disease, eGFR, rheumatoid arthritis, stroke and mobility limitations. Numity Hb 0.01-0.5 g/dL below the WHO cut- off Mortality (12 years) NR NR HR 1.43 (1.07, 1.92) Adjusted for: age, sex, education, poverty to income ratio, BMI, smoking status, C reactive protein level, cancer, congestive heart failure, heart attack, pulmonary disease, eGFR, rheumatoid arthritis, stroke and mobility limitations.					
	cohort study N=1040	population aged ≥65 years who identified their race as <u>Caucasian</u>	US	off vs 1.0-1.99 g/dL above the WHO cut-	years)	status, C reactive pr attack, pulmonary d	otein level, cancer, conge	stive heart failure, heart	an independent risk factor for mortality in a Caucasian population compared with a Hb level 1.0-1.99 g/dL above the WHO cut-off
	1 prospective	Civilian, non-	Community			NR	NR	HR 1.24 (1.03, 1.51)	A Hb level 0.00-0.99 g/dL
	cohort study N=1481	institutionalised population aged ≥65 years who identified their race as <u>Caucasian</u>	≥65 fied 1.0-1.99 g/dL above the WHO cut-off Adjusted for: age, sex, education, poverty to income ratio, BMI, sm status, C reactive protein level, cancer, congestive heart failure, he attack, pulmonary disease, eGFR, rheumatoid arthritis, stroke and		stive heart failure, heart	below the WHO cut-off is an independent risk factor for mortality in a Caucasian population compared with a Hb level 1.0-1.99 g/dL above the WHO cut-off P=NR			
	1 prospective	Civilian, non-	Community	Hb >1 g/dL below the	Mortality (12	NR	NR	HR 2.07 (1.26, 3.39)	A Hb level >1 g/dL below

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶	
	cohort study N=274	institutionalised population aged ≥65 years who identified their race as <u>African-</u> <u>American</u>	US	WHO cut-off vs 1.0- 1.99 g/dL above the WHO cut-off	years)	status, C reactive	protein level, cancer, con disease, eGFR, rheumate	b income ratio, BMI, smoking gestive heart failure, heart oid arthritis, stroke and	the WHO cut-off is an independent risk factor for mortality in an African-American population compared with a Hb level 1.0-1.99 g/dL above the WHO cut- off P=NR	
	1 prospective	Civilian, non-	Community	Hb 0.51-1 g/dL below	Mortality (12	NR	NR	HR 1.33 (0.82, 2.18)	A Hb level 0.51-1 g/dL below the WHO cut-off	
	cohort study N=237	institutionalised population aged ≥65 years who identified their race as <u>African-</u> <u>American</u>	US	the WHO cut-off vs 1.0-1.99 g/dL above the WHO cut-off	years)	status, C reactive attack, pulmonary	Adjusted for: age, sex, education, poverty to income ratio, BMI, smoking status, C reactive protein level, cancer, congestive heart failure, heart attack, pulmonary disease, eGFR, rheumatoid arthritis, stroke and mobility limitations.			
	1 prospective	Civilian, non-	Community	Hb 0.01-0.5 g/dL	Mortality (12	NR	NR	HR 0.73 (0.45, 1.19)	A Hb level 0.01-0.5 g/dL	
	cohort study N=265	institutionalised population aged ≥65 years who identified their race as <u>African-</u> <u>American</u>	US	below the WHO cut- off vs 1.0-1.99 g/dL above the WHO cut- off	years) Adjusted for: age, sex, edu status, C reactive protein		usted for: age, sex, education, poverty to income ratio, BMI, smoking us, C reactive protein level, cancer, congestive heart failure, heart ck, pulmonary disease, eGFR, rheumatoid arthritis, stroke and pility limitations.		below the WHO cut-off is <u>not</u> an independent risk factor for mortality in an African-American population compared with a Hb level 1.0-1.99 g/dL above the WHO cut- off P=NR	
	1 prospective	Civilian, non-	Community	Hb 0-0.99 g/dL below	Mortality (12	NR	NR	HR 0.80 (0.57, 1.12)	A Hb level 0.00-0.99 g/dL	
	cohort study N=427	institutionalised population aged ≥65 years who identified their race as <u>African-</u> <u>American</u>	US	the WHO cut-off vs 1.0-1.99 g/dL above the WHO cut-off	years)	Adjusted for: age, sex, education, poverty to income ratio, status, C reactive protein level, cancer, congestive heart fa attack, pulmonary disease, eGFR, rheumatoid arthritis, stro mobility limitations.			below the WHO cut-off is <u>not</u> an independent risk factor for mortality in an African-American population compared with a Hb level 1.0-1.99 g/dL above the WHO cut- off P=NR	
	1 prospective	Civilian, non-	Community	Hb >1 g/dL below the	Mortality (12	NR	NR	HR 4.56 (2.23, 9.31)	A Hb level >1 g/dL below	

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
	cohort study N=28	institutionalised population aged ≥65 years who identified their race as <u>Hispanic</u>	US	WHO cut-off vs 1.0- 1.99 g/dL above the WHO cut-off	years)	status, C reactive pro	x, education, poverty to ir tein level, cancer, conge iease, eGFR, rheumatoic		the WHO cut-off is an independent risk factor for mortality in a Hispanic population compared with a Hb level 1.0-1.99 g/dL above the WHO cut- off P=NR
	1 prospective	Civilian, non-	Community	Hb 0.51-1 g/dL below	Mortality (12	NR	NR	HR 1.47 (0.59, 3.65)	A Hb level 0.51-1 g/dL
	cohort study N=18	institutionalised population aged ≥65 years who identified their race as <u>Hispanic</u>	US	the WHO cut-off vs 1.0-1.99 g/dL above the WHO cut-off	years)	status, C reactive pro	k, education, poverty to ir tein level, cancer, conge ease, eGFR, rheumatoic		below the WHO cut-off is <u>not</u> an independent risk factor for mortality in a Hispanic population compared with a Hb level 1.0-1.99 g/dL above the WHO cut-off P=NR
	1 prospective	Civilian, non- institutionalised	Community	Hb 0.01-0.5 g/dL below the WHO cut-	Mortality (12 years)	NR	NR	HR 1.38 (0.73, 2.62)	A Hb level 0.01-0.5 g/dL below the WHO cut-off
	cohort study N=246	population aged ≥65 years who identified their race as <u>Hispanic</u>	US	off vs 1.0-1.99 g/dL above the WHO cut- off	years)	Adjusted for: age, sex, education, poverty to income ratio, BMI, smoking status, C reactive protein level, cancer, congestive heart failure, heart attack, pulmonary disease, eGFR, rheumatoid arthritis, stroke and mobility limitations.		stive heart failure, heart	is <u>not</u> an independent risk factor for mortality in a Hispanic population compared with a Hb level 1.0-1.99 g/dL above the WHO cut-off P=NR
	1 prospective	Civilian, non-	Community	Hb 0-0.99 g/dL below	Mortality (12	NR	NR	HR 1.54 (0.91, 2.60)	A Hb level 0.00-0.99 g/dL
	cohort study N=347	institutionalised population aged ≥65 years who identified their race as <u>Hispanic</u>	US	the WHO cut-off vs 1.0-1.99 g/dL above the WHO cut-off	years)	Adjusted for: age, sex, education, poverty to income ratio, BI status, C reactive protein level, cancer, congestive heart failu attack, pulmonary disease, eGFR, rheumatoid arthritis, strok mobility limitations.			below the WHO cut-off is <u>not</u> an independent risk factor for mortality in a Hispanic population compared with a Hb level 1.0-1.99 g/dL above the WHO cut-off P=NR

ADL, activities of daily living; BMI, body mass index; CI, confidence interval; dL, decilitre; eGFR, estimated glomerular filtration rate; g, grams; GFR, glomerular filtration rate; Hb, haemoglobin; HR, hazard ratio; NR, not reported; RR, risk ratio; US, United States of America; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^c At the time of baseline Hb measurement all subjects were aged ≥71 years.

One study assessed the association between **various Hb levels and mortality by anaemia subtype**, as shown in Table 3.25. Riva et al $(2009)^{59}$ examined the relationship between the anaemia of chronic disease and mortality over 3.5 years of follow-up. The results of this study suggest that anaemia of chronic disease (with or without β -thalassemia minor) is an independent risk factor for increased mortality. It should be noted that while this study was rated as good quality overall, for this outcome the quality is likely to be lower, as it is unclear how many subjects were included in the analyses and it is possible that there were only 13 subjects included in the analysis excluding subjects with β -thalassemia.

Table 3.25 Question 1 (elderly): Results for Level II evidence – mortality (other anaemia criteria, Hb levels or change in Hb levels – anaemia type subgroup analyses)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
ANALYSES BY ANAEMIA	TYPE								
LONGER-TERM FOLLOW	V-UP (>1 YEAR)								
Riva 2009	1 prospective	Residents of Biella,	Community	Mild anaemia <u>of</u> <u>chronic disease</u> vs no anaemia Mortality (<u>0-3.5</u> <u>years</u>)	Mortality (0-3.5	NR	NR	HR 5.44 (3.53, 8.06)	Mild anaemia of chronic
Level II Good ^c	cohort study N=NR ^c	Italy aged 65-84 years	Italy		Fully adjusted (no further details reported)			disease is an independent risk factor for mortality P=NR	
				Mild anaemia <u>of</u>	Mortality (0-3.5	NR	NR	HR 2.18 (1.56, 2.99)	Mild anaemia of chronic
				<u>chronic disease</u> <u>years</u>) (excluding β- <u>thalassemia minor</u>) vs no anaemia		Fully adjusted (no fu		disease (excluding β- thalassemia minor) is ar independent risk factor for mortality P=NR	

CI, confidence interval; Hb, haemoglobin; HR, hazard ratio; NR, not reported;

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^c The subject number included in these analyses is unclear so study could be considered to be fair or poor quality for this subgroup analysis. According to the baseline characteristics table, 943 subjects had anaemia of chronic disease (including iron deficiency) and 930 had β-thalassemia minor. If this is the case, it would mean there are only 13 subjects included in the second analysis.

Two studies assessed the association between **various Hb levels and mortality by other subgroups**, as shown in Table 3.26.^{56,57} Patel et al (2007)⁵⁶ analysed the relationship between different Hb levels and mortality during up to 6 years of follow-up by gender and race subgroups. The results of the analysis showed that low Hb (defined as <11 g/dL and 11 to 11.9 g/dL) was an independent risk factor for increased mortality compared with Hb 12 to 12.9 g/dL in Caucasian women but not African-American women. Similarly Hb levels of <11 g/dL and 11-11.9 g/dL were independent risk factor for increased mortality in Caucasian men, compared with a Hb level of 13 to 13.9 g/dL, while there was no significant association for these levels in African-American men. There was no significant association between a Hb level of 12 to 12.9 g/dL and mortality in either African-American men or Caucasian men.

As described previously, Patel et al (2009)⁵⁷ concluded that a revised definition of anaemia taking into account race should be developed. In light of this, Patel (et al 2009) repeated their analyses of anaemia by subtype using race-specific anaemia criteria. These criteria were as follows: Hb <12.4 g/dL and <13.4 g/dL in Caucasian women and men, respectively; <11.3 g/dL and 12.3 g/dL in African-American women and men, respectively; and <12.2 g/dL and 13.2 g/dL in Hispanic women and men, respectively. There was a significant association between ethnicity-specific /chronic inflammation anaemia and increased 12-year mortality, as well as ethnicity-specific /unexplained anaemia and increased 12-year mortality. There was no association between ethnicity-specific anaemia/other types of anaemia (nutrient deficiency, reduced kidney function and reduced kidney function + chronic inflammation) and 12-year mortality.

Table 3.26 Question 1 (elderly): Results for Level II evidence – mortality (other anaemia criteria, Hb levels or change in Hb levels – other subgroup analyses)

Study	No. of trials /	annula atau	Setting	Risk factor	Outcome	Results				
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶	
ANALYSES BY GENDER,	RACE AND ANAEMIA TYP	PE								
LONGER-TERM FOLLOW	-UP (>1 YEAR)									
Patel 2007 Level II Fair	II cohort study <u>female</u> Medicare beneficiaries living in designated areas of Pittsburgh and Memphis aged 71-82 without substantial disability; <u>1 prospective</u> <u>African-American</u>	female Medicare beneficiaries living in designated areas of Pittsburgh and Memphis aged 71-82 without substantial	Community US	100100 ///		status, hospitalisatio cerebrovascular dise		statin C, eGFR, cancer,	Hb <11.0 g/dL is <u>not</u> an independent risk factor for mortality compared with Hb 12.0-12.9 g/dL in African-American women P=NR	
			Community	Hb 11.0-11.9 g/dL vs	Mortality (up to 6	24/95 (25.3)	29/205 (14.1)	HR 1.66 (0.92, 3.00)	Hb 11.0-11.9 g/dL is <u>not</u>	
	N=300 beneficia designate Pittsburg Memphis without s disability:	female Medicare beneficiaries living in designated areas of Pittsburgh and Memphis aged 71-82 without substantial disability;	caries living in nated areas of urgh and his aged 71-82 it substantial	Hb 12.0-12.9 g/dL	years)	Adjusted for: age, sex, level of education, study site, BMI, smoking status, hospitalisation, albumin, creatinine, cystatin C, eGFR, cancer, cerebrovascular disease, congestive heart failure, coronary heart disease, diabetes, gastrointestinal bleed/ulcer, hypertension, peripheral arterial disease, pulmonary disease.			an independent risk factor for mortality compared with Hb 12.0- 12.9 g/dL in African- American women P=NR	
	1 prospective	Caucasian female	Community	Hb <11.0 g/dL vs Hb	Mortality (up to 6	9/16 (56.3)	17/169 (10.1)	HR 3.70 (1.55, 8.85)	Hb <11.0 g/dL is an independent risk factor	
	cohort study N=185	Medicare beneficiaries living in designated areas of Pittsburgh and Memphis aged 71- 82 without substantial disability;	US	12.0-12.9 g/dL	years)	Adjusted for: age, sex, level of education, study site, BMI, smoking status, hospitalisation, albumin, creatinine, cystatin C, eGFR, cancer, cerebrovascular disease, congestive heart failure, coronary heart disease, diabetes, gastrointestinal bleed/ulcer, hypertension, peripheral arterial disease, pulmonary disease.			for mortality compared with Hb 12.0-12.9 g/dL in Caucasian women P=NR	
	1 prospective	Caucasian female	Community	Hb 11.0-11.9 g/dL vs	Mortality (up to 6	8/37 (21.6)	17/169 (10.1)	HR 2.90 (1.22, 6.90)	Hb 11.0-11.9 g/dL is an	
	cohort study N=206	Medicare beneficiaries living in designated areas of Pittsburgh and Memphis aged 71- 82 without substantial disability;	US	Hb 12.0-12.9 g/dL			Adjusted for: age, sex, level of education, study site, BMI, smoking status, hospitalisation, albumin, creatinine, cystatin C, eGFR, cancer, cerebrovascular disease, congestive heart failure, coronary heart disease, diabetes, gastrointestinal bleed/ulcer, hypertension, peripheral arterial disease, pulmonary disease.		independent risk factor for mortality compared with Hb 12.0-12.9 g/dL in Caucasian women P=NR	
	1 prospective	African-American male	Community	Hb <11.0 g/dL vs Hb	Mortality (up to 6	11/20 (55.0) 48/142 (33.8) HR 1.74 (0.85, 3.57)			Hb <11.0 g/dL is <u>not</u> an	
	cohort study N=162	Medicare beneficiaries living in designated areas of Pittsburgh and Memphis aged 71- 82 without substantial disability;	US			Adjusted for: age, se status, hospitalisatio cerebrovascular dise disease, diabetes, g arterial disease, pulr	independent risk factor for mortality compared with Hb 13.0-13.9 g/dL in African-American men P=NR			

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶
	1 prospective	African-American male	Community	Hb 11.0-11.9 g/dL vs	Mortality (up to 6	7/24 (29.2)	48/142 (33.8)	HR 0.43 (0.17, 1.08)	Hb 11.0-11.9 g/dL is <u>not</u>
	cohort study N=206	Medicare beneficiaries living in designated areas of Pittsburgh and Memphis aged 71- 82 without substantial disability;	US	Hb 13.0-13.9 g/dL	years)	status, hospitalisatio cerebrovascular dise	dy site, BMI, smoking statin C, eGFR, cancer, ilure, coronary heart r, hypertension, peripheral	an independent risk factor for mortality compared with Hb 13.0- 13.9 g/dL in African- American men P=NR	
	1 prospective	African-American male	Community	Hb 21.0-12.9 g/dL vs	Mortality (up to 6 years)	17/64 (26.6)	48/142 (33.8)	HR 0.67 (0.37, 1.21)	Hb 12.0-12.9 g/dL is <u>not</u> an independent risk
-	N=162 living in designat areas of Pittsburg and Memphis ag 82 without substa disability;	Medicare beneficiaries living in designated areas of Pittsburgh and Memphis aged 71- 82 without substantial disability;	71-	Hb 13.0-13.9 g/dL		status, hospitalisatio cerebrovascular dise disease, diabetes, g	Adjusted for: age, sex, level of education, study site, BMI, smoking status, hospitalisation, albumin, creatinine, cystatin C, eGFR, cancer, cerebrovascular disease, congestive heart failure, coronary heart disease, diabetes, gastrointestinal bleed/ulcer, hypertension, peripheral arterial disease, pulmonary disease.		
	1 prospective	Caucasian male	Community	Hb <11.0 g/dL vs Hb	Mortality (up to 6 years)	4/8 (50.0)	35/174 (20.1)	HR 3.19 (1.04, 9.84)	Hb <11.0 g/dL is an independent risk factor
	cohort study N=162	Medicare beneficiaries living in designated areas of Pittsburgh and Memphis aged 71- 82 without substantial disability;	US			Adjusted for: age, sex, level of education, study site, BMI, smoking status, hospitalisation, albumin, creatinine, cystatin C, eGFR, cancer, cerebrovascular disease, congestive heart failure, coronary heart disease, diabetes, gastrointestinal bleed/ulcer, hypertension, peripheral arterial disease, pulmonary disease.			for mortality compared with Hb 13.0-13.9 g/dL in Caucasian men P=NR
	1 prospective	Caucasian male	Community	Hb 11.0-11.9 g/dL vs	Mortality (up to 6	12/23 (52.2)	35/174 (20.1)	HR 2.23 (1.04, 4.76)	Hb 11.0-11.9 g/dL is an
	N=197 Iiving in designa areas of Pittsbur and Memphis ag	Medicare beneficiaries living in designated areas of Pittsburgh and Memphis aged 71- 82 without substantial disability;	rgh ged 71-	Hb 13.0-13.9 g/dL	years)	Adjusted for: age, sex, level of education, study site, BMI, smoking status, hospitalisation, albumin, creatinine, cystatin C, eGFR, cancer, cerebrovascular disease, congestive heart failure, coronary heart disease, diabetes, gastrointestinal bleed/ulcer, hypertension, peripheral arterial disease, pulmonary disease.		vstatin C, eGFR, cancer, ilure, coronary heart	independent risk factor for mortality compared with Hb 13.0-13.9 g/dL in Caucasian men P=NR
	1 prospective	Caucasian male	Community	Hb 21.0-12.9 g/dL vs	Mortality (up to 6	22/83 (26.5)	35/174 (20.1)	HR 1.20 (0.69, 2.08)	Hb 12.0-12.9 g/dL is <u>not</u>
	N=197	ohort study Medicare beneficiaries living in designated areas of Pittsburgh and Memphis aged 71- 82 without substantial disability;	years)	Adjusted for: age, sex, level of education, study site, BMI, smoking status, hospitalisation, albumin, creatinine, cystatin C, eGFR, cancer, cerebrovascular disease, congestive heart failure, coronary heart disease, diabetes, gastrointestinal bleed/ulcer, hypertension, peripheral arterial disease, pulmonary disease.			an independent risk factor for mortality compared with Hb 13.0- 13.9 g/dL in white men P=NR		
Patel 2009	1 prospective	Civilian, non-	Community	Anaemia (ethnicity-	Mortality (12	NR	NR	HR 1.53 (0.99, 2.04)	Ethnicity-specific

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶
Level II Good	cohort study N=1764	institutionalised population aged ≥65 years	US	specific) ^c with nutrient deficiency vs no anaemia	years)	status, C reactive	ncome ratio, BMI, smoking stive heart failure, heart d arthritis, stroke and	anaemia with nutrient deficiency is <u>not</u> associated with an increased risk of mortality P=NR	
	1 prospective	Civilian, non-	Community	Anaemia (ethnicity-	Mortality (12	NR	HR 1.43 (0.94, 2.16)	Ethnicity-specific anaemia with eGFR	
	N=1716 population aged ≥65 years 0.5 <60 mL/min/1.73 m² vs no anaemia	years)	status, C reactive attack, pulmonary	Adjusted for: age, sex, education, poverty to income ratio, BMI, smoking status, C reactive protein level, cancer, congestive heart failure, heart attack, pulmonary disease, eGFR, rheumatoid arthritis, stroke and mobility limitations.					
			Mortality (12	NR	NR	HR 2.40 (1.28, 4.51)	Ethnicity-specific anaemia with chronic		
	cohort study N=1696	institutionalised population aged ≥65 years	US	specific) ^c with chronic inflammation vs no anaemia	years)	status, C reactive	ncome ratio, BMI, smoking stive heart failure, heart I arthritis, stroke and	inflammation is an independent risk factor for increased mortality P=NR	
	1 prospective	Civilian, non-	Community	Anaemia (ethnicity-	Mortality (12	NR	NR	HR 1.66 (0.96, 2.88)	Ethnicity-specific
	cohort study N=1700institutionalised population aged ≥65 yearsUSspecific)c with eGFR <60 mL/min/1.73m² and chronic inflammation vs no anaemiayears)	years)	Adjusted for: age, sex, education, poverty to income ratio, BMI, smoking status, C reactive protein level, cancer, congestive heart failure, heart attack, pulmonary disease, eGFR, rheumatoid arthritis, stroke and mobility limitations.			anaemia with eGFR <60 mL/min/1.73 m ² and chronic inflammation is <u>not</u> an independent risk factor for increased mortality P=NR			
		Mortality (12	NR	NR	HR 1.73 (1.08, 2.79)	Ethnicity-specific			
		years)	status, C reactive	ncome ratio, BMI, smoking stive heart failure, heart I arthritis, stroke and	anaemia of an unexplained cause is an independent risk factor for increased mortality P=NR				

BMI, body mass index; CI, confidence interval; dL, decilitre; eGFR, estimated glomerular filtration rate; g, grams; Hb, haemoglobin; HR, hazard ratio; NR, not reported; RR, risk ratio; US, United States of America; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^c Hb <12.4 g/dL and 13.4 g/dL in Caucasian women and men, respectively; <11.3 g/dL and <12.3 g/dL in African-American women and men, respectively; <12.2 g/dL and <13.2 g/dL in Hispanic women and men, respectively.

Anaemia as an independent risk factor for stroke/MI

No studies were identified which presented data on stroke/MI.

Anaemia as an independent risk factor for functional/performance status

Two studies assessed the association between **anaemia or various Hb levels and functional/performance status** using validated quality of life instruments.^{55,60} Lucca et al (2008)⁵⁵ used the Short-Form health survey (SF-12), the Functional Assessment of Cancer Therapy–Anaemia questionnaire (FACT) and the Instrumental Activities of Daily Living scale (IADL) to assess the relationship between mild anaemia and quality of life/functional ability. Mild anaemia was defined in two ways: (i) using WHO criteria (Hb 10-11.9 g/dL for women and 10-12.9 g/dL for men; see Table 3.27); and (ii) using modified criteria (Hb 10-12.1 g/dL for women and 10.13.1 g/dL for men; see Table 3.28). Mild anaemia, as measured by the WHO criteria, was found to be potentially associated with an SF-12 Physical score of <40, and significantly associated with disease-specific measures of quality of life including the FACT-An Anaemia and Fatigue scales. When mild anaemia was defined as being 0.2 g/dL higher than the WHO criteria, mild anaemia was significantly associated with the SF-12 Physical score (both mean scores and scores <40), and the FACT-An Anaemia and Fatigue scores.

The study by Thein et al (2009)⁶⁰ assessed the association between different Hb levels and quality of life and physical function using the Short Form-36 Health Survey (SF-36), FACIT-Anaemia (FACIT-An) and the IADL. As shown in Table 3.28, when a Hb level of <12 g/dL was compared with a Hb level of ≥15 g/dL, lower Hb was significantly associated with a reduced SF-36 Physical component score and the following SF-36 subscale scores: physical functioning, role physical, body pain, general health, vitality, social functioning and mental health. Using these Hb level comparisons, low Hb was also significantly associated with lower FACIT Anaemia and Fatigue scores. When a range of Hb categories were compared with various quality of life and functional scales, declining Hb levels were associated with reduced SF-36 physical and mental component scores, reduced SF-36 subscale scores (including physical functioning, role physical, body pain, general health, vitality, social functioning and role emotional), reduced FACIT Anaemia and Fatigue scores.

Summary

The majority of results presented for the elderly population suggest that anaemia/low Hb is an independent risk factor for mortality. Where no significant association between anaemia/low Hb was found, this was often when the Hb levels were not sufficiently low (eg, Hb levels corresponding to mild or negligible anaemia) or where the outcome was limited to cardiovascular mortality. There were also a number of results showing no significant association between anaemia/low Hb and mortality relating to gender (no association in men or women in different studies) or different subtypes of anaemia (ie, no association in macrocytic anaemia or anaemia associated with reduced kidney function).

There were mixed results for mortality according to race. There were fewer significant associations in an African-American population than a Caucasian population using the WHO definition of anaemia. When different Hb cut-offs were assessed, a lower cut-off showed a significant association in an African-American and Hispanic population than in a Caucasian population. Based on these results, the authors of this study suggest that a revised definition of anaemia is needed that takes race into account.

This difference by race was also seen in the assessment of mobility disability, where significant associations were seen only for the Caucasian population and not the African-American population; however, it should be noted that this analysis looked only at the WHO definition of anaemia and not other potential Hb cut-offs.

The two studies that assessed functional/performance status showed that low Hb was associated with worse disease-specific quality of life (i.e. anaemia and fatigue subscales of the FACT-An scale). One study also suggested worse QoL using a number of the SF-36 subscales and worse function based on the IADL; however, this study used a reference Hb value of >15 g/dL that is considered to be at the high end of normal.

Table 3.27 Question 1 (elderly): Results for Level II evidence – functional/performance status (WHO anaemia criteria)

Study	No. of trials /	ze	Setting Risk factor	Risk factor	Outcome	Results										
Level of evidence ^a <i>Quality</i>	sample size included in analysis					Risk factor Mean ± SD or n/N (%)	No risk factor Mean ± SD or n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶							
Lucca 2008 1 cross-sectional <i>Good</i> N=717		Community Italy	Mild anaemia (WHO) ^c vs no anaemia	SF-12 Physical (0-100 scale)	45.3 ± 10.0 Adjusted for: oncolo Scale, hypertension respiratory failure, n	, diabetes, heart failure, n	NR cation, Geriatric Depression nyocardial infarction,	Mild anaemia is <u>not</u> an independent risk factor for a lower mean SF-12- Physical score compared with no anaemia P=0.1650								
	organ insufficiency, terminal illness, hospitalisation, institutionalisation and illiteracy		SF-12 Physical score <40	29.9% Adjusted for: oncolo Scale hypertension, respiratory failure, n	diabetes, heart failure, m	NR ation, Geriatric Depression yocardial infarction,	Mild anaemia <u>may</u> be an independent risk factor for SF-12-Physical score <40 compared with no anaemia P=0.0665									
					SF-12 Mental (0-100 scale)	52.5 ± 8.6 Adjusted for: oncolo diabetes, heart failur neurologic disorders	Mild anaemia is <u>not</u> an independent risk factor for a lower mean SF-12- Mental score compared with no anaemia P=0.0991									
					SF-12 Mental score <40	9.2% Adjusted for: oncolo diabetes, heart failu neurologic disorders	Mild anaemia is <u>not</u> an independent risk factor for SF-12-Mental score <40 compared with no anaemia P=0.1323									
												FACT-An (0-188 scale)	136.7 ± 21.5 Adjusted for: oncolo diabetes, heart failur neurologic disorders	pr: oncologic status, age, sex, education, hypertension, neart failure, myocardial infarction, respiratory failure,		Mild anaemia is <u>not</u> an independent risk factor for a lower mean FACT- An score compared with no anaemia P=0.1770
				FACT-General (0-108 scale)	73.8 ± 12.9 75.8 ± 12.2 NR Adjusted for: oncologic status, age, sex, education, hypertension, diabetes, heart failure, myocardial infarction, respiratory failure, neurologic disorders.			Mild anaemia is <u>not</u> an independent risk factor for a lower mean FACT- General score compared with no anaemia P=0.4003								
				F	FACT-An Anaemia	62.7 ± 10.2	65.1 ± 7.8	NR	Mild anaemia is an							

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor Mean ± SD	No risk factor Mean ± SD	Risk estimate (95% CI)	<i>Significance</i> P-value
	,					or n/N (%)	or n/N (%)		Heterogeneity ^b
					(0-80 scale)	Adjusted for: oncologic status, age, sex, education, hypertension, diabetes, heart failure, myocardial infarction, respiratory failure, neurologic disorders.			independent risk factor for a lower mean FACT- An Anaemia score compared with no anaemia P=0.0456
					FACT-An Fatigue	41.5 ± 7.7	43.4 ± 5.8	NR	Mild anaemia is an independent risk factor
					(0-52 scale)		Adjusted for: oncologic status, age, sex, education, hypertension, diabetes, heart failure, myocardial infarction, respiratory failure, neurologic disorders.		
					IADL	20.1%	11.2%	NR	Mild anaemia is not an
					(disability >5%))	ability >5%)) Adjusted for: oncologic status, age, sex, education, Geriatric Depression Scale hypertension, diabetes, heart failure, myocardial infarction, respiratory failure, neurologic disorders.			independent risk factor for disability >5% measured by the IADL P=0.1966

An, anaemia; CI, confidence interval; FACT, Functional Assessment of cancer Therapy; IADL, Instrumental Activities of Daily Living; NR, not reported; SF-12, Short-Form-12; WHO, World Health Organisation. Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^c Defined as a Hb of 10-11.9 g/dL for women and 10-12.9 g/dL for men

Table 3.28	Question 1 (elderly): Results for	Level II evidence – functional/	performance status (other an	aemia criteria, Hb levels or change in Hb levels)
			· · · · · · · · · · · · · · · · · · ·	

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location		M	Risk factor Mean ± SD or n/N (%)	No risk factor Mean ± SD or n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity [®]
Lucca 2008	1 cross-sectional	Residents of Biella,	Community	Mild anaemia	SF-12 Physical	44.9 ± 10.1	47.6 ± 8.5	NR	Mild anaemia is an
Good	cohort study N=717	Italy, aged 65-84 without neurological or psychiatric disease, severe sensory deficits, renal insufficiency, severe	Italy	(modified) ^c vs no anaemia	(0-100)	Adjusted for: oncolog Scale hypertension, respiratory failure, ne	diabetes, heart failure, m	ation, Geriatric Depression yocardial infarction,	independent risk factor for a lower mean SF-12- Physical score compared with no anaemia P=0.0295
		organ insufficiency,			SF-12 Physical score <40	31.7%	18.6%	NR	Mild anaemia is an
		terminal illness, hospitalisation, institutionalisation and illiteracy			SCOL6 <40	Adjusted for: oncolog Scale hypertension, respiratory failure, ne	ation, Geriatric Depression yocardial infarction,	independent risk factor for SF-12-Physical score <40 compared with no anaemia P=0.0128	
			SF-12 Mental	52.2 ± 9.7	51.9 ± 9.0	NR	Mild anaemia is not an		
			(0-100)	Adjusted for: oncolog diabetes, heart failur neurologic disorders	gic status, age, sex, educ e, myocardial infarction, r	ation, hypertension, espiratory failure,	independent risk factor for a lower mean SF-12- Mental score compared with no anaemia P=0.1847		
					SF-12 Mental	10.0%	11.3%	NR	Mild anaemia is not an
					score <40	Adjusted for: oncolog diabetes, heart failur neurologic disorders	gic status, age, sex, educ e, myocardial infarction, r	ation, hypertension, espiratory failure,	independent risk factor for SF-12-Mental score <40 compared with no anaemia P=0.1323
					Fact-An	136.3 ± 21.6	141.2 ± 21.6	NR	Mild anaemia is not an
					(0-188)	Adjusted for: oncolog diabetes, heart failur neurologic disorders	jic status, age, sex, educ e, myocardial infarction, r	ation, hypertension, espiratory failure,	independent risk factor for a lower mean FACT- An score compared with no anaemia P=0.0830
				Fact-General	73.7 ± 13.0	75.9 ± 12.1	NR	Mild anaemia is not an	
			(0-108)	Adjusted for: oncolog diabetes, heart failur neurologic disorders	gic status, age, sex, educ e, myocardial infarction, r	ation, hypertension, espiratory failure,	independent risk factor for a lower mean FACT- General score compared with no anaemia P=0.2942		
				Fact-An anaemia	62.5 ± 10.3	65.3 ± 7.6	NR	Mild anaemia is an	

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor Mean ± SD or n/N (%)	No risk factor Mean ± SD or n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b	
					(0-80)	Adjusted for: oncolog	ic status, age, sex, educ e, myocardial infarction,		independent risk factor for a lower mean FACT- An anaemia score compared with no anaemia P=0.0099	
					Fact-An fatigue	41.4 ± 7.8	43.5 ± 5.6	NR	Mild anaemia is an	
				(0-52)		Adjusted for: oncolog diabetes, heart failure neurologic disorders.		independent risk factor for a lower mean FACT- An fatigue score compared with no anaemia P=0.0032		
	IADL		20.0%	10.9%	NR	Mild anaemia is <u>not</u> an independent risk factor				
					(disability >5%))	ability >5%)) Adjusted for: oncologic status, age, sex, education, Geriatric D Scale hypertension, diabetes, heart failure, myocardial infarction respiratory failure, neurologic disorders.			for disability >5% measured by the IADL P=0.2042	
Thein 2009	1 Prospective	Outpatients aged ≥65	Outpatient	Hb <12 g/dL vs Hb	SF-36 Physical	39.2 ± 1.1	45.6 ± 1.4	NR	Hb <12 g/dL is an independent risk factor	
Fair	cross-sectional survey N=109	years, no previous diagnosis of cancer (excl BCC of skin), underlying blood disorder, end stage renal failure or transplant, or recipient	US	≥15 g/dL	component score (0-100)	Adjusted for: age, sea hypertension and chro	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			
	1 Prospective cross-sectional	of blood transfusion or erythropoietin within 3		Hb categories (<12 g/dL; 12.0-12.9 g/dL;	SF-36 Physical component score	39.2 ± 1.1; 42.3 ± 1.0 ±1.1; 45.6 ± 1.4); 43.7 ± 1.0; 44.3	NR	Declining Hb level is an independent risk factor	
	survey N=328months $13.0-13.9 \text{ g/dL}$; $14.0-14.9 \text{ g/dL}$; $\ge 15 \text{ g/dL}$ $(0-100)$ 1 ProspectiveOutpatients aged ≥ 65 OutpatientHb <12 g/dL vs Hb	(0-100)	Adjusted for: age, sea hypertension and chro	x, race, diabetes mellitus onic inflammatory condi	s, rheumatoid arthritis, tions.	for declining SF-36 Physical Component Score P trend=0.002				
		SF-36 Mental	51.6 ± 1.2	56.1 ± 1.5	NR	Hb <12 g/dL is an				
SL		years, no previous US diagnosis of cancer (excl BCC of skin), underlying blood disorder, end stage			component score (0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			independent risk factor for reduced SF-36 Mental Component Score compared with Hb ≥15 g/dL P<0.05	

Study	No. of trials /		°	Risk factor	Outcome	Results				
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor Mean ± SD or	No risk factor Mean ± SD or	Risk estimate (95% CI)	Significance P-value Heterogeneity ⁶	
						n/N (%)	n/N (%)			
	1 Prospective cross-sectional	transplant, or recipient of blood transfusion or erythropoietin within 3		Hb categories (<12 g/dL; 12.0-12.9 g/dL;	SF-36 Mental component score	51.6 ± 1.2; 53.4 ± 1.7 ±1.2; 56.1 ± 1.5	1; 54.1 ± 1.1; 52.8	NR	Declining Hb level is <u>not</u> an independent risk	
	survey N=328	months		13.0-13.9 g/dL; 14.0- 14.9 g/dL; ≥15 g/dL)	(0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			factor for declining SF-36 Mental Component Score P trend=0.077	
	1 Prospective	Outpatients aged ≥65	Outpatient	Hb <12 g/dL vs Hb	SF-36 Physical	51.4 ± 3.3	66.6 ± 4.2	NR	Hb <12 g/dL is an	
	cross-sectional survey N=109	years, no previous diagnosis of cancer (excl BCC of skin), underlying blood disorder, end stage renal failure or transplant, or recipient of blood transfusion or	US	Hb categories (<12 SF g/dL; 12.0-12.9 g/dL; fur 13.0-13.9 g/dL; 14.0- su	functioning subscale (0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			independent risk factor for reduced SF-36 Physical Functioning Subscale score compared with Hb ≥15 g/dL P<0.01	
	1 Prospective cross-sectional	erythropoietin within 3 months			dL; functioning	51.4 ± 3.3; 62.2 ± 3.0 ±3.2; 66.6 ± 4.2	51.4 ± 3.3; 62.2 ± 3.0; 63.2 ± 2.9; 66.9 ±3.2; 66.6 ± 4.2			
	survey N=328				subscale (0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			for declining SF-36 Physical Functioning Subscale score P trend=0.002	
	1 Prospective	Outpatients aged ≥65	Outpatient	Hb <12 g/dL vs Hb	SF-36 Role	48.9 ± 5.0	77.2 ± 6.4	NR	Hb <12 g/dL level is an	
	cross-sectional survey N=109	years, no previous diagnosis of cancer (excl BCC of skin), underlying blood disorder, end stage renal failure or transplant, or recipient	US	≥15 g/dL	physical subscale (0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			independent risk factor for reduced SF-36 Role Physical Subscale score compared with Hb ≥15 g/dL P<0.01	
	1 Prospective cross-sectional	of blood transfusion or erythropoietin within 3		Hb categories (<12 g/dL; 12.0-12.9 g/dL;	SF-36 Role physical subscale	48.9 ± 5.0; 52.2 ± 4.0 5.0; 77.2 ± 6.4	5; 64.2 ± 4.4; 61.7 ±	NR	Declining Hb level is an independent risk factor	
	survey N=328	months		400400 /11 440	(0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.		, rheumatoid arthritis, ions.	for declining SF-36 Role Physical Subscale score P trend=0.001	
	1 Prospective	Outpatients aged ≥65	Outpatient	Hb <12 g/dL vs Hb	SF-36 Body pain	ly pain 59.3 ± 2.9 73.4 ± 3.7 NR		NR	Hb <12 g/dL is an	
	cross-sectional survey N=109	years, no previous diagnosis of cancer (excl BCC of skin), underlying blood disorder, end stage renal failure or	≥15 g/dL	subscale (0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			independent risk factor for reduced SF-36 Body Pain Subscale score compared with Hb ≥15 g/dL P<0.01		

Study Level of evidence ^a <i>Quality</i>	No. of trials / sample size included in analysis	Patient population	Setting Location	Risk factor	Outcome	Results						
						Risk factor Mean ± SD or n/N (%)	No risk factor Mean ± SD or n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b			
	1 Prospective cross-sectional survey N=328	transplant, or recipient of blood transfusion or erythropoietin within 3 months		Hb categories (<12 g/dL; 12.0-12.9 g/dL; 13.0-13.9 g/dL; 14.0- 14.9 g/dL; ≥15 g/dL)	SF-36 Body pain subscale (0-100)	59.3 ± 2.9; 64.9 ± 2.7; 67.2 ± 2.5; 65.1 ± NR 2.8; 73.4 ± 3.7			Declining Hb level is an independent risk factor for declining SF-36 Body Pain Subscale score P trend=0.011			
						Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.						
	1 Prospective	Outpatients aged ≥65	evious US cancer f skin), lood d stage or pr recipient isfusion or	Hb <12 g/dL vs Hb ≥15 g/dL	SF-36 General health subscale (0-100)	58.3 ± 2.4	78.7 ± 3.1	NR	Hb <12 g/dL is an			
	cross-sectional survey N=109	years, no previous diagnosis of cancer (excl BCC of skin), underlying blood disorder, end stage renal failure or transplant, or recipient				Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			independent risk factor for reduced SF-36 General Health Subscale score compared with Hb ≥15 g/dL P<0.01			
	1 Prospective of blood trans	of blood transfusion or erythropoietin within 3		Hb categories (<12 g/dL; 12.0-12.9 g/dL; 13.0-13.9 g/dL; 14.0- 14.9 g/dL; ≥15 g/dL)	SF-36 General health subscale	58.3 ± 2.4; 66.6 ± 2.3; 67.0 ± 2.1; 70.1 ± NR 2.4; 78.7 ± 3.1		Declining Hb level is an independent risk factor for declining SF-36 General Health Subscale score P trend<0.001				
		months			(0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.						
	1 Prospective cross-sectional survey Outpatients aged ≥65 years, no previous diagnosis of cancer (excl BCC of skin), underlying blood disorder, end stage renal failure or transplant, or recipient		Outpatient	Hb <12 g/dL vs Hb	SF-36 Vitality	50.6 ± 2.8 66.7 ± 3.6 NR	NR	Hb <12 g/dL is an				
		US	≥15 g/dĽ	subscale (0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			independent risk factor for reduced SF-36 Vitality Subscale score compared with Hb ≥15 g/dL P<0.01				
	1 Prospective cross-sectional	of blood transfusion or erythropoietin within 3		Hb categories (<12 g/dL; 12.0-12.9 g/dL; 13.0-13.9 g/dL; 14.0- 14.9 g/dL; ≥15 g/dL)	SF-36 Vitality subscale	50.6 ± 2.8; 57.1 ± 2.6; 55.2 ± 2.5; 57.1 ± NR 2.8; 66.7 ± 3.6		NR	Declining Hb level is an independent risk factor			
	survey months N=328	months			(0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			for declining SF-36 Vitality Subscale score P trend=0.005			
	1 Prospective cross-sectional survey Outpatients aged ≥65 years, no previous diagnosis of cancer (excl BCC of skin), underlying blood disorder, end stage renal failure or transplant, or recipient		Outpatient	Outpatient	Hb <12 g/dL vs Hb	Hb <12 g/dL vs Hb ≥15 g/dL	SF-36 Social	76.5 ± 2.9	90.5 ± 3.7	NR	Hb <12 g/dL is an independent risk factor	
		US		functioning subscale (0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			for reduced SF-36 Social Functioning Subscale score compared with Hb ≥15 g/dL P<0.01				

Study Level of evidence ^a <i>Quality</i>	No. of trials / sample size included in analysis	Patient population	Setting Location	Risk factor	Outcome	Results			P-value Heterogeneityb Declining Hb level is an independent risk factor for declining SF-36 Social Functioning Subscale score P trend=0.005 Hb <12 g/dL is not an independent risk factor for reduced SF-36 Role Emotional Subscale			
						Risk factor Mean ± SD or	No risk factor Mean ± SD or n/N (%)	Risk estimate (95% CI)	P-value			
	1 Prospective cross-sectional survey N=328			Hb categories (<12 g/dL; 12.0-12.9 g/dL; 13.0-13.9 g/dL; 14.0- 14.9 g/dL; ≥15 g/dL)	SF-36 Social functioning	n/N (%) 76.5 ± 2.9; 82.2 ± 2 2.9; 90.5 ± 3.7	76.5 ± 2.9; 82.2 ± 2.7; 84.5 ± 2.6; 84.9 ± NR		independent risk factor			
					subscale (0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			for declining SF-36 Social Functioning Subscale score			
	1 Prospective	Outpatients aged ≥65 years, no previous diagnosis of cancer (excl BCC of skin), underlying blood disorder, end stage renal failure or transplant, or recipient	US t	Hb <12 g/dL vs Hb ≥15 g/dL	SF-36 Role	F-36 Role 70.1 ± 4.4 80.2 ±	80.2 ± 5.5	NR				
	cross-sectional survey N=109				emotional subscale (0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			for reduced SF-36 Role			
	1 Prospective of blood transfusion	of blood transfusion or erythropoietin within 3		Hb categories (<12 g/dL; 12.0-12.9 g/dL; 13.0-13.9 g/dL; 14.0- 14.9 g/dL; ≥15 g/dL)	SF-36 Role emotional	70.1 ± 4.4; 70.6 ± 4 4.3; 80.2 ± 5.5	P≥0.0 70.1 ± 4.4; 70.6 ± 4.0; 85.3 ± 3.8; 81.2 ± NR 4.3; 80.2 ± 5.5 Declinindependent Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions. Declinindependent					
		months			subscale (0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			for declining SF-36 Role Emotional Subscale score P trend=0.022			
	1 Prospective cross-sectional survey Outpatients aged ≥65 years, no previous diagnosis of cancer (excl BCC of skin), underlying blood disorder, end stage renal failure or transplant, or recipient		Outpatient	Hb <12 g/dL vs Hb	SF-36 Mental		NR	Hb <12 g/dL level is an				
		US	≥15 g/dL	health subscale (0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			independent risk factor for reduced SF-36 Mental Health Subscale score compared with Hb ≥15 g/dL P<0.01				
	1 Prospective cross-sectional survey of blood transfusion or erythropoietin within 3 months		Hb categories (<12 g/dL; 12.0-12.9 g/dL;	SF-36 Mental health subscale	74.1 ± 2.2; 80.0 ± 2 2.2; 85.3 ± 2.8	2.1; 78.5 ± 2.0; 75.7 ±	NR	Declining Hb level is <u>not</u> an independent risk				
		months		13.0-13.9 g/dL; 14.0- 14.9 g/dL; ≥15 g/dL)	(0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			factor for declining SF-36 Mental Health Subscale score P trend=0.070			
	1 Prospective cross-sectional survey Outpatients aged ≥65 years, no previous diagnosis of cancer (excl BCC of skin), underlying blood disorder, end stage renal failure or		Outpatient	Hb <12 g/dL vs Hb	FACIT Anaemia	46.4 ± 1.1	51.3 ± 1.4	NR	Hb <12 g/dL is an			
		US	≥15 g/dL	score (0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			independent risk factor for reduced FACIT- Anaemia score compared with Hb ≥15 g/dL P<0.01				

Study Level of evidence ^a <i>Quality</i>	No. of trials / sample size included in analysis	Patient population	Setting Location	Risk factor	Outcome	Results			
						Risk factor Mean ± SD or n/N (%)	No risk factor Mean ± SD or n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
	1 Prospective cross-sectional survey N=328	transplant, or recipient of blood transfusion or erythropoietin within 3 months		Hb categories (<12 g/dL; 12.0-12.9 g/dL; 13.0-13.9 g/dL; 14.0- 14.9 g/dL; ≥15 g/dL)	FACIT Anaemia score	46.4 ± 1.1; 47.8 ± 1.0; 48.0 ± 1.0; 48.5 ± NR 1.1; 51.3 ± 1.4		Declining Hb level is an independent risk factor for declining FACIT- Anaemia score P trend=0.017	
					(0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			
	1 Prospective		Outpatient US	Hb <12 g/dL vs Hb ≥15 g/dL	FACIT Fatigue score (0-100)	35.8 ± 1.2	41.1 ± 1.5	NR	Hb <12 g/dL is an
	cross-sectional survey N=109					Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			independent risk factor for reduced FACIT- Fatigue score compared with Hb ≥15 g/dL P<0.01
	1 Prospective cross-sectional surveytransplant, or recipient of blood transfusion or erythropoietin within 3 months		Hb categories (<12 g/dL; 12.0-12.9 g/dL; 13.0-13.9 g/dL; 14.0- 14.9 g/dL; ≥15 g/dL)	FACIT Fatigue score (0-100)	35.8 ± 1.2; 37.9 ± 1. 1.2; 41.1 ± 1.5	1; 38.4 ± 1.1; 38.5 ±	NR	Declining Hb level is an independent risk factor	
					Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			for declining FACIT- Fatigue score P trend=0.015	
	1 Prospective cross-sectional survey N=109 Utpatients aged ≥65 years, no previous diagnosis of cancer (excl BCC of skin), underlying blood disorder, end stage renal failure or		Outpatient	Hb <12 g/dL vs Hb	FACIT Non-fatigue	22.5 ± 0.4	23.0 ± 0.5	NR	Hb <12 g/dL is not an
		US	≥15 g/dL	score (0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			independent risk factor for reduced FACIT-Non- fatigue score compared with Hb ≥15 g/dL P≥0.05	
	1 Prospective cross-sectional	transplant, or recipient of blood transfusion or		Hb categories (<12 g/dL; 12.0-12.9 g/dL; 13.0-13.9 g/dL; 14.0- 14.9 g/dL; ≥15 g/dL)	FACIT Non-fatigue score (0-100)	$\begin{array}{c} 22.5 \pm 0.4; 22.3 \pm 0.4; 21.9 \pm 0.4; 22.3 \pm \\ 0.4; 23.0 \pm 0.5 \end{array} \hspace{1.5cm} NR$		NR	Declining Hb level is not an independent risk
	N=328 N=328 N=328	erythropoietin within 3 months				Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			factor for declining FACIT-Fatigue score P trend=0.699
	1 Prospective cross-sectional survey Outpatients aged ≥65 years, no previous diagnosis of cancer (excl BCC of skin), underlying blood disorder, end stage renal failure or	1 5	Outpatient	Hb <12 g/dL vs Hb	IADL	2.0 ± 0.3	0.6 ± 0.4	NR	Hb <12 g/dL level is an
		US	≥15 g/dL	(0-100)	Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			independent risk factor for increased IADL score compared with Hb ≥15 g/dL P<0.01	
	1 Prospective cross-sectional	transplant, or recipient of blood transfusion or		Hb categories (<12 g/dL; 12.0-12.9 g/dL; 13.0-13.9 g/dL; 14.0- 14.9 g/dL; ≥15 g/dL)	IADL (0-100)	2.0 ± 0.3; 1.1 ± 0.3; 1.0 ± 0.2; 1.3 ± 0.3; 0.6 NR ± 0.4		Declining Hb level is an independent risk factor for increasing IADL score P trend=0.012	
	survey N=328	erythropoietin within 3 months				Adjusted for: age, sex, race, diabetes mellitus, rheumatoid arthritis, hypertension and chronic inflammatory conditions.			

An, anaemia; CI, confidence interval; FACT, Functional Assessment of Cancer Therapy; FACIT, Functional Assessment of Chronic Illness Therapy; IADL, Instrumental Activities of Daily Living; NR, not reported; SF-12, Short-Form-12; SF-36, Short-Form-36; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

129

^c Defined as a Hb of 10-12.1 g/dL for women and 10-13.1 g/dL for men.

CANCER

Of the adverse outcomes specified for this question, two are covered for this population: mortality and functional status (disability).

Methods

There were 17 studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature pertaining to Australia's Indigenous population relevant to this research question.

Level I evidence

The literature search identified four systematic reviews examining the aetiology of anaemia in patients with cancer.

Level II evidence

The literature search identified 13 Level II studies examining the aetiology of anaemia in patients with cancer.

Level III evidence

Due to the substantial amount of Level II evidence identified, the literature was not searched for Level III evidence.

Level IV evidence

Due to the substantial amount of Level II evidence identified, the literature was not searched for Level IV evidence.

Results

Level I evidence

Four Level I studies were included for this question: all four studies provided evidence for mortality and one study provided evidence for functional status/quality of life, as summarised in Table 3.29. ⁶³⁻⁶⁶ All four studies were considered to be of poor methodological quality and included studies were not limited to prospective cohort studies. The majority of studies included in the Knight et al (2004)⁶⁵ review that assessed quality of life assessed the effect of anaemia treatment on functional status/quality of life, rather than the independent effect of anaemia on functional status/quality of life. In the two studies that assessed the association of anaemia with quality of life, neither was a Level II study. As such, none of these will be used as the basis for the review of this question; however, their results will be briefly described and they will be used to help identify Level II studies.

Author	Study type	Population	Outcomes
	Study quality		
Caro et al (2001) ⁶³	Systematic review and meta-analysis of literature. Includes data from 60 studies including 39 cohort studies, 19 RCTs, and 2 case- referent studies. <i>Poor</i>	Diagnosis of cancer (accepted the authors' definitions for each malignancy). N=NR	Mortality
Hauser et al (2006) ⁶⁴	Systematic review of literature. Includes data from 53 studies (study types not specified) <i>Poor</i>	Adults with one or more kind of solid tumour. N=8998	Survival
Knight et al (2004) ⁶⁵	Systematic review of literature. Includes data from 18 studies for survival/mortality and 16 studies for functional status/QoL (study types not specified) <i>Poor</i>	Cancer (type not limited) N=NR	Mortality
Varlotto et al (2005) ⁶⁶	Systematic review of literature. Includes data from 19 studies which used multivariate analysis (study types not specified) <i>Poor</i>	Diagnosis of cancer N=NR	Survival

Table 3.29 Question 1 (cancer): Characteristics and quality of Level I evidence

LVEF, left ventricular ejection fraction; NR, not reported; QoL, quality of life; RCT, randomised controlled trial.

The four identified systematic reviews all concluded that anaemia was associated with adverse outcomes in patients with cancer. Caro et al (2001)⁶³ performed a systematic review and meta-analysis of data from a large number of studies including 39 cohort studies, 19 RCTs and 2 case-referent studies. Based on their analyses they concluded that anaemia is "associated with reduced survival times for patients with lung carcinoma, cervicouterine carcinoma, head and neck carcinoma, prostate carcinoma, lymphoma and multiple myeloma. Hauser et al (2006)⁶⁴ performed a systematic literature search and included 53 studies in their review. They concluded that anaemia was one of a number of "laboratory tests"

associated with shorter survival. Knight et al (2004)⁶⁵ the association between anaemia and survival and functional status/quality of life in patients with cancer. They found that "patients with [anaemia] had poorer survival and local control than did their [nonanaemic] counterparts in 15 of 18 studies" and that quality of life was "positively correlated with [Hb] levels in 15 of 16 studies". Finally, Varlotto et al (2005)⁶⁶ identified 19 studies which used multivariate analysis to assess the relationship between anaemia and adverse outcomes and found that "all studies have shown a correlation between low Hb levels.....with poorer prognosis".

One additional study by Liou et al (2007) while not officially included as it did not meet the inclusion criteria, will be briefly described as it provides data on the economic burden of anaemia.⁶⁷ Following a systematic review of evidence published between 1990 and 2006 which identified eight relevant studies, Liou et al found that the total direct cost attributable to anaemia in the US ranged from \$US18,418 to \$US69,478 per year (2006 values), while in other countries (including Belgium, Canada, France, Germany Italy, the Netherlands and Spain), the total cost per episode of anaemia ranged from \$US124 to \$US2704 (2006 values).

Level II evidence

Thirteen Level II studies were included for this question; 11 studies provided evidence for mortality/survival and two provided evidence for functional/performance status.⁶⁸⁻⁸⁰ The characteristics of the included studies are summarised in Table 3.30. Three of the included studies specifically examined anaemia or Hb level as a potential predictor of adverse outcomes, ^{69,73,80} two studies examined other specific factors (bone metabolism and progression-free survival),^{70,71} and the remaining eight studies aimed to identify a number of potential predictors.^{68,72,74-79}

Due to the large amount of evidence available for the mortality outcome, and the requirement that analyses were adjusted for multiple potential confounders, studies were limited to those including >500 subjects. This resulted in the exclusion of 129 studies. Nine of these excluded studies had between 400 and 500 subjects.⁸¹⁻⁸⁹ Studies with smaller patient numbers were potentially available for inclusion for the functional status/quality of life outcomes.

Level II evidence			
Author	Study type Study quality	Population	Outcomes
Armstrong et al (2010) ⁶⁸	Cohort analysis of a RCT (TAX327) <i>Good</i>	Men with documented metastatic prostatic adenocarcinoma in the face of castrate levels of serum testosterone (<50 ng/ mL), and if they had evidence of progression as defined by clinically or radiographically measurable disease or by PSA criteria. N=640	Mortality/survival
Beer et al (2006) ⁶⁹	Cohort analysis of a RCT (SWOG Study S8894) <i>Good</i>	Men with histologically proven diagnosis of adenocarcinoma of the prostate with bone or distant soft tissue metastases. N=817	Mortality/survival

Table 3.30	Ouestion 1	(cancer): Characteristics and quality of Level II e	vidence
10010 0.00	Question	(current). Onlardeteristics and quarty of Levern e	viaciicc

Author	Study type Study quality	Population	Outcomes
Cook et al (2006) ⁷⁰	Cohort analysis of a RCT <i>Fair</i>	Men with histologically confirmed prostate cancer, bone metastases and disease progression despite medical or surgical castration. N=592	Mortality/survival
Halabi et al (2009) ⁷¹	Cohort analysis of 9 RCTs <i>Poor</i>	Men with prostate cancer who had progressed during androgen deprivation therapy. N=1201	Mortality/survival
Kohne et al (2002) ⁷²	Cohort analysis of 19 RCTs and 3 phase II trials <i>Poor</i>	Patients treated with 5-FU for metastatic colorectal cancer. N=3825	Mortality/survival
Laurie et al (2007) ⁷³	Cohort analysis of 2 RCTs (BR.3 and BR.6) <i>Fair</i>	Patients with NSCLC. N=652	Mortality/survival
Mandrekar et al (2006) ⁷⁴	Cohort analysis of 9 RCTs ^a Poor	Patients with advanced-stage NSCLC (stage IIB with pleural effusion and stage IV). N=782	Mortality/survival
Négrier et al (2002) ⁷⁵	Cohort analysis of 5 RCTs Fair	Adults 18-80 with histologically confirmed and measurable metastatic renal cell carcinoma. N=782	Mortality/survival
Nieboer et al (2005) ⁷⁶	Cross-sectional analysis of a RCT <i>Poor</i>	Women aged <56 years with stages II and III breast cancer and ≥4 positive axillary lymph nodes, a normal chest x-ray, normal bone-scan, normal liver sonogram, a WHO performance status of 0 or 1, and no prior treatment other than surgery who were disease-free until at least 3 years after surgery. N=426	Functional/performance status
Østerlind et al (1986) ⁷⁷	Cohort analysis of 6 controlled trials <i>Poor</i>	Adults with small cell lung cancer. N=778	Mortality/survival
Paesmans et al (1995) ⁷⁸	Cohort analysis of 7 RCTs <i>Fair</i>	Adults with NSCLC treated by chemotherapy. N=1052	Mortality/survival
Paesmans et al (2000) ⁷⁹	Cohort analysis of 4 RCTs <i>Fair</i>	Adults with small-cell lung cancer. N=763	Mortality/survival
Wisløff et al (2005) ⁸⁰	Cross-sectional analysis of 2 prospective trials <i>Poor</i>	Newly diagnosed patients with multiple myeloma. N=745	Functional/performance status

5-FU, 5-fluorouracil; NSCLC, non-small-cell lung cancer; PSA, prostate specific antigen; RCT, randomised controlled trial. ^a Trial IDs: 852251, 872451, 882452, 892451, 922453, 932451, 952452, 982452, N0026, S9509.

Anaemia as an independent risk factor for mortality

One study assessed the association between **anaemia as defined by the World Health Organisation (WHO)** ^a and mortality, as shown in Table 3.31. The study by Armstrong et al (2010)⁶⁸ examined the association between a number of risk factors, including anaemia, and post-progression survival in 640 men with documented metastatic prostate carcinoma who had progressed while on therapy. The results of this analysis showed that anaemia is an independent risk factor for post-progression survival (P=0.012). While the study does not specify the direct of the association, it has been assumed for this review that anaemia is associated with a decreased post-progression survival, as this has been the overwhelming trend across all studies examined in this review.

^a Hb <12 g/dL for females and <13 g/dL for males.

Table 3.31 Question 1 (cancer): Results for Level II evidence – mortality (WHO or similar anaemia criteria)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
in Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
LONGER-TERM FOLLOW	V-UP (>1 YEAR)								
Armstrong 2010	1 cohort analysis	Men with metastatic	Hospital	Hb <13.0 g/dL vs no	Post-progression	NR	NR	HR 1.30 (1.05, 1.58)	Anaemia is an independent risk factor
Level II Good	of a RCT (TAX327) N=640	prostatic adenocarcinoma, castrate levels of serum testosterone (<50 ng/ mL), and evidence of progression	Various	anaemia	survival (>12 months follow-up)	liver metastases, signifi diagnosis, alkaline phos duration of first-line the chemotherapy (treatme	Variables include in the multivariable model: prechemotherapy variables including iver metastases, significant pain, >2 metastatic sites, KPS ≤70, time since diagnosis, alkaline phosphatase and post-chemotherapy variables including duration of first-line therapy, number of progression factors and progression on chemotherapy (treatment group not associated with survival after adjustment for other prognostic variables so not included in the model).		

CI, confidence interval; HR, hazard ratio; KPS, Karnofsky performance scale; NR, not reported; RCT, randomised controlled trial.

^a Where only one RCT is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^c Argentina, Australia, Austria, Belgium, Brazil, Canada, Czech Republic, Finland, France, Germany, Hungary, Italy, Lebanon, the Netherlands, Poland, Russia, Slovak Republic, South Africa, Spain, Sweden, United Kingdom, United States.

Eight studies assessed the association between **various Hb levels and mortality**, as shown in Table 3.32.^{70,72-75,77-79} In the study by Østerlind et al (1986)⁷⁷, data from six RCTs (N=up to 778) was examined to assess the association between a Hb level of <12 g/dL and survival in patients with small-cell lung cancer (SCLC). Two analyses (one which included interactions and one which ignored interactions) showed that low Hb was an independent risk factor for reduced survival (P<0.001 and P<0.05).

Cook et al (2006)⁷⁰ assessed the relationship between Hb level and survival in 592 men with prostate cancer, bone metastases and disease progression despite medical or surgical castration. When Hb level was dichotomised or divided into quartiles, "lower Hb was associated with shorter survival" (p<0.001 for both). The cut-offs for the dichotomised and quartiles of Hb level were not stated in the publication.

The study by Mandrekar et al $(2006)^{74}$ analysed the relationship between low Hb and survival in patients with NSCLC using two cohorts: (i) an initial cohort comprised of data from nine RCTs (N=782) and (ii) a validation cohort comprised of data from one RCT (N=426). In the initial cohort, low Hb (defined as Hb <13.2 g/dL for males and <11.5 g/dL for females) was an independent risk factor for decreased survival (HR 1.51; P<0.001); however, in the validation cohort this analysis failed to reach statistical significance (HR 1.21; P=0.07).

Negrier et al (2002)⁷⁵ examined the relationship between low Hb and survival in 782 patients with metastatic renal cell carcinoma. The analysis showed that low Hb, defined as <11.5 g/dL in females and <13.0 g/dL in males, was an independent risk factor for decreased survival (RR 1.4; P<0.001).

Paesmans et al $(1995)^{78}$ assessed the relationship between haemoglobinaemia (defined as a Hb level <12 g/dL and >18 g/dL) and survival in 1052 patients with NSCLC. While haemoglobinaemia was a predictor in the univariate analysis, it was excluded from the multivariate analysis during the stepwise procedure, suggesting that it is not an independent predictor of survival. A similar result was found by Paesmans et al (2000; fair quality)⁷⁹ in 756 patients with SCLC, although in this analysis haemoglobinaemia was also not significantly associated with survival at either the univariate or multivariate level.

The study by Kohne et al (2002)⁷² examined the association between Hb and survival in 3825 patients treated with 5-FU for metastatic colorectal cancer, included in 22 clinical trials. The results of this analysis showed that a Hb level <11 g/dL was an independent risk factor for reduced survival.

Laurie et al $(2007)^{73}$ assessed the association between various measures of Hb and survival in up to 633 patients with non-small-cell lung cancer (NSCLC). When a nadir Hb <10 g/dL was compared with a nadir Hb \geq 10 g/dL, there was no significant association with survival. Similarly, when Hb reductions of 10-30% and >30% were compared with reductions of <10%, there was no association with survival. Finally, a pre-prophylactic cranial irradiation (PCI) Hb level of <10 g/dL was also not associated with survival when compared with a PCI of \geq 10 g/dL.

Table 3.32 Question 1 (cancer): Results for Level II evidence – mortality (other anaemia criteria, Hb levels or change in Hb levels)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results				
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b	
LONGER-TERM FOLLOW	/-UP (>1 YEAR)			·				·		
Østerlind 1986 Level II Poor			Survival (18 months follow-up)							
	1 cohort analysis	Adults with small cell	Hospital/Denmark	Hb <12 g/dL vs Hb	Survival (18	NR	NR	NR	<u>Analysis 2 (ignores</u> interactions)	
	of six RCTs IL N=778	lung cancer		≥12 g/dL	months follow-up)	categories: performa	Adjusted for variables with significant influence in at least one of the disease categories: performance status, LDH, resected patients, sodium, sex, age, alternating regimen, extensive disease.			
Cook 2006	1 cohort analysis	Men with prostate	Hospital	Hb dichotomised (no	Overall survival	NR	NR	RR 0.84 (0.78, 0.91)	A lower Hb is an	
Level II <i>Fair</i>	of a RCT N=592	cancer, bone metastases and disease progression despite medical or surgical castration	Various ^c	further details provided)	(up to 2 years follow-up)	Variables included in the multivariable model: age, PSA, LDH, analgesic, BAP.			independent risk factor for reduced survival P<0.001	
				Hb in quartiles (no further details provided)	Overall survival (up to 2 years follow-up)	NR	NR	RR 0.84 (0.78, 0.90)	A low Hb is an	
						Variables included in	independent risk factor for reduced survival P<0.001			
Mandrekar 2006	1 cohort analysis	Patients with	Hospital	Low Hb (Hb <13.2	Overall survival	NR	NR	HR 1.51 (1.28, 1.78)	Low Hb is an	
Level II Poor	of 9 RCTs N=782	advanced- stage <u>NSCLC</u>	US, Canada	g/dL for males and <11.5 g/dL for females) vs normal Hb	(up to 2 years follow-up)	Adjusted for: age, ge	independent risk factor for reduced survival P<0.001			
	1 validation cohort	Patients with	Hospital	Low Hb (Hb <13.2	Overall survival	NR	NR	HR 1.21 (0.98, 1.50)	Low Hb is not an	
	analysis of 1 RCT N=426	advanced- stage <u>NSCLC</u>	US, Canada	g/dL for males and <11.5 g/dL for females) vs normal Hb	(up to 2 years follow-up)	Adjusted for: age, gender, ECOG PS, cancer stage, BMI, WBC.			independent risk factor for survival P=0.07	
Négrier 2002	1 cohort analysis	Adults 18-80 with	Hospital	Hb <11.5 g/dL	Overall survival	158/352 (45)	230/424 (54)	RR 1.400 (1.167, 1.684)	Low Hb is an	
Level II Fair	of five prospective trials N=782	histologically confirmed and measurable metastatic renal cell carcinoma	France	(female) or <13.0 (median 77 g/dL (male) vs no months follow-up) t normal Hb		Adjusted for variables with P<0.1 in univariate analysis: inflammation, time from tumour to metastases, ECOG performance status, number of metastatic sites, neutrophils, alkaline phosphatase, liver metastasis, bone metastasis, mediastinum metastasis.			independent risk factor for decreased survival P<0.001	
Paesmans 1995	1 cohort analysis	Adults with non-small-	Hospital	Haemoglobinaemia	Survival (median	NR	NR	NR	Haemoglobinaemia is <u>n</u>	

Technical report on medical patient blood management – Volume 1

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
Level II Fair	of seven RCTs N=1052	cell lung cancer	Europe	(Hb <12 g/dL and >18 g/dL) vs no haemoglobinaemia	follow-up 270 weeks)		he best-fit model from 23 initi metastases, calcium, neutro		an independent risk factor for survival P=NR
Paesmans 2000	1 cohort analysis of seven RCTs	Adults with small-cell lung cancer	Hospital	Haemoglobinaemia (Hb <12 g/dL and >18	Survival (a>5 years follow-up)	NR	NR	NR	Haemoglobinaemia is <u>not</u> an independent risk
Level II Fair	N=756		Europe	g/dL) vs no haemoglobinaemia	years tollow-up)	Variables included in the gender, neutrophil rate	al variables: KPS, sex, female	factor for survival P=NR	
FOLLOW-UP UNKNOWN						·			
Kohne 2002	1 cohort analysis	Patients treated with 5-	Hospital	Hb <11 g/dL vs Hb	Overall survival	NR	NR	NR	Hb <11 g/dL is an independent risk factor
Level II Poor	of 19 RCTs and 3 phase II trials N=3825	FU for metastatic colorectal cancer	Europe	≥11 g/dL	(follow-up not stated)	Adjusted for: other laboratory parameters.			for reduced survival P=NR
Laurie 2007	1 cohort analysis	Patients with NSCLC	Hospital	Nadir Hb <10.0 g/dL	Overall survival	NR	NR	HR 1.09 (0.92, 1.31)	Nadir Hb <10.0 g/dL is
Level II <i>Fai</i> r	of 2 RCTs N=633		Canada	vs nadir Hb ≥10.0 g/dL	(follow-up not stated)	Adjusted for: gender, E	not an independent risk factor for survival P=0.33		
	1 cohort analysis	Patients with NSCLC	Hospital	Hb % reduction 10-	Overall survival	NR	NR	HR 0.83 (0.60, 1.14)	Hb % reduction 10-30%
	of 2 RCTs N=NR		Canada	30% vs Hb % reduction <10 %	(follow-up not stated)	Adjusted for: gender, ECOG PS, LDH.			is not an independent risk factor for survival P=0.25
	1 cohort analysis	Patients with NSCLC	Hospital	Hb % reduction >30%	Overall survival	NR	NR	HR 0.94 (0.68, 1.31)	Hb % reduction >30% is
	of 2 RCTs N=NR		Canada	vs Hb % reduction <10 %	(follow-up not stated)	Adjusted for: gender, ECOG PS, LDH.			not an independent risk factor for survival P=0.73
	1 cohort analysis	Patients with NSCLC	Hospital	Pre-PCI Hb <10.0	Overall survival	NR	NR	NR	Pre-PCI Hb <10.0 g/dL is
C	of 2 RCTs N=523		Canada	g/dL vs pre-PCI Hb ≥10.0 g/dL	(follow-up not stated)	Adjusted for: gender, ECOG PS, LDH.			not an independent risk factor for survival P=0.31

5-FU, 5-flurourocrit; ASA, acetylsalicylic acid; BMI, body mass index; CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; Hb, haemoglobin; *het*, heterogeneity; HR, hazard ratio; KPS, Karnofsky performance scale; LDH, lactate dehydrogenase; IV, intravenous; NA, not applicable; NSCLC, non-small cell lung cancer; NR, not reported; OR, odds ratio; PCI Hb, prophylactic cranial irradiation Hb level; PSA, prostate specific antigen; RBC, red blood cell; RCT, randomised controlled trial; RR, risk ratio; WBC, white blood cell

^a Where only one RCT is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^cUS, Argentina, Australia, Canada, France, Brazil, Germany, UK, New Zealand, Italy, Chile, Switzerland, Austria, Belgium, Peru, Sweden, Uruguay.

Three studies assessed the association between **Hb as a continuous variable and mortality**, as shown in Table 3.33.⁶⁹⁻⁷¹ In the study by Halabi et al $(2009)^{71}$ the association between change in Hb and survival was examined in 1201 men with prostate cancer who had progressed during androgen deprivation therapy. The study found that a 1 g/dL change (assumed to be a decrease) in Hb resulted in a 9% decrease in survival.

Beer et al $(2006)^{69}$ assessed the association between two continuous measures of Hb and survival in 817 patients with adenocarcinoma of the prostate with bone or distant soft tissue metastases. A 1 g/dL increase in baseline Hb (centred at 13.7 g/dL) was found to be associated with a 12% increase in survival (P<0.001), while a 3-month decrease in survival of 1 g/dL was shown to be associated with a 10% decrease in survival (P=0.0035).

In men with prostate cancer, bone metastases and progression despite medical or surgical castration, Cook et al (2006)⁷⁰ showed that a 1 g/dL decrease in Hb was independently associated with a 36% decrease in survival.

Table 3.33 Question 1 (cancer): Results for Level II evidence – mortality (Hb as a continuous variable)

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	included in analysis			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity [©]		
LONGER-TERM FOLLOW	/-UP (>1 YEAR)		•		•				
Halabi 2009	1 cohort analysis	Men with prostate	Hospital	Hb (1 g/dL change) ^e	Overall survival	NA	NA	HR 0.91 (0.86, 0.97)	A change in Hb of 1 g/dL
Level II Poor	of 9 RCTs N=1201	cancer who had progressed during androgen deprivation therapy	US		(>12 months follow-up)	Adjusted for known prognostic variables: progression at 3 months, age, performance status, presence of visceral disease, BMI, Gleason score, testosterone, race, prior radiotherapy, alkaline phosphatase, years since diagnosis, PSA, LDH.			is independently associated with a 9% decrease in survival ^g P=0.002
Beer 2006	II of a RCT with <u>adenocarcinoma</u> US at 13.	Baseline Hb centred	Overall survival	NA	NA	HR 0.88 (0.83, 0.93)	A 1 g/dL increase in Hb		
Level II Good		of the prostate with bone or distant soft	US	at 13.7 g/dL (1-unit increment)	(>2 years follow- up)	Adjusted for: race, PSA prior radiotherapy, radi baseline Hb, 3-month c	is independently associated with a 12% increase in survival P<0.001		
				3-month Hb change of 1 g/dL	Overall survival (>2 years follow- up)	NA	NA	HR 1.10 (1.03, 1.16) ^c	A 1 g/dL decrease in Hb
						Adjusted for: race, PSA, bone pain, performance status, extensive disease, age, prior radiotherapy, radical prostatectomy, Gleason score, flutamide treatment, baseline Hb, 3-month change in Hb, African American baseline Hb.			from baseline to 3 months is independently associated with a 10% decrease in survival P=0.0035
Cook 2006	1 cohort analysis	Men with prostate	Hospital	Hb (1 g/dL decrease)	Overall survival	NA	NA	RR 0.84 (0.78, 0.90)	A 1 g/dL reduction in Hb
Level II <i>Fair</i>	of a RCT N=592	cancer, bone metastases and disease progression despite medical or surgical castration	Various ^d		(up to 2 years follow-up)	Variables included in th	is independently associated with a 36% decrease in survival P<0.001		

CI, confidence interval; Hb, haemoglobin; HR, hazard ratio; NA, not applicable; RCT, randomised controlled trial; RR, risk ratio.

^a Where only one RCT is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

^c The table in the publication shows a confidence interval of 1.03, 0.16. This is assumed to be an error and 1.16 has been shown above.

^d US, Argentina, Australia, Canada, France, Brazil, Germany, UK, New Zealand, Italy, Chile, Switzerland, Austria, Belgium, Peru, Sweden, Uruguay.

e An assumption had to be made regarding the interpretation of the results; it is assumed that the "change" in Hb is actually a decrease of 1 g/dL, and that the HR of 0.91 (0.86, 0.97) relates to a decrease in survival.

Anaemia as an independent risk factor for stroke/MI

No studies were identified which presented data on stroke/MI.

Anaemia as an independent risk factor for functional/performance status

One study assessed the association between **other anaemia definitions and**

functional/performance status, as shown in Table 3.34.⁷⁶ In the study by Nieboer et al (2005),⁷⁶ data from a RCT (N=up to 426) was examined to assess the association between anaemia, defined as a Hb level of \leq 12 g/dL, and fatigue in women with high-risk breast cancer. Fatigue was defined as a score of \leq 46 on the SF-36 Vitality scale. Cross-sectional analyses were conducted at four time points: at baseline (prior to treatment), and post-treatment at 1, 2 and 3 years. The results of the study showed a strong association between anaemia (Hb \leq 12 g/dL) and fatigue (OR 3.5; 1.7, 7.1) when the measurements were made prior to treatment. This finding was not repeated at the other post-treatment time-points, although the lack of significance at 3 years (OR 2.0; 0.7, 5.5) may possibly have reflected the smaller sample size (N=292).

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
in	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
Nieboer 2005	1 cross-sectional	Women aged <56	Hospital	Hb ≤12 g/dL vs >12	Fatigue (SF-36	NR	NR	OR 3.5 (1.7, 7.1)	Hb ≤12 g/dL is an
Level II <i>Poor</i>	evel II analysis of a RCT years with stages II The Netherlands g/dL oor N=426 and III breast cancer and ≥4 positive axillary lymph nodes, a normal chest x-ray, normal bone-scan, normal liver sonogram, a The Netherlands g/dL 1 cross-sectional analysis of a RCT N=410 1 cross-sectional status of 0 or 1, and no prior treatment other WHO performance	The Netherlands g/dL	g/dL	Vitality score ≤46) at randomisation (pre-treatment)	Adjusted for: mental h group, menopausal st	independent risk factor for fatigue compared with Hb >12 g/dL at randomisation. P=0.001			
l		·	NR	NR	OR 1.1 (0.5, 2.2)	Hb ≤12 g/dL is not an			
		status of 0 or 1, and no prior treatment other than surgery who were			Vitality score ≤46) at 1 year (post- treatment)	Adjusted for: mental health score, muscle pain, joint pain, treatment group, menopausal status.			independent risk factor for fatigue compared with Hb >12 g/dL at 1 year. P=0.789
	1 cross-sectional	disease-free until at least 3 years after			Fatigue (SF-36	NR	NR	OR 0.9 (0.7, 2.0)	Hb ≤12 g/dL is not an
	analysis of a RCT N=394	surgery			Vitality score ≤46) at 2 years (post- treatment)	Adjusted for: mental health score, muscle pain, joint pain, treatment group, menopausal status.			independent risk factor for fatigue compared with Hb >12 g/dL at 2 years. P=0.724
	1 cross-sectional analysis of a RCT N=292		Fatigue (SF-36	NR	NR	OR 2.0 (0.7, 5.5)	Hb ≤12 g/dL is not an		
			Vitality score ≤46) at 3 years (post- treatment)	Adjusted for: mental health score, muscle pain, joint pain, treatment group, menopausal status.			independent risk factor for fatigue compared with Hb >12 g/dL at 3 years. P=0.176		

Table 3.34 Question 1 (cancer): Results for Level II evidence – functional/performance status (other anaemia criteria, Hb levels or change in Hb levels)

CI, confidence interval; Hb, haemoglobin; OR, odds ratio; NR, not reported; RCT, randomised controlled trial; SF-36, Short-Form-36; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

One study assessed the association between **Hb as a continuous variable and functional/performance status**, as shown in Table 3.35.⁸⁰ In the study by Wisløff et al (2005)⁸⁰, data from two prospective trials (N=745) was examined to assess the association between Hb level and quality of life in adults with multiple myeloma. The European Organisation for Research and Treatment of Cancer QLQ-C30 scale (EORTC-QLQ-C30) questionnaire was used to assess quality of life and various scales and subscales were reported. Wisløff et al found that Hb level was associated with fatigue and global quality of life both prior to treatment and at 12 months (following treatment). Other dimensions of quality of life that were not shown to be associated with Hb included physical functioning, role functioning and pain.

Table 3.35	Question 1 (cancer): Results for Level II eviden	ce – functional/performance status (Hb as a continuous variable)
------------	--	--

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
Wisløff 2005	1 cross-sectional	Newly diagnosed	Hospital	Hb as a continuous	EORTC-QLQ-C30	NA	NA	NR	Hb level is <u>not</u>
Poor from 2 prospective myelon trials (NMSG # 4/90 and NMSG # 5/94)	patients with multiple myeloma. Denmark, Norway and Sweden		variable	Physical functioning at randomisation		serum albumin, corrected ase stage according to disease.	significantly associated with EORTC-QLQ-C30 Physical functioning score P=0.674		
	N=745				EORTC-QLQ-C30	NA	NA	NR	Hb level is <u>not</u>
		months (post- treatment)	Adjusted for: age, serum calcium, se Durie and Salmon response category	significantly associated with EORTC-QLQ-C30 Physical functioning score P=0.300					
					EORTC-QLQ-C30	NA	NA	NR	Hb level is <u>not</u>
				Taridoffiisation	Adjusted for: age, serum calcium, se Durie and Salmon	significantly associated with EORTC-QLQ-C30 Role functioning score P=0.989			
					EORTC-QLQ-C30	NA	NA	NR	Hb level
				Role functioning at 12-months (post- treatment)	Adjusted for: age, serum calcium, se Durie and Salmon response category	is <u>not</u> significantly associated with EORTC- QLQ-C30 Role functioning score P=0.079			
					EORTC-QLQ-C30	NA	NA	NR	Hb level is significantly
			Tandomisation	Adjusted for: age, gender, serum creatinine, serum albumin, corrected serum calcium, serum β -2 microglobulin, disease stage according to Durie and Salmon (i-iii) and extent of skeletal disease.			associated with EORTC- QLQ-C30 Global QoL score P=0.041		
					EORTC-QLQ-C30	NA	NA	NR	Hb level <u>may</u> be
					treatment)	Adjusted for: age, gender, serum creatinine, serum albumin, corrected serum calcium, serum β -2 microglobulin, disease stage according to Durie and Salmon (i-iii), extent of skeletal disease and treatment response category.			associated with EORTC- QLQ-C30 Global QoL score P=0.052

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
					EORTC-QLQ-C30	NA	NA	NR	Hb level is significantly
				EORTC-QLQ-C30 NA	Adjusted for: age, gender, serum creatinine, serum albumin, corrected serum calcium, serum β -2 microglobulin, disease stage according to Durie and Salmon (i-iii) and extent of skeletal disease.			associated with EORTC- QLQ-C30 Physical functioning score P=0.001	
						NA	NA	NR	Hb level is significantly
				treatment)	Adjusted for: age, ger serum calcium, serum Durie and Salmon (i-i response category.	associated with EORTC- QLQ-C30 Fatigue score P=0.010			
					EORTC-QLQ-C30	NA	NA	NR	Hb level is <u>not</u>
					Pain at randomisation		erum albumin, corrected ase stage according to disease.	significantly associated with EORTC-QLQ-C30 Pain score P=0.417	
					EORTC-QLQ-C30	NA	NA	NR	Hb level is not a
				Pain at 12-months (post-treatment)	Adjusted for: age, gender, serum creatinine, serum albumin, corrected serum calcium, serum β -2 microglobulin, disease stage according to Durie and Salmon (i-iii), extent of skeletal disease and treatment response category.			significantly associated with EORTC-QLQ-C30 Pain score P=0.946	

An, anaemia; CI, confidence interval; EORTC QLQ-30, European Organization for Research and Treatment of Cancer QLQ-C30; Hb Hb; NR, not reported; SF-12, Short-Form-12; SF-36, Short-Form-36; WHO, World Health Organisation.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

Summary

The majority of results presented for the cancer population suggest that anaemia/low Hb is an independent risk factor for mortality. Where no significant association between anaemia/low Hb was found, as was shown in a study in patients with NSCLC, the number of patients included in the analysis was not known, but was likely to be small.⁷³ In addition, one study which showed no significant association assessed haemoglobinaemia, which included patients with Hb levels outside a restricted range; thus, it included patients with high Hb as well as anaemia.⁷⁹

The results of the analysis of anaemia and functional/performance status suggest that anaemia is an independent risk factor for fatigue. There was also a possible association between Hb level and global quality of life, although no associations were shown for more specific domains, including physical functioning, role functioning and pain.

The studies included for this population were generally considered to be of poorer methodological quality, being older and less well reported.

RENAL DISEASE

Of the adverse outcomes specified for this question, three are covered for this population: mortality, stroke and functional status (quality of life).

Methods

There were 16 studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

Level I evidence

The literature search identified one systematic review examining the aetiology of anaemia in patients with renal disease.

Level II evidence

The literature search identified 15 Level II studies examining the aetiology of anaemia in patients with renal disease.

Level III evidence

Due to the substantial amount of Level II evidence identified, the literature was not searched for Level III evidence.

Level IV evidence

Due to the substantial amount of Level II evidence identified, the literature was not searched for Level IV evidence.

Results

Level I evidence

One fair quality Level I study was included for this question, as summarised in Table 3.36.⁹⁰ This study assessed the association between Hb/haematocrit and all-cause mortality in RCTs and cohort studies, although the majority of cohort studies included in the Volkova et al

(2006) ⁹⁰ review were retrospective studies. In addition, the included RCTs all assessed the effect of EPO on patient outcomes. As such, this study will not be used as the basis for the review of this question; however, its results will be briefly described and it will be used to help identify Level II studies.

Level II evidence	9		
Author	Study type Study quality	Population	Outcomes
Volkova et al (2006) ⁹⁰	Systematic review of literature. Includes data from 18 studies including 5 RCTs and 13 cohort studies <i>Fair</i>	Dialysis patients N=NR	Mortality

Table 3.36	Question 2	I (renal):	Characteristics	and qualit	y of Level I	evidence

NR, not reported; RCT, randomised controlled trial.

Volkova et al (2006) ⁹⁰ note that "observational studies that analysed haematocrit and/or Hgb values categorically consistently showed increased mortality associated with Hgb levels less that their individual reference range. They conclude that "controversies still exist for the relationship between complete resolution of anemia and dialysis patient survival. These controversies have been exacerbated by the lack of adequately designed RCTs and the high level of heterogeneity across observational studies. In addition, although observational studies may show the association between natural Hgb levels and mortality, RCTs look at the achieved or study-directed Hb levels, which also contributes to varying results."

Level II evidence

Fifteen Level II studies were included for this question; eight studies provided evidence for mortality, one provided evidence for stroke and six studies provide evidence for functional/performance status. The characteristics of the included studies are summarised in Table 3.37. Nine of the included studies specifically examined anaemia or Hb level as a potential predictor of adverse outcomes, ⁹¹⁻⁹⁹ four studies examined other specific factors (depression, calcium/phosphate/parathyroid levels, erectile dysfunction and body mass),¹⁰⁰⁻¹⁰³ while the remaining two studies aimed to identify a number of potential predictors.

Due to the large amount of evidence available for the mortality outcome, and the requirement that analyses were adjusted for multiple potential confounders, studies were limited to those including >500 subjects. This resulted in the exclusion of one study.¹⁰⁶ Studies with smaller patient numbers were potentially available for inclusion for the stroke/MI and function status/quality of life outcomes. One additional study which reported quality of life outcomes was excluded as it assessed <100 subjects.¹⁰⁷

One potential confounding factor in the analyses of patients with renal disease is the use of exogenous erythropoietin, as it acts by increasing production of red blood cells and subsequently increasing Hb levels. Therefore, studies which reported erythropoietin use among their patients which did not subsequently account for this in the analysis (eg, by adjusting for erythropoietin use in the analysis, or by measuring Hb in a time-dependent manner rather than at a single timepoint) were excluded. Two publications from the Dialysis Outcomes and Practice Patterns Study (DOPPS) were excluded for this reason.^{108,109}

Level II evidence	Study type	Dopulation	Outcomos
Author	Study type Study quality	Population	Outcomes
Abramson et al (2003) ⁹¹	Prospective cohort study (ARIC) <i>Fair</i>	A community-based middle-aged population aged 45- 64 years (N=15,792). For the present study, participants were excluded if they had a self-reported history of stroke at baseline or if they had missing data on renal function, anaemia or other covariates of interest N=13,716	Stroke
Astor et al (2006) ⁹²	Prospective cohort study (ARIC) Fair	A community-based middle-aged population aged 45- 64 years (N=15,792). For the present study, participants were excluded if they had a self-reported history of stroke at baseline or if they had missing data on renal function, anaemia or other covariates of interest N=14,971	Mortality
Avram et al (2003)93	Prospective cohort study <i>Fair</i>	Patients on haemodialysis (HD) or peritoneal dialysis (PD). N=529 (HD) and 326 (PD)	Mortality
Finkelstein et al (2009) ⁹⁴	Cross-sectional analysis of prospectively collected data <i>Fair</i>	Patients with CKD, defined as a eGFR <60 mL/min/1.73m2 (MDRD) stages 3-5 not on dialysis and aged 18 or older. N=1186	Quality of life
Fort et al (2010) ⁹⁵	Prospective cohort study (ANSWER) <i>Fair</i>	Patients starting haemodialysis, who had received haemodialysis for ≤30 days, aged ≥18 years. N=2310	Mortality
Leeder et al (2006) ⁹⁶	Prospective cohort study Good	Residents of two postcode areas in the Blue Mountains born before January 1, 1943 Only subjects with CKD based on three estimation methods (N=1639, 1427 and 1258) or low serum creatinine (N=294) are included in this review.	Mortality
Merkus et al (1997) ¹⁰⁵	Cross-sectional analysis of prospectively collected data <i>Fair</i>	Adults started on chronic haemodialysis or peritoneal dialysis in 13 Dutch dialysis centres between October 1993 and April 1995. N=226	Quality of life
Mollaoglu et al (2004) ¹⁰⁰	Cross-sectional analysis of prospectively collected data <i>Poor</i>	Population taken from a 2-year longitudinal study of quality of life; prevalent haemodialysis patients. N=140	Quality of life
Perlman et al (2005) ¹⁰⁴	Cross-sectional analysis of prospectively collected data <i>Fair</i>	CKD defined as a GFR ≤50 mL/min/1.73 ^{m2} (MDRD. N=222 (all variables available), 487 (Hb available).	Quality of life
Platinga et al (2007) ⁹⁷	Prospective cohort study	Patients initiating haemodialysis during 10/95 to 6/98.	Quality of life

Table 3.37 Question 1 (renal): Characteristics and quality of Level II evidence

Level II evidence	9		•	
Author	Study type Study quality	Population	Outcomes	
	Fair	N=438		
Portolés et al (2007) ⁹⁸	Prospective cohort study Fair	A representative sample of prevalent haemodialysis patients ≥18 years who started treatment between January 1999 and March 2001. N=1428	Mortality	
Robinson et al (2005) ⁹⁹	Prospective cohort study (DOPPS) Fair	Random selection of patients undergoing haemodialysis N=5517	Mortality	
Stevens et al (2004) ¹⁰¹	Prospective cohort study Fair	Prevalent dialysis patients (haemodialysis or peritoneal dialysis) in dialysis centres in British Columbia who were alive and on dialysis as of January 2000 and had calcium, phosphate and parathyroid hormone data entered between Jan and Mar 2000. N=515	Mortality	
Turk et al (2004) ¹⁰²	Cross-sectional analysis of prospectively collected data <i>Poor</i>	Men aged 18-65 on haemodialysis for at least 3 months. N=148	Quality of life	
Yen et al (2010) ¹⁰³	Prospective cohort study Fair	Maintenance haemodialysis patients. N=959	Mortality	

CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; GFR, glomerular filtration rate; Hb. Hb; HD, haemodialysis; MDRD, modification of diet in renal disease; PD, peritoneal dialysis

Anaemia as an independent risk factor for mortality

No studies assessed the association between anaemia as defined by the World Health Organisation (WHO) and mortality.

Four studies assessed the association between various Hb levels and all-cause mortality, as shown in Table 3.38.^{92,93,95,99} In the study by Astor et al (2006),⁹² the risk of mortality was assessed in subjects with chronic kidney disease (CKD) compared with those without CKD. This analysis was conducted in two separate populations: those with anemia (defined as a Hb level <12 g/dL for women and <13.5 g/dL for men) and those without anaemia. Thus, while this study does not specifically assess anaemia as an independent risk factor, this can be inferred by comparing the results in the two populations. In subjects with a glomerular filtration rate of 30-59 mL/min/1.73m² (often defined as moderate CKD) who also had anaemia, the risk of mortality compared with subjects without CKD was HR 3.49 (95% CI 2.38, 5.12; p<0.001). In subjects without anaemia the equivalent HR was 1.72 (95% Cl 1.34, 2.20; p<0.001). This suggests that having anaemia confers a two-fold greater risk of mortality. In subjects with a glomerular filtration rate of 60-74 mL/min/1.73m² (often defined as mild CKD) who also had anaemia, the risk of mortality compared with subjects without CKD was HR 1.62 (95% CI 1.12, 2.35; p<0.05). In subjects without anaemia the equivalent HR was 1.02 (95% Cl 0.87, 1.20; p≥0.05). This also suggests that having anaemia confers a greater risk of mortality. Finally, in subjects with a glomerular filtration rate of 7589 mL/min/1.73m² (often defined as very mild CKD) who also had anaemia, the risk of mortality compared with subjects without CKD was HR 1.11 (95% CI 0.80, 1.55; p≥0.05). In subjects without anaemia the equivalent HR was 0.93 (95% CI 0.83, 1.05; p≥0.05). These results suggest that anaemia does not increase the risk of mortality in this very mild CKD population. Although in some cases there was no significant difference in either the anaemia or non-anaemia groups, the authors note that "the excess risk of each end point associated with decreased kidney function…was >2-fold greater among individuals with anaemia than among individuals without anaemia".

The remaining three studies assessed the risk of mortality associated with anaemia/Hb levels in patients on dialysis. Avram et al (2003)⁹³ examined the association between a Hb level of <12 g/dL and mortality in both haemodialysis (HD) and peritoneal dialysis (PD) patients. In the overall population of HD patients (N=527), a low Hb level was independently associated with an increased risk of mortality (RR 2.13; P=0.008). However, stratification by diabetes status showed significant effect modification, with patients with diabetes showing no association between low Hb and mortality (RR 0.74; p=0.39) and patients without diabetes showing a significant association between low Hb and mortality (RR 4.53; P=0.003). A similar result was seen in patients with PD (RR 1.85, P=0.06; RR 1.15, P=0.81 and RR 2.02, P=0.07, respectively). Failure to reach statistical significance in this analysis may have been due to the small patient number (P=192). The authors conclude that enrolment Hb is a predictor of long-term survival in HD and PD patients. As noted in the Volkova et al (2006) review, diabetes was a possible effect modifier and wasn't adjusted for in the categorical analyses. However, diabetes was adjusted for in the continuous Hb level analysis, which will be presented below. This analysis showed that increasing Hb was significantly associated with a reduction in mortality risk in both haemodialysis and peritoneal dialysis patients.

In the previous two studies, the use of erythropoietin was not reported. In the study by Fort et al $(2010)^{95}$ erythropoietin use was reported in approximately 70% of the cohort. The use of erythropoietin was taken into account by using time-dependent Hb in the analysis, rather than single timepoint Hb, and adjustment for erythropoietin dose. In this newly dialysed population, a time-dependent Hb of ≤10 g/dL was an independent risk factor for mortality compared with a time-dependent Hb of 11.1-12.0 g/dL (HR 1.36; 95% CI 1.01, 1.86; P=0.048). There was no significant association between a Hb level of 10.2-11 g/dL and mortality. The analyses were repeated using baseline Hb (which showed no association between lower Hb and mortality) and 6-month Hb, which showed a significant increased risk of mortality for both Hb ≤10 g/dL (HR 2.32; 95% CI 1.73, 3.12) and 10.1-11.0 g/dL (HR 1.46; 95% CI 1.06, 2.01) compared with Hb 11.1-12.0 g/dL. The authors conclude that "higher Hb levels are associated with lower mortality in Spanish incident haemodialysis patients, regardless of ESA dose, iron deficiency, comorbidity, vascular access or malnutrition". The authors performed a number of sensitivity analyses which showed similar results with the following exceptions: (i) when patients who died within 6 months were excluded (N=177), the Hb \leq 10 g/dL analysis failed to reach statistical significance; and (ii) when patients with or without previous CV history were assessed, there was no association between Hb and mortality in patients without previous CV history but there was in those with previous CV history.

Erythropoietin use was also reported the analysis of US patients in the DOPPS by Robinson et al (2005),⁹⁹ with 91.2% of subjects receiving at least some erythropoietin. The use of erythropoietin was accounted for in the analysis via including erythropoietin dose in the multivariate analysis; parenteral iron dose was also adjusted for. A 3-month lagged Hb level of <9 g/dL was shown to be significant associated with mortality compared with a level of 11-<12 g/dL. When the reference range was increased 11-<13 g/dL, all three Hb levels below the

reference range (<9 g/dL, 9-<10 g/dL and 10-<11 g/dL) were significantly associated with mortality. The analyses were repeated using 1- 3- and 6-month lagged Hb in a more restricted population (ie, those that had a full dataset for the 6-month lagged analyses) and results were similar, with lower Hb levels associated with an increased risk of mortality. The authors concluded that "our findings confirm the associations of Hb levels ≥ 11 g/dL with longer survival among maintenance HD patients, but show no additional survival advantage for patients with Hb levels ≥ 12 g/dL". The results were consistent across different lag-times and different reference ranges. They also looked at effect modification by health status and found no significant interactions.

Table 3.38 Question 1 (renal): Results for Level II evidence – all-cause mortality (other anaemia criteria, Hb levels or change in Hb levels)

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results				
Level of evidence <i>Quality</i>	sample size included in analysis	Surgical procedure	Location		(follow-up)	Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity	
Renal	·								• •	
ALL-CAUSE MORTALITY	,									
KIDNEY DISEASE										
Astor 2006 Level II <i>Fair</i>	1 prospective cohort study (ARIC) N=793	Community-based middle-aged population <u>with anaemia</u>	Community US	GFR 30- 59 mL/min/1.73 m2 + anaemia vs GFR ≥90 mL/min/1.73 m ² + anaemia	Mortality (12 years)	of antihypertensive m		HR 3.49 (2.38, 5.12) prevalent CHD, SBP, DBP, use current smoking, BMI, LDL,	A GFR of 30- 59 mL/min/1.73 m ² is an independent risk factor for all-cause mortality in subjects with anaemia P <0.001	
Astor 2006	1 prospective	Community-based	Community	GFR 30-	Mortality (12	NR	NR	HR 1.72 (1.34, 2.20)	A GFR of 30-	
Level II Fair	cohort study (ARIC) N=6757	middle-aged population <u>without</u> <u>anaemia</u>	US	59 mL/min/1.73 m2 + no anaemia vs GFR ≥90 mL/min/1.73 m ² + no anaemia	years)		prevalent CHD, SBP, DBP, use current smoking, BMI, LDL,	59 mL/min/1.73 m ² is an independent risk factor for all-cause mortality in subjects without anaemia P <0.001		
Astor 2006	1 prospective	Community-based	Community	GFR 60-	Mortality (12	NR	NR	HR 1.62 (1.12, 2.35)	A GFR of 60-	
Level II Fair	cohort study (ARIC) N=923	middle-aged population <u>with anaemia</u>	US	74 mL/min/1.73 m2 + anaemia vs GFR ≥90 mL/min/1.73 m ² + anaemia	years)	Adjusted for serum creatinine, age, gender, race of antihypertensive medication, diabetes mellitus HDL, triglycerides, fibrinogen and field centre.		prevalent CHD, SBP, DBP, use current smoking, BMI, LDL,	74 mL/min/1.73 m ² is an independent risk factor for all-cause mortality in subjects wit anaemia P<0.05	
Astor 2006	1 prospective	Community-based	Community	GFR 60-	Mortality (12	NR	NR	HR 1.02 (0.87, 1.20)	A GFR of 60-	
Level II Fair	cohort study (ARIC) N=8389	middle-aged population <u>without</u> <u>anaemia</u>	US	74 mL/min/1.73 m2 + no anaemia vs GFR ≥90 mL/min/1.73 m ² + no anaemia	years)	of antihypertensive m	Adjusted for serum creatinine, age, gender, race, prevalent CHD, SBP, DBP, use of antihypertensive medication, diabetes mellitus, current smoking, BMI, LDL, HDL, triglycerides, fibrinogen and field centre.		74 mL/min/1.73 m ² is <u>not</u> an independent risk factor for all-cause mortality in subjects without anaemia P ≥0.05	
Astor 2006	1 prospective	Community-based	Community	GFR 75-	Mortality (12	NR	NR	HR 1.11 (0.80, 1.55)	A GFR of 75-	
Level II Fair	cohort study (ARIC) N=1130	middle-aged population <u>with anaemia</u>	US	89 mL/min/1.73 m ² + anaemia vs GFR ≥90 mL/min/1.73 m ² + anaemia	years)	of antihypertensive m	eatinine, age, gender, race, edication, diabetes mellitus, rinogen and field centre.	prevalent CHD, SBP, DBP, use current smoking, BMI, LDL,	 89 mL/min/1.73 m² is <u>not</u> an independent risk factor for all-cause mortality in subjects with anaemia P ≥0.05 	

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results			
Level of evidence <i>Quality</i>	sample size included in analysis	Surgical procedure	Location		(follow-up)	Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Astor 2006	1 prospective	Community-based	Community	GFR 75-	Mortality (12	NR	NR	HR 0.93 (0.83, 1.05)	A GFR of 75- 89 mL/min/1.73 m ²
Level II <i>Fair</i>	cohort study (ARIC) N=11,257	middle-aged population <u>without</u> <u>anaemia</u>	US	89 mL/min/1.73 m ² + no anaemia vs GFR ≥90 mL/min/1.73 m ² + no anaemia	years)	of antihypertensive r	Adjusted for serum creatinine, age, gender, race, prevalent CHD, SBP, DBP, use of antihypertensive medication, diabetes mellitus, current smoking, BMI, LDL, HDL, triglycerides, fibrinogen and field centre.		
DIALYSIS									P ≥0.05
Avram 2003	1 prospective	Patients on haemodialysis	Hospital	Hb <12 g/dL vs Hb	Mortality (mean 4	NR	NR	RR 2.13	Hb <12 g/dL is an
Level II <i>Fair</i>	cohort study N=527		US	≥12 g/dL	years)	Adjusted for age, gender, race and months on dialysis at enrolment.			independent risk factor for increased mortality in haemodialysis patients P=0.008
Avram 2003	1 prospective	Patients on haemodialysis	Hospital	Hb <12 g/dL vs Hb	Mortality (mean 4	NR	NR	RR 4.53	Hb <12 g/dL is an
Level II Fair	cohort study N=280	(non-diabetic patients only)	US	≥12 g/dĽ	years)	Adjusted for age, gender, race and months on dialysis at enrolment.		alysis at enrolment.	independent risk factor for increased mortality in haemodialysis patients without diabetes P=0.003
Avram 2003	1 prospective	Patients on haemodialysis	Hospital	Hb <12 g/dL vs Hb	Mortality (mean 4	NR	NR	RR 0.74	Hb <12 g/dL is <u>not</u> an
Level II Fair	cohort study N=249	(diabetic patients only)	US	≥12 g/dL	years)	Adjusted for age, ge	nder, race and months on di	alysis at enrolment.	independent risk factor for increased mortality in haemodialysis patients with diabetes P=0.39
Avram 2003	1 prospective	Patients on peritoneal	Hospital	Hb <12 g/dL vs Hb	Mortality (mean 4	NR	NR	RR 1.85	Hb <12 g/dL <u>may</u> be an
Level II Fair	cohort study N=326	dialysis	US	≥12 g/dL	years)	Adjusted for age, gender, race and months on dialysis at enrolment.		independent risk factor for increased mortality in peritoneal dialysis patients P=0.06	
Avram 2003	1 prospective	Patients on peritoneal	Hospital	Hb <12 g/dL vs Hb	Mortality (mean 4	NR	NR	RR 2.02	Hb <12 g/dL <u>may</u> be an
Level II Fair	cohort study N=192	dialysis (non-diabetic patients only)	US	≥12 g/dL	years)	Adjusted for age, gender, race and months on dialysis at enrolment.			independent risk factor for increased mortality in peritoneal dialysis patients P=0.07
Avram 2003	1 prospective	Patients on peritoneal	Hospital	Hb <12 g/dL vs Hb	Mortality (mean 4	NR	NR	RR 1.15	Hb <12 g/dL is <u>not</u> an

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results			
Level of evidence <i>Quality</i>	sample size included in analysis	Surgical procedure	Location		(follow-up)	Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Level II Fair	cohort study N=134	dialysis (diabetic patients only)	US	≥12 g/dL	years)	Adjusted for age, gender, race and months on dialysis at enrolment.			independent risk factor for increased mortality in peritoneal dialysis patients P=0.81
Fort 2010	1 prospective	Patients	Hospital	Time-dependent Hb	Mortality (mean	NR	NR	HR 1.36 (1.01, 1.86)	A time-dependent Hb
Level II Fair	cohort study N=NR	starting <u>haemodialysis</u> , who had received haemodialysis for ≤30 days	Spain	≤10 g/dL vs time- dependent Hb 11.1- 12.0 g/dL	1.5 years)		ar access, Karnofsky score lar disease, peripheral vas		level of ≤10 g/dL is an independent predictor of all-cause mortality compared with a time- dependent Hb level of 11.1-12.0 g/dL P=0.048
Fort 2010	1 prospective	Patients	Hospital	Time-dependent Hb	Mortality (mean	NR	NR	HR 1.03 (0.75, 1.42)	A time-dependent Hb level of 10.1-11.0 g/dL
Level II Fair	cohort study N=NR	starting <u>haemodialysis</u> , who had received haemodialysis for ≤30 days	Spain	10.1-11.0 g/dL vs time-dependent Hb 11.1-12.0 g/dL	1.5 years)		usted for age, vascular access, Karnofsky score, ESA dose, albumin, plasia, cerebrovascular disease, peripheral vascular disease, cardiac nythmia, BMI.		
Fort 2010	1 prospective	Patients	Hospital	Time-dependent Hb	Mortality (mean	NR	NR	HR 0.93 (0.68, 1.26)	A time-dependent Hb
Level II Fair	cohort study N=NR	starting <u>haemodialysis</u> , who had received haemodialysis for ≤30 days	Spain	12.1-13.0 g/dL vs time-dependent Hb 11.1-12.0 g/dL	1.5 years)		ar access, Karnofsky score lar disease, peripheral vas		level of 12.1-13.0 g/dL is <u>not</u> an independent predictor of all-cause mortality compared with a time-dependent Hb level of 11.1-12.0 g/dL P=0.63
Fort 2010	1 prospective	Patients	Hospital	Time-dependent Hb	Mortality (mean	NR	NR	HR 0.69 (0.49, 0.97)	A time-dependent Hb
Level II Fair	cohort study N=NR	starting <u>haemodialysis</u> , who had received haemodialysis for ≤30 days	Spain	≥13.0 g/dL vs time- dependent Hb 11.1- 12.0 g/dL	1.5 years)		ar access, Karnofsky score lar disease, peripheral vas		level of ≥13.0 g/dL is an independent predictor of a reduced risk of all- cause mortality compared with a time- dependent Hb level of 11.1-12.0 g/dL P=0.03

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results			
Level of evidence <i>Quality</i>	sample size included in analysis	Surgical procedure	Location		(follow-up)	Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Fort 2010	1 prospective	Patients	Hospital	Baseline Hb ≤10	Mortality (mean	HR 1.23 (0.92, 1.64)	A baseline Hb level of		
Level II Fair	cohort study N=NR	starting <u>haemodialysis</u> , who had received haemodialysis for ≤30 days	Spain	g/dL vs baseline Hb 11.1-12.0 g/dL	1.5 years)		scular access, Karnofsky sco iscular disease, peripheral va		≤10 g/dL is <u>not</u> an independent predictor of all-cause mortality compared with a baseline Hb level of 11.1-12.0 g/dL P=NR
Fort 2010	1 prospective	Patients	Hospital	Baseline Hb 10.1-	Mortality (mean	NR	NR	HR 1.11 (0.81, 1.53)	A baseline Hb level of
Level II Fair	cohort study N=NR	starting <u>haemodialysis</u> , who had received haemodialysis for ≤30 days	Spain	11.0 g/dL vs baseline Hb 11.1-12.0 g/dL	1.5 years)		scular access, Karnofsky sco iscular disease, peripheral va		10.1-11.0 g/dL is <u>not</u> an independent predictor of all-cause mortality compared with a baseline Hb level of 11.1-12.0 g/dL P=NR
Fort 2010	1 prospective	Patients	Hospital	Baseline Hb 12.1-	Mortality (mean	NR	NR	HR 1.01 (0.68, 1.52)	A baseline Hb level of
Level II Fair	cohort study N=NR	starting <u>haemodialysis</u> , who had received haemodialysis for ≤30 days	Spain	13.0 g/dL vs baseline Hb 11.1-12.0 g/dL	1.5 years)		scular access, Karnofsky sco iscular disease, peripheral va		12.1-13.0 g/dL is <u>not</u> an independent predictor of all-cause mortality compared with a baseline Hb level of 11.1-12.0 g/dL P=NR
Fort 2010	1 prospective	Patients	Hospital	Baseline Hb ≥13.0	Mortality (mean	NR	NR	HR 0.77 (0.44, 1.36)	A baseline Hb level of
Level II <i>Fair</i>	cohort study N=NR	starting <u>haemodialysis</u> , who had received haemodialysis for ≤30 days	Spain	g/dL vs baseline Hb 11.1-12.0 g/dL	1.5 years)		scular access, Karnofsky sco sscular disease, peripheral va		>13.0 g/dL is not an independent predictor of all-cause mortality compared with a baseline Hb level of 11.1-12.0 g/dL P=NR
Fort 2010	1 prospective	Patients	Hospital	6-month Hb ≤10 g/dL	Mortality (mean	NR	NR	HR 2.32 (1.73, 3.12)	A 6-month Hb level of
Level II <i>Fair</i>	cohort study N=897	starting <u>haemodialysis</u> , who had received haemodialysis for ≤30 days	Spain	vs 6-month Hb 11.1- 12.0 g/dL	1.5 years)		scular access, Karnofsky sco sscular disease, peripheral va		≤10 g/dL is an independent predictor of all-cause mortality compared with a 6- month Hb level of 11.1- 12.0 g/dL P=NR

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results				
Level of evidence <i>Quality</i>	sample size included in analysis	Surgical procedure	Location		(follow-up)	Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity	
Fort 2010	1 prospective	Patients	Hospital	6-month Hb 10.1-	Mortality (mean	NR	A 6-month Hb level of			
Level II Fair	cohort study N=902	starting <u>haemodialysis</u> , who had received haemodialysis for ≤30 days	Spain	11.0 g/dL vs 6-month Hb 11.1-12.0 g/dL	1.5 years)	Adjusted for age, va neoplasia, cerebrov arrhythmia, BMI.	10.1-11.0 g/dL is an independent predictor of all-cause mortality compared with a 6- month Hb level of 11.1- 12.0 g/dL P=NR			
Fort 2010	1 prospective	Patients	Hospital	6-month Hb 12.1-	Mortality (mean	NR	NR	HR 0.94 (0.69, 1.29)	A 6-month Hb level of 12.1-13.0 g/dL is not an	
Level II <i>Fair</i>	cohort study N=1063	starting <u>haemodialysis</u> , who had received haemodialysis for ≤30 days	Spain	13.0 g/dL vs 6-month Hb 11.1-12.0 g/dL	1.5 years)		Adjusted for age, vascular access, Karnofsky score, ESA dose, albumin, neoplasia, cerebrovascular disease, peripheral vascular disease, cardiac arrhythmia, BMI.			
Fort 2010	1 prospective	Patients	Hospital	6-month Hb ≥13.0	Mortality (mean	NR	NR	HR 0.71 (0.51, 0.99)	A 6-month Hb level of ≥13.0 q/dL is an	
Level II Fair	cohort study N=1086	starting <u>haemodialysis</u> , who had received haemodialysis for ≤30 days	Spain	g/dL vs 6-month Hb 11.1-12.0 g/dL	1.5 years)	Adjusted for age, vascular access, Karnofsky score, ESA dose, albumin, neoplasia, cerebrovascular disease, peripheral vascular disease, cardiac arrhythmia, BMI.		e, ESA dose, albumin, scular disease, cardiac	independent predictor of a reduced risk of all- cause mortality compared with a 6- month Hb level of 11.1- 12.0 g/dL P=NR	
Robinson 2005	1 prospective	Patients	Hospital	3-month lagged Hb	Mortality (mean	NR	NR	HR 1.74 (1.24, 2.43)	A Hb <9 g/dL is an	
Level II <i>Fair</i>	cohort study N=NR (total 3352)	undergoing <u>haemodialysis</u>	US	<9 g/dL vs <u>Hb 11-</u> <u><12 g/dL</u>	13.4 months)	(P≤0.20) and then ir (P≤0.10): sex, ESRI albumin, calcium-ph WBC, EPO dose, pa	ncluded in multivariate analysis D cause, atherosclerotic CVD, nosphate product, total choleste	CHF, pulmonary illness, age, erol, creatinine, ferritin, PTH, HD duration, post dialysis SBP,	independent risk factor for mortality compared with a Hb 11-<12 g/dL P=NR	
Robinson 2005	1 prospective	Patients	Hospital	3-month lagged Hb	Mortality (mean	NR	NR	HR 1.25 (0.96, 1.63)	A Hb 9-<10 g/dL is not	
Level II <i>Fair</i>	cohort study N=NR (total 3352)	undergoing <u>haemodialysis</u>	US	9-<10 g/dL vs <u>Hb 11-</u> < <u>12 g/dL</u>	13.4 months)	(P≤0.20) and then ir (P≤0.10): sex, ESRI albumin, calcium-ph WBC, EPO dose, pa	ncluded in multivariate analysis D cause, atherosclerotic CVD, nosphate product, total choleste	CHF, pulmonary illness, age, erol, creatinine, ferritin, PTH, HD duration, post dialysis SBP,	an independent risk factor for mortality compared with a Hb 11- <12 g/dL P=NR	

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results				
Level of evidence <i>Quality</i>	sample size included in analysis	Surgical procedure	Location		(follow-up)	Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity	
Robinson 2005	1 prospective	Patients	Hospital	3-month lagged Hb	Mortality (mean	NR	NR	HR 1.22 (0.99, 1.49)	A Hb 10-<11 g/dL is <u>not</u> an independent risk	
Level II Fair	cohort study N=NR (total 3352)	undergoing <u>haemodialysis</u>	US	10-<11 g/dL vs <u>Hb 11-<12 g/dL</u>	13.4 months)	(P≤0.20) and then incluc (P≤0.10): sex, ESRD ca albumin, calcium-phosph WBC, EPO dose, parent	ded in multivariate analysis use, atherosclerotic CVD, C nate product, total cholester	mortality in univariate analysis using backward elimination CHF, pulmonary illness, age, rol, creatinine, ferritin, PTH, 4D duration, post dialysis SBP, pitalised days.	factor for mortality compared with a Hb 11- <12 g/dL P=NR	
Robinson 2005	1 prospective	Patients	Hospital	3-month lagged Hb	Mortality (mean	NR	NR	HR 1.80 (1.29, 2.49)	A Hb <9 g/dL is an	
Level II Fair	cohort study N=NR (total 3352)	undergoing <u>haemodialysis</u>	US	<9 g/dL vs <u>Hb 11-</u> <u><13 g/dL</u>	13.4 months)	(P≤0.20) and then includ (P≤0.10): sex, ESRD ca albumin, calcium-phosph	mortality in univariate analysis using backward elimination CHF, pulmonary illness, age, ol, creatinine, ferritin, PTH, ID duration, post dialysis SBP, pitalised days.	independent risk factor for mortality compared with a Hb 11-<13 g/dL P=NR		
Robinson 2005	1 prospective	Patients	Hospital	3-month lagged Hb	Mortality (mean	NR	NR	HR 1.29 (1.01, 1.67)	A Hb 9-<10 g/dL is an	
Level II <i>Fair</i>	cohort study N=NR (total 3352)	undergoing <u>haemodialysis</u>	US	9-<10 g/dL vs <u>Hb 11-</u> <u><13 g/dL</u>	13.4 months)	Adjusted for variables sh (P≤0.20) and then incluc (P≤0.10): sex, ESRD ca albumin, calcium-phospt WBC, EPO dose, parent currently prescribed nutr	independent risk factor for mortality compared with a Hb 11-<13 g/dL P=NR			
Robinson 2005	1 prospective	Patients	Hospital	3-month Hb 10-<11	Mortality (mean	NR	NR	HR 1.26 (1.04, 1.52)	A Hb 10-<11 g/dL is an	
Level II Fair	cohort study N=NR (total 3352)	undergoing <u>haemodialysis</u>	US	g/dL vs <u>Hb 11-<13</u> <u>g/dL</u>	13.4 months)	Adjusted for variables shown to be associated with mortality in univariate analysis (P≤0.20) and then included in multivariate analysis using backward elimination (P≤0.10): sex, ESRD cause, atherosclerotic CVD, CHF, pulmonary illness, age, albumin, calcium-phosphate product, total cholesterol, creatinine, ferritin, PTH, WBC, EPO dose, parenteral iron dose, prescribed HD duration, post dialysis SBP, currently prescribed nutritional supplement and hospitalised days.			independent risk factor for mortality compared with a Hb 11-<13 g/dL P=NR	
Robinson 2005	1 prospective	Patients	Hospital	1-month lagged Hb	Mortality (mean	NR	NR	HR 1.69 (1.14, 2.49)	A Hb <9 g/dL is an	
Level II <i>Fair</i>	cohort study N=NR (total 2790)	undergoing <u>haemodialysis</u>	US	<9 g/dL vs Hb 11- <12 g/dL	13.4 months)	(P≤0.20) and then includ (P≤0.10): sex, ESRD ca albumin, calcium-phosph WBC, EPO dose, parent	ded in multivariate analysis use, atherosclerotic CVD, C nate product, total cholester	mortality in univariate analysis using backward elimination CHF, pulmonary illness, age, rol, creatinine, ferritin, PTH, ID duration, post dialysis SBP, pitalised days.	independent risk factor for mortality compared with a Hb 11-<12 g/dL P=NR	
Robinson 2005	1 prospective	Patients	Hospital	1-month lagged Hb	Mortality (mean	NR	NR	HR 1.46 (1.07, 2.00)	A Hb 9-<10 g/dL is an	
Level II <i>Fair</i>	cohort study N=NR (total 2790)	undergoing <u>haemodialysis</u>	US	9-<10 g/dL vs Hb 11- <12 g/dL	13.4 months)	(P≤0.20) and then incluc (P≤0.10): sex, ESRD ca albumin, calcium-phosph WBC, EPO dose, parent	ded in multivariate analysis use, atherosclerotic CVD, C nate product, total cholester	mortality in univariate analysis using backward elimination CHF, pulmonary illness, age, rol, creatinine, ferritin, PTH, 4D duration, post dialysis SBP, pitalised days.	independent risk factor for mortality compared with a Hb 11-<12 g/dL P=NR	
Robinson 2005	1 prospective	Patients	Hospital	1-month lagged Hb	Mortality (mean	NR	NR	HR 1.23 (0.97, 1.56)	A Hb 10-<11 g/dL is <u>not</u>	

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results			
Level of evidence Quality	sample size included in analysis	Surgical procedure	Location		(follow-up)	Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Level II <i>Fair</i>	cohort study N=NR (total 2790)	undergoing <u>haemodialysis</u>	US	10-<11 g/dL vs Hb 11-<12 g/dL	13.4 months)	(P≤0.20) and then inc (P≤0.10): sex, ESRD albumin, calcium-phos WBC, EPO dose, pare	luded in multivariate analysis cause, atherosclerotic CVD, sphate product, total choleste	mortality in univariate analysis susing backward elimination CHF, pulmonary illness, age, erol, creatinine, ferritin, PTH, HD duration, post dialysis SBP, spitalised days.	an independent risk factor for mortality compared with a Hb 11- <12 g/dL P=NR
Robinson 2005	1 prospective	Patients	Hospital	3-month lagged Hb	Mortality (mean	NR	NR	HR 1.62 (1.09, 2.40)	A Hb <9 g/dL is an
Level II Fair	cohort study N=NR (<u>total 2790</u>)	undergoing <u>haemodialysis</u>	US	<9 g/dL vs Hb 11- <12 g/dL	13.4 months)	Adjusted for variables (P≤0.20) and then inc (P≤0.10): sex, ESRD albumin, calcium-phos WBC, EPO dose, pare currently prescribed n	independent risk factor for mortality compared with a Hb 11-<12 g/dL P=NR		
Robinson 2005	1 prospective	Patients	Hospital	3-month lagged Hb	Mortality (mean	NR	NR	HR 1.21 (0.90, 1.64)	A Hb 9-<10 g/dL is not an independent risk
Level II Fair	cohort study N=NR (<u>total 2790</u>)	undergoing <u>haemodialysis</u>	US	9-<10 g/dL vs Hb 11- <12 g/dL	13.4 months)	(P≤0.20) and then inc (P≤0.10): sex, ESRD albumin, calcium-phos WBC, EPO dose, pare	Adjusted for variables shown to be associated with mortality in univariate analysis (P≤0.20) and then included in multivariate analysis using backward elimination (P≤0.10): sex, ESRD cause, atherosclerotic CVD, CHF, pulmonary illness, age, albumin, calcium-phosphate product, total cholesterol, creatinine, ferritin, PTH, WBC, EPO dose, parenteral iron dose, prescribed HD duration, post dialysis SBP, currently prescribed nutritional supplement and hospitalised days.		
Robinson 2005	1 prospective	Patients	Hospital	3-month lagged Hb	Mortality (mean	NR	NR	HR 1.28 (1.02, 1.62)	A Hb 10-<11 g/dL is an
Level II Fair	cohort study N=NR (<u>total 2790</u>)	undergoing <u>haemodialysis</u>	US	10-<11 g/dĽ vs Hb 11-<12 g/dL	13.4 months)	Adjusted for variables shown to be associated w (P≤0.20) and then included in multivariate analy (P≤0.10): sex, ESRD cause, atherosclerotic CV) albumin, calcium-phosphate product, total chole WBC, EPO dose, parenteral iron dose, prescrib currently prescribed nutritional supplement and		s using backward elimination CHF, pulmonary illness, age, erol, creatinine, ferritin, PTH, HD duration, post dialysis SBP,	independent risk factor for mortality compared with a Hb 11-<12 g/dL P=NR
Robinson 2005	1 prospective	Patients	Hospital	6-month lagged Hb	Mortality (mean	NR	NR	HR 1.59 (1.06, 2.37)	A Hb <9 g/dL is an
Level II <i>Fair</i>	cohort study N=NR (total 2790)	undergoing <u>haemodialysis</u>	US	<9 g/dL vs Hb 11- <12 g/dL	13.4 months)	(P≤0.20) and then inc (P≤0.10): sex, ESRD albumin, calcium-phos WBC, EPO dose, pare	luded in multivariate analysis cause, atherosclerotic CVD, sphate product, total choleste	mortality in univariate analysis s using backward elimination CHF, pulmonary illness, age, arol, creatinine, ferritin, PTH, HD duration, post dialysis SBP, spitalised days.	independent risk factor for mortality compared with a Hb 11-<12 g/dL P=NR
Robinson 2005	1 prospective	Patients	Hospital	6-month lagged Hb	Mortality (mean	NR	NR	HR 1.27 (0.95, 1.72)	A Hb 9-<10 g/dL is <u>not</u>
Level II <i>Fair</i>	cohort study N=NR (total 2790)	undergoing <u>haemodialysis</u>	US	9-<10 g/dL vs Hb 11- <12 g/dL	13.4 months)	(P≤0.20) and then inc (P≤0.10): sex, ESRD albumin, calcium-phos	mortality in univariate analysis s using backward elimination CHF, pulmonary illness, age, erol, creatinine, ferritin, PTH, HD duration, post dialysis SBP, spitalised days.	compared with a Hb 11- <12 g/dL	
Robinson 2005	1 prospective	Patients	Hospital	6-month lagged Hb	Mortality (mean	NR	NR	HR 1.21 (0.97, 1.50)	A Hb 10-<11 g/dL is not

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results			
Level of evidence <i>Quality</i>	sample size included in analysis	Surgical procedure	Location		(follow-up)	Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Level II <i>Fair</i>	cohort study N=NR (total 2790)	undergoing <u>haemodialysis</u>	US	10-<11 g/dL vs Hb 11-<12 g/dL	13.4 months)	Adjusted for variables shown to be associated with mortality in univariate analys (P≤0.20) and then included in multivariate analysis using backward elimination (P≤0.10): sex, ESRD cause, atherosclerotic CVD, CHF, pulmonary illness, age, albumin, calcium-phosphate product, total cholesterol, creatinine, ferritin, PTH, WBC, EPO dose, parenteral iron dose, prescribed HD duration, post dialysis SE currently prescribed nutritional supplement and hospitalised days.		using backward elimination HF, pulmonary illness, age, ol, creatinine, ferritin, PTH, D duration, post dialysis SBP,	an independent risk factor for mortality compared with a Hb 11- <12 g/dL P=NR

BMI, body mass index; CHD, coronary heart disease; CHF, congestive heart failure; CI, confidence interval;; CVD, cardiovascular disease; DBP, diastolic blood pressure; EPO, erythropoietin; ESA, erythropoiesis-stimulating agent; ESRD, end stage renal disease; GFR, glomerular filtration rate; Hb, haemoglobin; HD, haemodialysis; HDL, high-density lipoprotein; HR, hazard ratio; LDL, low-density lipoprotein; NR, not reported; PTH, parathyroid hormone; RR, risk ratio; SBP, systolic blood pressure; US; United States of America; WBC, white blood cell

Two studies assessed the association between various Hb levels and cardiovascular mortality, as shown in Table 3.39.^{92,96} In the study by Astor et al (2006),⁹² the risk of cardiovascular mortality was assessed in subjects with CKD compared with those without CKD. This analysis was conducted in two separate populations: those with anaemia (defined as a Hb level <12 g/dL for women and <13.5 g/dL for men) and those without anaemia. In subjects with a glomerular filtration rate of 30-59 mL/min/1.73m² (often defined as moderate CKD) who also had anaemia, the risk of mortality compared with subjects without CKD was HR 4.38 (95% CI 1.96, 9.79; p<0.001). In subjects without anaemia the equivalent HR was 2.67 (95% Cl 1.71, 4.17; p<0.001). In subjects with a glomerular filtration rate of 60-74 mL/min/1.73m² (often defined as mild CKD) who also had anaemia, the risk of mortality compared with subjects without CKD was HR 2.78 (95% CI 1.30, 5.97; p<0.001). In subjects without anaemia the equivalent HR was 1.36 (95% CI 0.98, 1.89; p≥0.05). Finally, in subjects with a glomerular filtration rate of 75-89 mL/min/1.73m² (which can be defined as very mild CKD) who also had anaemia, the risk of mortality compared with subjects without CKD was HR 1.26 (95% CI 0.59, 2.69; p>0.05). In subjects without anaemia the equivalent HR was 0.99 (95% CI 0.76, 1.31; $p \ge 0.05$). As mentioned previously, the authors note that "the excess risk of each end point associated with decreased kidney function...was >2-fold greater among individuals with anaemia than among individuals without anaemia".

Leeder et al (2006)⁹⁶ assessed the risk of coronary heart disease (CHD)-related death in residents of two postcode regions of the Blue Mountains in NSW, Australia. Presence of CKD was defined as a GFR <60 mL/min/1.73 m2 using three estimation methods: Cockcroft-Gault, Modification of Diet in Renal Disease (MDRD) and Bjornsson. In addition, CKD was also estimated using serum creatinine (≥1.46 mg/dL in men and ≥1.26 mg/dL in women). Hb was categorised by quintiles, with the lowest quintile having a mean of 13.1 g/dL and the other quintiles having a mean of 15.2 g/dL. The lowest quintile Hb was an independent risk factor for cardiovascular mortality in subjects with CKD estimated using the Cockcroft-Gault (HR 1.49; 95% CI 1.08, 2.06) and Bjornsson (HR 1.57; 95% CI 1.12, 2.19) methods, and serum creatinine (HR 1.80; 95% CI 1.02, 3.18). There was no significant association between low Hb and cardiovascular mortality in subjects with CKD estimated using the MDRD. When CKD was defined as the lowest quintile using the Cockcroft-Gault method, the association remained significant. However, when stratified by gender, there remained a significant association in men (HR 2.32; 95% CI 1.29, 4.17) but not women (HR 1.82; 0.88, 3.78). The authors conclude that "low hemoglobin, even within the normal range, together with CKD increased the risk for CHD-related deaths".

Table 3.39	Question 1 (renal): Results for Level II evidence	– cardiovascular mortality (other anaemia criteria, I	Hb levels or change in Hb levels)
------------	---	---	-----------------------------------

Study Level of evidence <i>Quality</i>	No. of trials / sample size included in analysis	Patient population / Surgical procedure	Setting Location	Risk factor	Outcome (follow-up)	Results			
						Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Renal					•				•
CHD MORTALITY									
KIDNEY DISEASE									
Astor 2006 Level II	study (ARIC) middle-aged		Community US	GFR 30- 59 mL/min/1.73	<u>CHD</u> mortality (12 years)	NR	NR	HR 4.38 (1.96, 9.79)	A GFR of 30- 59 mL/min/1.73 m ² is a independent risk factor f
Fair	N=793	population <u>with anaemia</u>		m2 + anaemia vs GFR ≥90 mL/min/1.73 m ² + anaemia	≥90 mL/min/1.73		Adjusted for serum creatinine, age, gender, race, prevalent CHD, SBP, DBP, use of antihypertensive medication, diabetes mellitus, current smoking, BMI, LDL, HDL, triglycerides, fibrinogen and field centre.		
Astor 2006 Level II	1 prospective cohort study (ARIC)	Community-based middle-aged	Community GFR 30- US 59 mL/min/1.73	59 mL/min/1.73	<u>CHD</u> mortality (12 years)	NR	NR	HR 2.67 (1.71, 4.17)	A GFR of 30- 59 mL/min/1.73 m ² is a
Fair	N=6757	population <u>without</u> <u>anaemia</u>		m2 + no anaemia vs GFR ≥90 mL/min/1.73 m ² + no anaemia		Adjusted for serum DBP, use of antihy smoking, BMI, LDL	independent risk factor for CHD mortality in subjects without anaemia P <0.001		
Astor 2006 Level II	1 prospective cohort study (ARIC)	Community-based middle-aged	Community US	GFR 60- 74 mL/min/1.73	<u>CHD</u> mortality (12 years)	NR	NR	HR 2.78 (1.30, 5.97)	A GFR of 60- 74 mL/min/1.73 m ² is
Fair	N=923	population <u>with anaemia</u>		m2 + anaemia vs GFR ≥90 mL/min/1.73 m² + anaemia		Adjusted for serum creatinine, age, gender, race, prevalent CHD, SBP, DBP, use of antihypertensive medication, diabetes mellitus, current smoking, BMI, LDL, HDL, triglycerides, fibrinogen and field centre.			independent risk factor for CHD mortality in subjects with anaemia P <0.001
Astor 2006 Level II	1 prospective cohort study (ARIC)		-	74 mL/min/1.73	<u>CHD</u> mortality (12 years)	NR	NR	HR 1.36 (0.98, 1.89)	A GFR of 60- 74 mL/min/1.73 m ² is
Fair	N=8389			Adjusted for serum creatinine, age, gender, race, prevalent CHD, SBP, DBP, use of antihypertensive medication, diabetes mellitus, current smoking, BMI, LDL, HDL, triglycerides, fibrinogen and field centre.			an independent risk factor for CHD mortality in subjects without anaemia P ≥0.05		
Astor 2006 Level II	N=1130 population <u>with anaemia</u> 05 m ² + anaemi GFR ≥90 mL/min	middle-aged	,	89 mL/min/1.73	<u>CHD</u> mortality (12 years)	NR	NR	HR 1.26 (0.59, 2.69)	A GFR of 75- 89 mL/min/1.73 m ² is <u>no</u>
Fair		m ² + anaemia vs GFR ≥90 mL/min/1.73 m ² + anaemia		Adjusted for serum creatinine, age, gender, race, prevalent CHD, SBP, DBP, use of antihypertensive medication, diabetes mellitus, current smoking, BMI, LDL, HDL, triglycerides, fibrinogen and field centre.			an independent risk factor for CHD mortality in subjects with anaemia P ≥0.05		

Study	No. of trials / sample size included in analysis	Patient population / Surgical procedure	Setting Location	Risk factor	Outcome (follow-up)	Results				
Level of evidence <i>Quality</i>						Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity	
Astor 2006 Level II	1 prospective cohort study (ARIC)	10.5	89 mL/min/1.73	· · · · · · · · · · · · · · · · · · ·	NR	NR	HR 0.99 (0.76, 1.31)	A GFR of 75- 89 mL/min/1.73 m ² is <u>not</u>		
Fair	N=11,257	population <u>without</u> <u>anaemia</u>		m ² + no anaemia vs GFR ≥90 mL/min/1.73 m ² + no anaemia		Adjusted for serum creatinine, age, gender, race, prevalent CHD, SBP, DBP, use of antihypertensive medication, diabetes mellitus, current smoking, BMI, LDL, HDL, triglycerides, fibrinogen and field centre.			an independent risk factor for CHD mortality in subjects without anaemia P ≥0.05	
Leeder 2006 Level II	1 prospective cohort study	postcode areas in the Australia quintile	Lowest Hb quintile (mean	CHD-related death ^a (mean 8.2 years)	64/352 (18.2)	115/1287 (8.9)	HR 1.49 (1.08, 2.06)	The lowest quintile of Hb is an independent risk		
Good	N=1639	Blue Mountains born before January 1, with <u>CKD</u> defined as GFR <60 mL/min/1.73 m ² (Cockcroft-Gault method)		13.1 g/dL) vs other Hb quintiles (mean 15.2 g/dL)		Adjusted for age, gender, pre-existing CHD, smoking status, alcohol consumption, mean arterial BP, total cholesterol and fibrinogen levels, BMI, diabetes and self-reported health status.			factor for CHD-related mortality compared with other Hb quintiles. P=NR	
Leeder 2006 Level II	1 prospective cohort study	Female residents of two postcode areas in the		Lowest Hb quintile (mean	CHD-related death ^a (mean 8.2 years)	NR	NR	HR 1.82 (0.88, 3.78)	The lowest quintile of Hb is <u>not</u> an independent risk	
Good	N=NR	Blue Mountains born before January 1, with <u>CKD</u> defined as GFR <60 mL/min/1.73 m ² (Cockcroft-Gault method)		13.1 g/dL) vs other Hb quintiles (mean 15.2 g/dL)		Adjusted for age, pre-existing CHD, smoking status, alcohol consumption, mean arterial BP, total cholesterol and fibrinogen levels, BMI, diabetes and self-reported health status.			factor for CHD-related mortality compared with other Hb quintiles in women with the lowest quintile GFR. P=NR	
Leeder 2006 Level II	study postcode areas in	Male residents of two postcode areas in the	Community Australia	quintile (mean 13.1 g/dL) vs other Hb quintiles		NR	NR	HR 2.32 (1.29, 4.17)	The lowest quintile of Hb is an independent risk	
Good	N=NR	Blue Mountains born before January 1, with <u>CKD</u> defined as GFR <60 mL/min/1.73 m ² (<u>Cockcroft-Gault</u> <u>method</u>)			Adjusted for age, pre-existing CHD, smoking status, alcohol consumption, mean arterial BP, total cholesterol and fibrinogen levels, BMI, diabetes and self-reported health status.			factor for CHD-related mortality compared with other Hb quintiles in women with the lowest quintile GFR. P=NR		
Leeder 2006 Level II	1 prospective cohort study	Residents of two postcode areas in the	Community Australia	Lowest Hb quintile (mean	CHD-related death ^a (mean 8.2 years)	NR	NR	HR 2.07 (1.33, 3.22)	The lowest quintile of Hb is an independent risk	
Good	N=NR	Blue Mountains born before January 1, with <u>CKD defined as</u> lowest quintile <u>GFR</u> (<u>Cockcroft-Gault method</u>)		13.1 g/dL) vs other Hb quintiles (mean 15.2 g/dL)		Adjusted for age, pre-existing CHD, smoking status, alcohol consumption, mean arterial BP, total cholesterol and fibrinogen levels, BMI, diabetes and self-reported health status.			factor for CHD-related mortality compared with other Hb quintiles. P=NR	

Study Level of evidence <i>Quality</i>	No. of trials / sample size included in analysis	Patient population / Surgical procedure	Setting Location	Risk factor	Outcome (follow-up)	Results			
						Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% Cl)	Significance P-value Heterogeneity
Leeder 2006 Level II	1 prospective cohort study	Residents of two postcode areas in the	Community Australia	eudetile (meson	<u>CHD</u> -related death ^a (mean 8.2 years)	53/312 (17.0)	95/1115 (8.5)	HR 1.36 (0.95, 1.94)	The lowest quintile of Hb is <u>not</u> an independent risk
Good	N=1427	Blue Mountains born before January 1, with <u>CKD</u> defined as GFR <60 mL/min/1.73 m ² (abbreviated MDRD method)				Adjusted for age, gender, pre-existing CHD, smoking status, alcohol consumption, mean arterial BP, total cholesterol and fibrinogen levels, BMI, diabetes and self-reported health status.		factor for CHD-related mortality compared with other Hb quintiles. P=NR	
Leeder 2006 Level II	1 prospective cohort study	and the second sec	13.1 g/dL) vs other Hb quint	quintile (mean (mean 8.2 years)		63/299 (21.1)	102/959 (10.6)	HR 1.57 (1.12, 2.19)	The lowest quintile of Hb is an independent risk
Good	N=1258	Blue Mountains born before January 1, with <u>CKD</u> defined as GFR <60 mL/min/1.73 m ² (<u>Bjornsson method</u>)			Adjusted for age, gender, pre-existing CHD, smoking status, alcohol consumption, mean arterial BP, total cholesterol and fibrinogen levels, BMI, diabetes and self-reported health status.			factor for CHD-related mortality compared with other Hb quintiles. P=NR	
Leeder 2006 Level II Good	1 prospective cohort study N=294	manteede execcite the	Community Australia	Lowest Hb quintile (mean 13.1 g/dL) vs other Hb quintiles (mean 15.2 g/dL)	<u>CHD</u> -related death ^a (mean 8.2 years)	28/99 (28.3)	31/195 (15.9)	HR 1.80 (1.02, 3.18)	The lowest quintile of Hb is an independent risk
						Adjusted for age, gender, pre-existing CHD, smoking status, alcohol consumption, mean arterial BP, total cholesterol and fibrinogen levels, BMI, diabetes and self-reported health status.			factor for CHD-related mortality compared with other Hb quintiles. P=NR

BMI, body mass index; BP, blood pressure; CHD, coronary heart disease; CI, confidence interval;; CKD, chronic kidney disease; DBP, diastolic blood pressure; GFR, glomerular filtration rate; Hb, haemoglobin; HDL, highdensity lipoprotein; HR, hazard ratio; LDL, low-density lipoprotein; MDRD, modification of diet in renal disease; NR, not reported; SBP, systolic blood pressure; US; United States of America a CHD-related death (death confirmed by cross-matching demographic information with Australian National Death Index [NDI] data). Cause of death collected from death certificates and defined using ICD-9 and

ICD-10 codes.

Four studies assessed the association between **Hb as a continuous variable and all-cause mortality**, as shown in Table 3.40.^{93,98,101,103} In the study by Avram et al (2003)⁹³, a 1 g/dL increment in Hb resulted in a 17% reduction in mortality risk for patients on haemodialysis, and a 15% reduction in mortality risk for patients on peritoneal dialysis. These results were obtained after adjusting for a number of factors including diabetes, which was shown in categorical analyses in the same study to be a significant effect modifier.

Portolés et al (2007)⁹⁸ assessed the association between Hb and mortality in a representative sample of prevalent haemodialysis patients treated between January 1999 and March 2001. Greater than 90% of included patients were receiving erythropoietin. A 1 g/dL increment in time-dependent Hb resulted in a 15% reduction in mortality risk. Similarly, a 1 g/dL increment in baseline Hb resulted in a 14% reduction in the risk of mortality. The authors conclude that "anaemia is an independent risk factor that can predict survival...after adjustment for comorbidity, time on HD, cause of CKD, type of HD access, albumin level and Kt/V".

The study by Stevens et al (2004)¹⁰¹ examined the association between albumin, calcium, phosphate and parathyroid hormone levels and mortality in prevalent HD or PD patients who were alive as of January 2000 and who had calcium, phosphate and parathyroid hormone data entered between January and March 2000. This study included Hb as a potential predictor. When all patients were included in the analysis, there was a significant association between Hb (per 5 g/dL) and mortality when only age, gender, race, diabetes and dialysis type and duration were included in the model (RR 0.93; 95% CI 0.89, 0.97). However, when albumin, calcium, phosphate and parathyroid hormone were included in the model, statistical significance was lost. When populations were varied according to length of time on dialysis and analyses were adjusted for a number of variables including albumin, calcium, phosphate and parathyroid hormone, there was a significant association between Hb and mortality for those on dialysis <6 months (RR 0.88; 95% CI 0.78, 0.99), but not 6-18 months (RR 0.98; 95% CI 0.89, 1.01) or >18 months (RR 0.99; 95% CI 0.92, 1.06). As this study was not specifically aimed at assessing Hb, no specific comments regarding the associations between Hb and mortality were made by the authors.

Yen et al (2010)¹⁰³ assessed the association between body mass and mortality in maintenance HD patients. While Hb was shown to be significantly associated with mortality in univariate analysis, it was not included in the multivariate stepwise analysis. The authors make no comment on the Hb results, other than to note that erythropoietin use was highest in the subgroup of patients with the lowest Hb, those who were underweight.

Study No. of trials / sample Patient population / Setting Risk factor Outcome Results Surgical procedure size included in Level of evidence Location (follow-up) Risk factor No risk factor Risk estimate Significance analysis (95% CI) Quality n/N (%) n/N (%) P-value Heterogeneity Renai ALL-CAUSE MORTALITY DIALYSIS Avram 2003 1 prospective cohort Patients on haemodialysis 1 a/dL increment in Mortality (mean 4 NA NA OR 0.83 A 1 a/dL increment in Hb Hospital study Нb years) results in a 17% reduction Level II US Adjusted for age, gender, race, diabetes and months on dialysis at in risk of mortality in N=855 enrolment. Fair patients on haemodialysis P=0.002 1 g/dL increment in Avram 2003 1 prospective cohort Patients on peritoneal Hospital Mortality (mean 4 NA NA OR 0.85 A 1 g/dL increment in Hb ΗĎ results in a 15% reduction study dialysis years) US Level II Adjusted for age, gender, race, diabetes and months on dialysis at in risk of mortality in N=855 enrolment. Fair patients on peritoneal dialysis P=0.02 Mortality (12 NA NA OR 0.85 (0.75, A 1 g/dL increment in Portolés 2007 1 prospective cohort A representative sample Hospital 1 g/dL increment of prevalent haemodialysis in time-dependent Hb months) 0.95) time-dependent Hb is study Level II Spain patients who started significantly associated N=1428 Adjusted for age, sex, time on HD, cause of CKD, previous CV Fair treatment between January with a 15% decrease in morbidity, previous vascular access events, non-CV comorbidity, type 1999 and March 2001 mortality risk of access, albumin level, compliance with HD targets (Kt/V, nPCR, TAC urea). P<0.005 NA Portolés 2007 1 prospective cohort A representative sample Hospital 1 a/dL increment in Mortality (12 NA OR 0.86 (0.76, A 1 a/dL increment in of prevalent haemodialysis baseline Hb baseline Hb is significantly study months) 0.96) Level II Spain patients who started associated with a 14% N=1428 Fair Adjusted for age, sex, time on HD, cause of CKD, previous CV treatment between January decrease in mortality risk morbidity, previous vascular access events, non-CV comorbidity, type 1999 and March 2001 of access, albumin level, compliance with HD targets (Kt/V, nPCR, TAC P<0.02 urea) and time-dependent Hb. Stevens 2004 1 prospective cohort Prevalent dialysis patients Hospital Hb (per 5 g/dL) Mortality (median NA NA RR 0.93 (0.89, A 5 g/dL difference in Hb (haemodialysis or follow-up 32 is significantly associated study 0.97) Level II Canada peritoneal dialysis) in months) with a 7% reduction in N=515 Adjusted for age, gender, race, diabetes and dialysis type and duration. Fair mortality risk. dialysis centres in British Columbia who were alive P<0.001 and on dialysis as of January 2000 and had calcium, phosphate and parathyroid hormone data entered between Jan and Mar 2000

Table 3.40 Question 1 (renal): Results for Level II evidence – mortality (Hb as a continuous variable)

Study	No. of trials / sample	Patient population /	Setting	Risk factor	Outcome	Results				
Level of evidence <i>Quality</i>	size included in analysis	Surgical procedure	Location		(follow-up)	Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity	
Stevens 2004 Level II	1 prospective cohort study	Prevalent dialysis patients (haemodialysis or paritanaal dialysis) in	Hospital Canada	Hb (per 5 g/dL)	Mortality (median follow-up 32	NA	NA	RR 0.97 (0.92, 1.02)	A 5 g/dL difference in Hb is <u>not</u> significantly	
Fair	N=515	peritoneal dialysis) in dialysis centres in British Columbia who were alive and on dialysis as of January 2000 and had calcium, phosphate and parathyroid hormone data entered between Jan and Mar 2000			months)				 associated with a change in mortality risk when continuous values of mineral metabolism parameters are included in the model. P=0.194 	
Stevens 2004 Level II	1 prospective cohort study	Prevalent dialysis patients (haemodialysis or	Hospital Canada	Hb (per 5 g/dL)	Mortality (median follow-up 32	NA	NA	RR 0.96 (0.91, 1.01)	A 5 g/dL difference in Hb is not significantly	
Fair	N=515	peritoneal dialysis) in dialysis centres in British Columbia who were alive and on dialysis as of January 2000 and had calcium, phosphate and parathyroid hormone data entered between Jan and Mar 2000			months)	race, dialysis adec	djusted for age, gender, diabetes, dialysis type, dialysis duration, ace, dialysis adequacy (PRU), <u>albumin, calcium and phosphate and</u> arathyroid hormone (different combinations of different levels).		associated with a change in mortality risk when categories of mineral metabolism parameters are combined and included in the model. P=0.097	
Stevens 2004 Level II	1 prospective cohort study	Prevalent dialysis patients (haemodialysis or	Hospital Canada	Hb (per 5 g/dL)	Mortality (median follow-up 32	NA	NA	RR 0.88 (0.78, 0.99)	A 5 g/dL difference in Hb is significantly associated	
Fair	N=125	peritoneal dialysis) in dialysis centres in British Columbia who were alive and on dialysis as of January 2000 and had calcium, phosphate and parathyroid hormone data entered between Jan and Mar 2000 <u>: on dialysis for <6</u> <u>months</u>			months)	race, dialysis adec	Adjusted for age, gender, diabetes, dialysis type, dialysis duration, race, dialysis adequacy (PRU), <u>albumin, calcium and phosphate and</u> <u>parathyroid hormone (different combinations of different levels).</u>		with a 12% reduction in mortality risk in patients on dialysis <6 months when categories of mineral metabolism parameters are combined and included in the model P=0.029	
Stevens 2004	1 prospective cohort study	Prevalent dialysis patients (haemodialysis or	Hospital	Hb (per 5 g/dL)	Mortality (median follow-up 32	NA	NA	RR 0.98 (0.89, 1.01)	A 5 g/dL difference in Hb is <u>not</u> significantly	

Study	No. of trials / sample	Patient population /	Setting	Risk factor	Outcome	Results			
Level of evidence <i>Quality</i>	size included in analysis	Surgical procedure	Location		(follow-up)	Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Level II Fair	N=117	peritoneal dialysis) in dialysis centres in British Columbia who were alive and on dialysis as of January 2000 and had calcium, phosphate and parathyroid hormone data entered between Jan and Mar 2000 <u>; on dialysis for 6- 18 months</u>	Canada		months)	race, dialysis adequ	ender, diabetes, dialysis tj Jacy (PRU), <u>albumin, calci</u> le (different combinations	ium and phosphate and	associated with a change in mortality risk in patients on dialysis 6-18 months when categories of mineral metabolism parameters are combined and included in the model. P=0.710
Stevens 2004 Level II <i>Fair</i>	1 prospective cohort study N=117	Prevalent dialysis patients (haemodialysis or peritoneal dialysis) in dialysis centres in British Columbia who were alive and on dialysis as of January 2000 and had calcium, phosphate and parathyroid hormone data entered between Jan and Mar 2000 <u>: on dialysis for</u> ≥18 months	Hospital Canada	Hb (per 5 g/dL)	Mortality (median follow-up 32 months)	race, dialysis adequ	NA ender, diabetes, dialysis ty Jacy (PRU), <u>albumin, calci</u> te (different combinations	ium and phosphate and	A 5 g/dL difference in Hb is <u>not</u> significantly associated with a change in mortality risk in patients on dialysis >18 months when categories of mineral metabolism parameters are combined and included in the model. P=0.758
Yen 2010 Level II <i>Fair</i>	1 prospective cohort study N=959	Maintenance <u>haemodialysis</u> patients	Hospital Taiwan	1 g/dL increment in Hb	Mortality (3 years)	included age, BMI, haemodialysis dura albumin, creatinine, hsCRP and cardiot	previous CVD, diabetes, h titon, use of fistula, use of , Log ferritin, phosphate, L horacic ratio. Only variable es, BMI, albumin, Log hsC	BCM dialyzer, nPCR, Hb, og iPTH, HDL, LDL, Log es <0.05 remained in	A 1 g/dL increment in Hb is <u>not</u> significantly associated with mortality P=NR

BCM, body composition monitor; BMI, body mass index; CI, confidence interval; CKD, chronic kidney disease; CV, cardiovascular; CVD, cardiovascular disease; Hb, haemoglobin; HD, haemodialysis; HDL, high-density lipoprotein; hsCRP, high-sensitivity C-reactive protein; iPTH, intact parathyroid hormone; LDL, low-density lipoprotein; NA, not applicable; nPCR, normalised protein catabolic rate; NR, not reported; OR, odds ratio; PRU, percent reduction urea; RR, risk ratio; TAC, time-averaged concentration; US, United States of America

Anaemia as an independent risk factor for stroke/MI

One study assessed the association between **anaemia as defined by the WHO and stroke**, as shown in Table 3.41.⁹¹ Based on data from the Atherosclerosis Risk in Communities (ARIC) study, the risk of mortality was assessed in subjects with CKD compared with those without CKD. This analysis was conducted in two separate populations: those with anemia and those without anaemia. CKD was defined according to a GFR of <60 mL/min/1.73m², estimated using the Cockcroft-Gault method. In subjects with CKD who also had anaemia, the risk of stroke compared with subjects without CKD was HR 5.43 (95% CI 2.04, 14.41; p<0.01). In subjects with CKD who also had anaemia, the risk of stroke compared with subjects without CKD was 1.41 (95% CI 0.93, 2.14; p=0.1). In subjects with CKD who also had anaemia, the risk of ischaemic stroke compared with subjects without CKD was HR 10.34 (95% CI 1.00, 29.0; p=0.03). In subjects without anaemia the equivalent HR was not reported although it was noted that there was no significant association in this population. The authors note that a significant interaction was seen between CKD and anaemia for stroke (P=0.01). The authors conclude that "among middle-aged community-based persons, the combination of CKD and anemia was associated with a substantial increase in stroke risk, independent of other known risk factors for stroke".

No studies were identified which assessed the association between anaemia and myocardial infarction.

Study No. of trials / Patient population / Risk factor Outcome Results Setting Surgical procedure sample size Level of evidence Location (follow-up) Risk factor No risk factor Risk estimate (95% CI) Significance included in Quality n/N (%) n/N (%) P-value analysis Heterogeneity Renal STROKE KIDNEY DISEASE Abramson (2003) 1 prospective Community-based CKD + anaemia vs no Stroke (9 years) NR NR HR 5.43 (2.04, 14.41) CKD is an independent Community cohort study middle-aged CKD + anaemia risk factor for increased Level II US Adjusted for age, gender, race, education, prevalent CHD, diabetes, SBP, DBP, population with risk of stroke in subjects (ARIC) HDL, LDL, carotid intima media thickness, current smoking. Fair with anaemia anaemiac N=1262 P < 0.01 Abramson (2003) 1 prospective Community-based Community CKD + no anaemia vs Stroke (9 years) NR NR HR 1.41 (0.93, 2.14) CKD is <u>not</u> an cohort study no CKD + no independent risk factor middle-aged US Level II Adjusted for age, gender, race, education, prevalent CHD, diabetes, SBP, DBP, (ARIC) population without anaemia for increased risk of HDL, LDL, carotid intima media thickness, current smoking. Fair anaemia stroke in subjects without N=12.454 anaemia P=0.1 Abramson (2003) Community-based Ischaemic stroke NR NR HR 10.34 (1.00, 29.0) CKD is an independent 1 prospective Community CKD + anaemia vs no cohort study middle-aged CKD + anaemia risk factor for increased (9 years) Level II US Adjusted for age, gender, race, education, prevalent CHD, diabetes, SBP, DBP, (ARIC) population with risk of ischaemic stroke HDL, LDL, carotid intima media thickness, current smoking. Fair anaemiac in subjects with anaemia N=1262 P=0.03NR NR NR Abramson (2003) 1 prospective Community-based Community CKD + no anaemia vs Ischaemic stroke CKD is not an cohort study middle-aged no CKD + no (9 years) independent risk factor Level II US Adjusted for age, gender, race, education, prevalent CHD, diabetes, SBP, DBP, (ARIC) population without anaemia for increased risk of HDL, LDL, carotid intima media thickness, current smoking. Fair ischaemic stroke in anaemia N=12.454 subjects without anaemia P=NR

Table 3.41 Question 1 (renal): Results for Level II evidence – stroke (WHO or similar anaemia criteria)

CHD, coronary heart disease; CI, confidence interval; CKD, chronic kidney disease; DBP, diastolic blood pressure; HDL, high-density lipoprotein; HR, hazard ratio; LDL, low-density lipoprotein; NR, not reported; SBP, systolic blood pressure; US, United States of America

^a Hb <13 g/dL in men and <12 g/dL in women.

Anaemia as an independent risk factor for functional/performance status

Two studies assessed the association between various Hb levels and

functional/performance status, as shown in Table 3.42.^{94,97} Both studies assessed quality of life using the Short-Form (SF)-36 survey. The study by Finkelstein et al (2009)⁹⁴ examined the association between different categories of Hb (<11 g/dL, 11-<12 g/dL, 12-<13 g/dL and \geq 13 g/dL) and different components and domains of the SF-36 in patients with CKD who were not on dialysis. The results of the analyses showed that Hb was significantly associated with the following component and domains of the SF-36: physical component summary (P=0.08), physical functioning (P=0.003), role physical (P=0.002), energy-fatigue (P=0.02), pain (P=0.015) and general health (P=0.049). Components and domains not showing with association between Hb included mental component summary (P=0.82), role emotional (P=0.18), social function (P=0.15) and emotional wellbeing (P=0.29). The authors conclude that "higher Hgb levels are associated with improved QofL domains of the KDQofL questionnaire [which includes the SF-36]". The most dramatic changes occurred between Hb levels <11 and 11-12 g/dL. Analyses were adjusted for erythropoietin therapy, and the interaction between Hb and erythropoietin was tested and shown to be non significant for all domains.

Plantinga et al (2007)⁹⁷ assessed the relationship between 6-month Hb levels and 1-year SF-36 in patients initiating haemodialysis between October 1995 and June 1998. Hb was dichotomised as follows: \geq 11 g/dL and <11 g/dL. The results of the analyses showed that higher Hb was significantly associated with higher scores on the following component and domains of the SF-36: physical component summary, mental component summary, physical functioning, role physical, social functioning, bodily pain and mental health (all P<0.05). Components and domains not showing with association between Hb included role emotional, general health and vitality.

Table 3.42 Question 1 (renal): Results for Level II evidence – functional/performance status (other anaemia criteria, Hb levels or change in Hb levels)

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results			
Level of evidence <i>Quality</i>	sample size included in analysis	Surgical procedure	Location			Score ± SD	Score ± SD	Risk estimate (95% CI)	Significance P-value Heterogeneity
Renal									
QUALITY OF LIFE									
SF-36-PHYSICAL COM	PONENT SUMMARY								
CKD									
Finkelstein 2009 Level II	1 cross-sectional analysis of a	Patients with CKD (defined as a eGFR <60 mL/min/1.73m2	Hospital US and Canada	Hb categories (<11 g/dL, 11-<12 g/dL,	SF-36 (physical component	SF-36 scores acros 38.5, 41.0	ss categories: 37.4, 39.9,	NR	Increasing Hb level is a independent risk factor for an increase in
Fair	prospective cohort study N=NR (up to 1186)	(MDRD)) stages 3-5 not on dialysis		12-<13 g/dL, ≥13 g/dL)	summary)	Adjusted for age, CKE myocardial infarction,	D stage, albumin, diabetes, cor iron use, ESA use (± interaction	ngestive heart failure, on between Hb and ESA)	physical component summary score P=0.008
Dialysis				·					
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	6 month Hb ≥11 g/dL	1-year SF-36	33.6 ± 10.6	32.0 ± 10.1	MD 1.56 (0.16, 2.96)	Hb≥11 g/dL is an
Level II Fair	analysis of prospectively collected data N=438	haemodialysis during 10/95 to 6/98	US	vs 6 month Hb <11 g/dL	(physical component summary)	and QoL at 12 months	that had a significant associat s, or due to prior evidence of a sex, Index of Coexistent Dise	ssociation with QoL: baseline	independent predictor of greater physical component summary score compared with H <11 g/dL P<0.05
SF-36-MENTAL COMP	ONENT SUMMARY								
CKD									
Finkelstein 2009 Level II	1 cross-sectional analysis of a	Patients with CKD (defined as a eGFR	Hospital US and Canada	Hb categories (<11 g/dL, 11-<12 g/dL,	SF-36 (mental component	SF-36 scores acros 50.0, 49.5	ss categories: 49.7, 50.5,	NR	Increasing Hb level is <u>n</u> an independent risk
Fair	prospective cohort study N=NR (up to 1186)	<60 mL/min/1.73m2 (MDRD)) stages 3-5 not on dialysis		12-<13 g/dL, ≥13 g/dL)	summary)		D stage, albumin, diabetes, cor iron use, ESA use (± interaction		factor for change in mental component summary score P=0.82
Dialysis									
Plantinga 2007 Level II	1 cross-sectional analysis of	Patients <u>initiating</u> haemodialysis during	Hospital US	6 month Hb ≥11 g/dL vs 6 month Hb <11	1-year SF-36 (mental	49.7 ± 10.9	46.8 ± 11.9	MD 2.49 (0.35, 4.62)	Hb≥11 g/dL is an independent predictor c
Fair	prospectively collected data N=438	10/95 to 6/98		g/dL	component summary)	and QoL at 12 months	that had a significant associat s, or due to prior evidence of a sex, Index of Coexistent Disea	ssociation with QoL: baseline	greater mental component summary score compared with H <11 g/dL P<0.05

Technical report on medical patient blood management – Volume 1 April 2012

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results			
Level of evidence <i>Quality</i>	sample size included in analysis	Surgical procedure	Location			Score ± SD	Score ± SD	Risk estimate (95% CI)	Significance P-value Heterogeneity
СКД				·					
Finkelstein 2009 Level II	1 cross-sectional analysis of a	Patients with CKD (defined as a eGFR	Hospital US and Canada	Hb categories (<11 g/dL, 11-<12 g/dL,	SF-36 (physical functioning)	SF-36 scores acros 53.1, 60.7	ss categories: 51.2, 56.9,	NR	Increasing Hb level is an independent risk factor
Fair	prospective cohort study N=NR (up to 1186)	<60 mL/min/1.73m2 (MDRD)) stages 3-5 not on dialysis		12-<13 g/dL, ≥13 g/dL)			D stage, albumin, diabetes, cor iron use, ESA use (± interaction		for an increase in physical functioning score P=0.003
Dialysis									
Plantinga 2007	1 cross-sectional	Patients initiating haemodialysis during	Hospital	6 month Hb ≥11 g/dL vs 6 month Hb <11	1-year SF-36 (physical	47.4 ± 28.2	40.9 ± 29.0	MD 5.02 (1.44, 8.60)	<i>Hb</i> ≥11 g/dL is an independent predictor of
Level II Fair	analysis of prospectively collected data N=438	10/95 to 6/98	US	g/dL	(prijsical functioning)	and QoL at 12 months	that had a significant associat s, or due to prior evidence of a: sex, Index of Coexistent Disea	ssociation with QoL: baseline	findependent predictor of greater physical functioning score compared with Hb <11 g/dL P<0.05
SF-36-ROLE PHYSICA	-								
CKD									
Finkelstein 2009 Level II	1 cross-sectional analysis of a	Patients with CKD (defined as a eGFR	Hospital US and Canada	Hb categories (<11 g/dL, 11-<12 g/dL,	SF-36 (role physical)	SF-36 scores acros 47.1, 56.9	ss categories: 40.8, 51.7,	NR	Increasing Hb level is an independent risk factor
Fair	prospective cohort study N=NR (up to 1186)	<60 mL/min/1.73m2 (MDRD)) stages 3-5 not on dialysis		12-<13 g/dL, ≥13 g/dL)			D stage, albumin, diabetes, cor iron use, ESA use (± interaction		for an increase in role- physical score P=0.002
Dialysis			•						
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	6 month Hb ≥11 g/dL	1-year SF-36 (role	30.9 ± 38.3	23.8 ± 34.4	MD 6.07 (0.69, 11.5)	Hb ≥ 11 g/dL is an
Level II Fair	analysis of prospectively collected data N=438	<u>haemodialysis</u> during 10/95 to 6/98	US	vs 6 month Hb <11 g/dL	physical)	and QoL at 12 months	that had a significant associat s, or due to prior evidence of a sex, Index of Coexistent Disea	ssociation with QoL: baseline	independent predictor of greater role physical score compared with Hb <11 g/dL P<0.05
SF-36-ROLE EMOTION	AL				1	1			
CKD									
Finkelstein 2009 Level II	1 cross-sectional analysis of a	Patients with CKD (defined as a eGFR	Hospital US and Canada	Hb categories (<11 g/dL, 11-<12 g/dL,	SF-36 (role emotional)	SF-36 scores acros 68.2, 75.6	ss categories: 68.5, 73.4,	NR	Increasing Hb level is <u>not</u> an independent risk
Fair	prospective cohort study N=NR (up to 1186)	<60 mL/min/1.73m2 (MDRD)) stages 3-5 not on dialysis		12-<13 g/dL, ≥13 g/dL)			D stage, albumin, diabetes, cor iron use, ESA use (± interaction		factor for change in role emotional score P=0.18

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results				
Level of evidence <i>Quality</i>	sample size included in analysis	Surgical procedure	Location			Score ± SD	Score ± SD	Risk estimate (95% CI)	Significance P-value Heterogeneity	
Dialysis	·									
Plantinga 2007 Level II	1 cross-sectional analysis of prospectively	Patients <u>initiating</u> haemodialysis 10/95 to 6/98	Hospital US	6 month Hb ≥11 g/dL vs 6 month Hb <11 g/dL	1-year SF-36 (role emotional)		51.8 ± 44.4 that had a significant associat		Hb≥11 g/dL is <u>not</u> an independent predictor of greater role emotional	
Fair	collected data N=438			9,02			s, or due to prior evidence of as sex, Index of Coexistent Disea		score compared with Hb <11 g/dL P=NR	
SF-36-ENERGY-FATIG	UE			1	1					
CKD										
Finkelstein 2009 Level II	1 cross-sectional analysis of a	Patients with CKD (defined as a eGFR <60 mL/min/1.73m2	Hospital US and Canada	Hb categories (<11 g/dL, 11-<12 g/dL,	SF-36 (energy- fatigue)	SF-36 scores acros 49.0, 50.1	ss categories: 43.4, 48.8,	NR	Increasing Hb level is an independent risk factor	
Fair	prospective cohort study N=NR (up to 1186)	(MDRD)) stages 3-5 not on dialysis		12-<13 g/dL, ≥13 g/dL)) stage, albumin, diabetes, con iron use, ESA use (± interactio		for an increase in energy/fatigue score P=0.02	
SF-36-SOCIAL FUNCTI	ON				1					
CKD										
Finkelstein 2009 Level II	1 cross-sectional analysis of a	Patients with CKD (defined as a eGFR <60 mL/min/1.73m2	Hospital US and Canada	Hb categories (<11 g/dL, 11-<12 g/dL,	SF-36 (social function)	SF-36 scores acros 72.8, 76.2	ss categories: 71.7, 76.9,	NR	Increasing Hb level is <u>not</u> an independent risk factor for change in	
Fair	prospective cohort study N=NR (up to 1186)	(MDRD)) stages 3-5 not on dialysis		12-<13 g/dL, ≥13 g/dL)) stage, albumin, diabetes, con iron use, ESA use (± interaction		social function P=0.15	
Dialysis				·						
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	6 month Hb ≥11 g/dL	1-year SF-36	66.8 ± 27.1	60.4 ± 28.4	MD 5.72 (0.33, 11.1)	Hb≥11 g/dL is an	
Level II Fair	analysis of prospectively collected data N=438	haemodialysis during 10/95 to 6/98	US	vs 6 month Hb <11 g/dL	(social functioning)	and QoL at 12 months	that had a significant associat s, or due to prior evidence of as sex, Index of Coexistent Disea	ssociation with QoL: baseline	independent predictor of greater social functioning score compared with Hb <11 g/dL P<0.05	
SF-36-PAIN					1					
CKD										
Finkelstein 2009 Level II	1 cross-sectional analysis of a	Patients with CKD (defined as a eGFR	Hospital US and Canada	Hb categories (<11 g/dL, 11-<12 g/dL,	SF-36 (pain)	SF-36 scores acros 63.7, 70.8	ss categories: 67.4, 71.4,	NR	Increasing Hb level is an independent risk factor	
Fair	prospective cohort study N=NR (up to 1186)	<60 mL/min/1.73m2 (MDRD)) stages 3-5 not on dialysis		12-<13 g/dL, ≥13 g/dL)		Adjusted for age, CKD stage, albumin, diabetes, congestive heart failure, myocardial infarction, iron use, ESA use (± interaction between Hb and ESA)			for an increase in pain score P=0.015	
Dialysis	1	1	1	1	1	1				

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results				
Level of evidence <i>Quality</i>	sample size included in analysis	Surgical procedure	Location			Score ± SD	Score ± SD	Risk estimate (95% CI)	Significance P-value Heterogeneity	
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	6 month Hb ≥11 g/dL	1-year SF-36	59.9 ± 26.3	53.0 ± 26.7	MD 6.16 (2.37, 9.96)	Hb ≥ 11 g/dL is an	
Level II Fair	analysis of prospectively collected data N=438	haemodialysis during 10/95 to 6/98	US	vs 6 month Hb <11 g/dL	(bodily pain)	and QoL at 12 month	s that had a significant associat is, or due to prior evidence of a e, sex, Index of Coexistent Disea	ssociation with QoL: baseline	independent predictor of greater bodily pain score compared with Hb <11 g/dL P<0.05	
SF-36–GENERAL HEAL	TH	•	• •						·	
CKD										
Finkelstein 2009 Level II	1 cross-sectional analysis of a	Patients with CKD (defined as a eGFR <60 mL/min/1.73m2	Hospital US and Canada	Hb categories (<11 g/dL, 11-<12 g/dL,	SF-36 (general health)	SF-36 scores acro 45.9, 50.4	oss categories: 44.9, 47.0,	NR	Increasing Hb level is an independent risk factor	
Fair	prospective cohort study N=NR (up to 1186)	(MDRD)) stages 3-5 not on dialysis		12-<13 g/dL, ≥13 g/dL)			D stage, albumin, diabetes, cor , iron use, ESA use (± interaction		for an increase in general health score P=0.049	
Dialysis										
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	6 month Hb ≥11 g/dL	1-year SF-36	45.3 ± 21.2	43.1 ± 21.5	MD 2.63 (-2.12, 7.38)	Hb≥11 g/dL is <u>not</u> an	
Level II <i>Fair</i>	analysis of prospectively collected data N=438	haemodialysis during 10/95 to 6/98	US	vs 6 month Hb <11 g/dL	(general health)	and QoL at 12 month	s that had a significant associat is, or due to prior evidence of a e, sex, Index of Coexistent Disea	ssociation with QoL: baseline	independent predictor of greater general health score compared with Hb <11 g/dL P=NR	
SF-36-EMOTIONAL WE	ELLBEING	1								
CKD										
Finkelstein 2009 Level II	1 cross-sectional analysis of a	Patients with CKD (defined as a eGFR	Hospital US and Canada	Hb categories (<11 g/dL, 11-<12 g/dL,	SF-36 (emotional wellbeing)	SF-36 scores acro 73.9, 73.2	oss categories: 73.0, 76.3,	NR	Increasing Hb level is <u>not</u> an independent risk	
Fair	prospective cohort study N=NR (up to 1186)	<60 mL/min/1.73m2 (MDRD)) stages 3-5 not on dialysis		12-<13 g/dL, ≥13 g/dL)			D stage, albumin, diabetes, cor , iron use, ESA use (± interaction		factor for change in emotional wellbeing score P=0.29	
SF-36–MENTAL HEALT	H									
Dialysis										
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	6 month Hb ≥11 g/dL	1-year SF-36	73.0 ± 19.0	66.2 ± 21.0	MD 5.12 (2.31, 7.93)	Hb ≥ 11 g/dL is an	
Level II <i>Fair</i>	analysis of prospectively collected data N=438	haemodialysis during 10/95 to 6/98	US	vs 6 month Hb <11 g/dL	(mental health)	Adjusted for variables that had a significant association with both Hb at 6 months and QoL at 12 months, or due to prior evidence of association with QoL: baseline QoL score, age, race, sex, Index of Coexistent Disease, albumin and creatinine.		ssociation with QoL: baseline	independent predictor of greater mental health score compared with Hb <11 g/dL P<0.05	

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results					
Level of evidence <i>Quality</i>	sample size included in analysis	Surgical procedure	Location			Score ± SD	Score ± SD	Risk estimate (95% CI)	Significance P-value Heterogeneity		
SF-36-VITALITY							•				
Dialysis											
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	6 month Hb ≥11 g/dL	1-year SF-36	45.7 ± 21.1	43.4 ± 20.9	MD 2.39 (-0.51, 5.29)	Hb≥11 g/dL is <u>not</u> an		
Level II <i>Fair</i>	analysis of prospectively collected data N=438	haemodialysis 10/95 to 6/98	US	vs 6 month Hb <11 g/dL	(vitality)	and QoL at 12 months, o		n with both Hb at 6 months sociation with QoL: baseline se, albumin and creatinine.	independent predictor of greater vitality score compared with Hb <11 g/dL P=NR		

CI, confidence interval; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; ESA, erythropoiesis-stimulating agent; Hb, haemoglobin; MD, mean difference; MDRD, modification of diet for renal disease; NR, not reported; QoL, quality of life; SF-36, short form 36 question general health survey; US, United States of America.

Five studies assessed the association between **Hb as a continuous variable and functional/performance status**, as shown in Table 3.43.^{97,100,102,104,105} Merkus et al (1997)¹⁰⁵ examined the association between Hb and the SF-36 in patients initiating HD or PD between October 1993 and April 1995. Hb was found to be significantly associated with role emotional, social functioning and vitality. The partial variance explained by Hb was very low, ranging from 1.7% for role emotional to 6.1% for social functioning. No other domains examined were associated with Hb. The authors conclude that 'multivariate analysis showed that a higher number of comorbid conditions, a lower Hb level, and a lower residual renal function (rGFR) were the most important independent explanatory factors for poorer quality of life". However, the authors note that the total explained variation by all identified characteristics was small.

The study by Mollaoglu et al (2004)¹⁰⁰ examined the relationship between depression and health-related quality of life in prevalent HD patients in Turkey. Hb was one of the variables also under consideration. Hb was not shown to be associated with either the mental component summary or the physical component summary. It should kept in mind that this was a very small study (N=140). The authors did not make any specific comments regarding the association between Hb and quality of life. Global Beck's Depression Inventory (BDI) was an independent predictor of both mental and physical component summaries in this population.

Perlman et al $(2005)^{104}$ assessed the association between a number of different risk factors (including Hb) and SF-36 in patients with CKD, defined as a GFR \leq 50 mL/min/1.73m² estimated using the MDRD. A significant association was shown between anaemia and the following components and domains of the SF-36: physical component summary (P<0.05), mental component summary (P<0.05), physical function (P<0.05), role physical (P<0.05), role emotional (P<0.05), social function (P<0.01), general health (P<0.05), vitality (P<0.05) and mental health (P<0.05). The only domain not significantly associated with Hb was pain.

The study by Plantinga et al (2007)⁹⁷ assessed not only the association between Hb at 6 months and 1-year SF-36, but also the association between change in Hb from baseline to 6 months and 1-year SF-36. As noted previously, this study was conducted in patients initiating haemodialysis between October 1995 and June 1998. With regards to both 6-month Hb levels and change in Hb levels from baseline to 6 months, there was a significant association with both component summaries and all individual domains examined. The authors conclude that "hemodialysis patients who attain higher hemoglobin concentration at 6 months, especially >11 g/dL, have a better [quality of life] QOL at 1 year".

Turk et al (2004)¹⁰² assessed the association between Hb and SF-36 in men aged 18-65 who had been on HD for at least 3 months. Hb was shown to be significantly associated with both the physical and mental component summaries in this population. The authors conclude that Hb level is an independent variable (along with erectile dysfunction) that predicts the physical and mental component scores of the SF-36.

Table 3.43 Question 1 (renal): Results for Level II evidence – functional/performance status (Hb as a continuous variable)

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results			
Level of evidence Quality	sample size included in analysis	Surgical procedure	Location			Score ± SD	Score ± SD	Risk estimate (95% CI)	Significance P-value Heterogeneity
Renal									
QUALITY OF LIFE									
SF-36-PHYSICAL COM	IPONENT SUMMARY								
CKD									
Perlman 2005	1 cross-sectional	CKD defined as a GFR	Hospital	Hb	SF-36 (physical	NA	NA	1.1	Hb level is significantly
Level II Fair	analysis of prospectively collected data N=NR	<pre>≤50 mL/min/1.73 m² (estimated by MDRD)</pre>	US		component summary)	Adjusted for age, sex stage 4, albumin, CH		, marital status, GFR stage 3, GFR	associated with physica component summary score P <0.05
Dialysis		·							
Mollaoglu 2004 Level II Poor	Cross-sectional analysis of prospectively collected data N=140	Prevalent <u>haemodialysis</u> patients	Hospital Turkey	Hb	SF-36 (physical component summary)	NA Adjusted for age, sex	NA , serum albumin and BDI.	0.0329	Hb is <u>not</u> significantly associated with physica component summary score P ≥0.05
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	1 g/dL increment 6-	1-year SF-36	NA	NA	MD 0.92 (0.22, 1.62)	A 1 g/dL increment in a
Level II Fair	analysis of prospectively collected data N=438	haemodialysis during 10/95 to 6/98	US	month Hb	(physical component summary)	and QoL at 12 month	s, or due to prior evidence of	ciation with both Hb at 6 months of association with QoL: baseline isease, albumin and creatinine.	month Hb is significantl associated with an increase in physical component summary score P<0.05
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	1 g/dL increase in Hb	Change in SF-36	NA	NA	MD 0.64 (0.16, 1.11)	A 1 g/dL increase in HI
Level II Fair	analysis of prospectively collected data N=438	haemodialysis during 10/95 to 6/98	US	from baseline to 6 months	score from baseline to 1 year (physical component summary)	and QoL at 12 month	s, or due to prior evidence of	ciation with both Hb at 6 months of association with QoL: age, race, sease), albumin and creatinine.	from baseline to 6 months is significantly associated with an increase in physical component summary score P<0.05
Turk 2004	1 cross-sectional	Men aged 18-65	Hospital	Hb g/dL	SF-36 (physical	NA	NA	NR	Hb level is significantly
Level II Poor	analysis of prospectively collected data N=148	on <u>haemodialysis for at</u> <u>least 3 months</u>	Turkey		component summary)	Adjusted for variables found significant in the univariate analyses: age, occupation, education level and erectile dysfunction score.		associated with physical component summary score P=0.024	

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results			
Level of evidence Quality	sample size included in analysis	Surgical procedure	Location			Score ± SD	Score ± SD	Risk estimate (95% CI)	Significance P-value Heterogeneity
CKD									
Perlman 2005 Level II <i>Fair</i>	1 cross-sectional analysis of prospectively collected data N=NR	<u>CKD</u> defined as a GFR ≤50 mL/min/1.73 m2 (estimated by MDRD)	Hospital US	Hb	SF-36 (mental component summary)	NA Adjusted for age, sex stage 4, albumin, CH		1.1 marital status, GFR stage 3, GFR	Hb level is significantly associated with mental component summary score P <0.05
Dialysis									
Mollaoglu 2004 Level II	Cross-sectional analysis of prospectively	Prevalent <u>haemodialysis</u> patients	Hospital Turkey	Hb	SF-36 (mental component summary)	NA	NA	Regression coefficient 0.121	Hb is <u>not</u> significantly associated with mental component summary
Poor	collected data N=140				summary)	Adjusted for age, sex	<, serum albumin and BDI.	·	score P ≥0.05
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	1 g/dL increment 6-	1-year SF-36	NA	NA	MD 1.42 (0.72, 2.12)	A 1 g/dL increment in 6-
Level II Fair	analysis of prospectively collected data N=438	haemodialysis during 10/95 to 6/98	US	month Hb	(mental component summary)	Adjusted for variables that had a significant association with both Hb at 6 months and QoL at 12 months, or due to prior evidence of association with QoL: baseline QoL score, age, race, sex, Index of Coexistent Disease, albumin and creatinine.		month Hb is significantly associated with an increase in mental component summary score P<0.05	
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	1 g/dL increase in Hb	Change in SF-36	NA	NA	MD 0.80 (0.27, 1.33)	A 1 g/dL increase in Hb
Level II Fair	analysis of prospectively collected data N=438	haemodialysis 10/95 to 6/98	US	from baseline to 6 months	score from baseline to 1 year (mental component summary)	and QoL at 12 month	ns, or due to prior evidence o	iation with both Hb at 6 months f association with QoL: age, race, sease), albumin and creatinine.	from baseline to 6 months is significantly associated with an increase in mental component summary score P<0.05
Turk 2004	1 cross-sectional	Men aged 18-65	Hospital	Hb g/dL	SF-36 (mental	NA	NA	NR	Hb level is significantly
Level II Poor	analysis of prospectively collected data N=148	on <u>haemodialysis for at</u> least 3 months	Turkey		component summary)		s found significant in the universectile dysfunction score.	variate analyses: age, occupation,	associated with mental component summary score P=0.021
SF-36-PHYSICAL FUN	CTIONING	I	1	I	1	1			
СКД									
Perlman 2005 Level II	1 cross-sectional analysis of	<u>CKD</u> defined as a GFR ≤50 mL/min/1.73 m2	Hospital US	Hb	SF-36 (physical function)	NA	NA	Parameter estimate 2.3	Hb level is significantly associated with physica

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results				
Level of evidence <i>Quality</i>	sample size included in analysis	Surgical procedure	Location			Score ± SD	Score ± SD	Risk estimate (95% CI)	Significance P-value Heterogeneity	
Fair	prospectively collected data N=NR	(estimated by MDRD)				Adjusted for age, sex stage 4, albumin, CH		marital status, GFR stage 3, GFR	function score P <0.05	
Dialysis										
Merkus 1997 Level II Fair	Cross-sectional analysis of prospectively collected data N=226	Adults started on chronic haemodialysis or peritoneal dialysis in 13 Dutch dialysis centres between	Hospital The Netherlands	Hb	SF-36 (physical functioning)	linear regression (for	ward stepwise selection stra	NR sis were included in a multiple tegy): age, employment status, s, nPCR/nPNA, residual GFR and	Hb is <u>not</u> significantly associated with physical functioning score P=NR	
		October 1993 and April 1995								
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	1 g/dL increment 6-	1-year SF-36	NA	NA	MD 2.61 (0.51, 4.71)	A 1 g/dL increment in 6-	
Level II <i>Fair</i>	analysis of prospectively collected data N=438	haemodialysis during 10/95 to 6/98	US	month Hb	(physical functioning)	and QoL at 12 month	hs, or due to prior evidence o	iation with both Hb at 6 months f association with QoL: baseline sease, albumin and creatinine.	month Hb is significantly associated with an increase in physical functioning score P<0.05	
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	1 g/dL increase in Hb	Change in SF-36	NA	NA	MD 1.51 (0.39, 2.62)	A 1 g/dL increase in Hb	
Level II Fair	analysis of prospectively collected data N=438	haemodialysis during 10/95 to 6/98	US	from baseline to 6 months	score from baseline to 1 year (physical functioning)	and QoL at 12 month	hs, or due to prior evidence o	iation with both Hb at 6 months f association with QoL: age, race, sease), albumin and creatinine.	from baseline to 6 months is significantly associated with an increase in physical functioning score P<0.05	
SF-36-ROLE PHYSICA	L		1							
CKD										
Perlman 2005 Level II	1 cross-sectional analysis of prospectively	<u>CKD</u> defined as a GFR ≤50 mL/min/1.73 m2 (estimated by MDRD)	Hospital US	Hb	SF-36 (physical role)	NA	NA	Parameter estimate 4.8	Hb level is significantly associated with physical role score	
Fair	collected data					Adjusted for age, sea stage 4, albumin, CH		marital status, GFR stage 3, GFR	P <0.05	
Dialysis	1			I.						
Merkus 1997	Cross-sectional	Adults started on	Hospital	Hb	SF-36 (role	NA	NA	NR	Hb is <u>not</u> significantly	
Level II <i>Fair</i>	analysis of prospectively collected data N=226	chronic haemodialysis or peritoneal dialysis in 13 Dutch dialysis centres between October 1993 and April 1995	The Netherlands		physical)	Variables shown to be P≤0.20 in univariate analysis were included in a multiple linear regression (forward stepwise selection strategy): age, employment status, primary kidney disease, no of comorbid conditions, nPCR/nPNA, residual GFR and dialysis modality.		associated with role physical score P=NR		

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results			
Level of evidence Quality	sample size included in analysis	Surgical procedure	Location			Score ± SD	Score ± SD	Risk estimate (95% CI)	Significance P-value Heterogeneity
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	1 g/dL increment 6-	1-year SF-36 (role	NA	NA	MD 2.81 (0.37, 5.26)	A 1 g/dL increment in 6
Level II Fair	analysis of prospectively collected data N=438	haemodialysis during 10/95 to 6/98	US	month Hb	physical)	and QoL at 12 month	s, or due to prior evidence o	iation with both Hb at 6 months f association with QoL: baseline sease, albumin and creatinine.	month Hb is significantly associated with an increase in role physica score P<0.05
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	1 g/dL increase in Hb	Change in SF-36	NA	NA	MD 2.72 (1.03, 4.40)	A 1 g/dL increase in Hb
Level II Fair	analysis of prospectively collected data N=438	haemodialysis during 10/95 to 6/98	US	from baseline to 6 months	score from baseline to 1 year (role physical)	and QoL at 12 month	s, or due to prior evidence o	iation with both Hb at 6 months f association with QoL: age, race, sease), albumin and creatinine.	from baseline to 6 months is significantly associated with an increase in role physical score P<0.05
SF-36-ROLE EMOTION	NAL								
CKD									
Perlman 2005 Level II	1 cross-sectional analysis of prospectively	<u>CKD</u> defined as a GFR ≤50 mL/min/1.73 m2 (estimated by MDRD)	Hospital US	Hb	SF-36 (role emotional)	NA	NA	Parameter estimate 4.0	Hb level is significantly associated with role emotional score
Fair	collected data					Adjusted for age, sex	, race, diabetes, CAD, HTN,	marital status, GFR stage 3, GFR	
	N=NR					stage 4, albumin, CHI			P <0.05
Dialysis	N=NR							. . .	P <0.05
Dialysis Merkus 1997 Level II Fair	N=NR Cross-sectional analysis of prospectively collected data N=226	Adults started on chronic haemodialysis or peritoneal dialysis in 13 Dutch dialysis centres between October 1993 and April	Hospital The Netherlands	Hb	SF-36 (role emotional)			Regression coefficient 0.13 Partial explained variance 1.7%	P <0.05 Hb is significantly associated with role emotional score P=NR
Merkus 1997 Level II	Cross-sectional analysis of prospectively collected data	chronic haemodialysis or peritoneal dialysis in 13 Dutch dialysis centres between		Hb		Stage 4, albumin, CHI	F, BMI, education.	Regression coefficient 0.13 Partial explained variance	Hb is significantly associated with role emotional score
Merkus 1997 Level II	Cross-sectional analysis of prospectively collected data N=226	chronic haemodialysis or peritoneal dialysis in 13 Dutch dialysis centres between October 1993 and April 1995	The Netherlands	1 g/dL increment 6-	emotional) 1-year SF-36 (role	NA Variables shown to be linear regression (for primary kidney diseas	F, BMI, education.	Regression coefficient 0.13 Partial explained variance 1.7% sis were included in a multiple tegy): age, employment status,	Hb is significantly associated with role emotional score P=NR A 1 g/dL increment in 6
Merkus 1997 Level II Fair	Cross-sectional analysis of prospectively collected data N=226	chronic haemodialysis or peritoneal dialysis in 13 Dutch dialysis centres between October 1993 and April 1995	The Netherlands		emotional)	Variables shown to be linear regression (forv primary kidney diseas dialysis modality. NA Adjusted for variables and QoL at 12 month	F, BMI, education.	Regression coefficient 0.13 Partial explained variance 1.7% sis were included in a multiple tegy): age, employment status, s, nPCR/nPNA, residual GFR and	Hb is significantly associated with role emotional score P=NR

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results			
Level of evidence Quality	sample size included in analysis	Surgical procedure	Location			Score ± SD	Score ± SD	Risk estimate (95% CI)	Significance P-value Heterogeneity
Level II Fair	analysis of prospectively collected data N=438	<u>haemodialysis</u> during 10/95 to 6/98	US	from baseline to 6 months	score from baseline to 1 year (role emotional)	and QoL at 12 month	s, or due to prior evidence	ciation with both Hb at 6 months of association with QoL: age, race, isease), albumin and creatinine.	from baseline to 6 months is significantly associated with an increase in role emotional score P<0.05
SF-36-SOCIAL FUNCT	IONING								
СКД									
Perlman 2005 Level II	1 cross-sectional analysis of prospectively	<u>CKD</u> defined as a GFR ≤50 mL/min/1.73 m2 (estimated by MDRD)	Hospital US	Hb	SF-36 (social function)	NA	NA	Parameter estimate 4.1	Hb level is significantly associated with social function score
Fair	collected data					Adjusted for age, sex stage 4, albumin, CH		l, marital status, GFR stage 3, GFR	P <0.01
Dialysis		1			1				
Merkus 1997 Level II <i>Fai</i> r	Cross-sectional analysis of prospectively collected data N=226	Adults started on chronic haemodialysis or peritoneal dialysis in 13 Dutch dialysis centres between October 1993 and April	Hospital The Netherlands	Hb	SF-36 (social functioning)	NA	NA	Regression coefficient 0.23 Partial explained variance 6.1%	Hb is significantly associated with social functioning score P=NR
		1995				linear regression (for	ward stepwise selection stra	ysis were included in a multiple ategy): age, employment status, ns, nPCR/nPNA, residual GFR and	-
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	1 g/dL increment 6-	1-year SF-36	NA	NA	MD 2.60 (1.35, 3.85)	A 1 g/dL increment in 6
Level II <i>Fai</i> r	analysis of prospectively collected data N=438	haemodialysis during 10/95 to 6/98	US	month Hb	(social functioning)	and QoL at 12 month	s, or due to prior evidence	ciation with both Hb at 6 months of association with QoL: baseline bisease, albumin and creatinine.	month Hb is significant. associated with an increase in social functioning score P<0.05
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	1 g/dL increase in Hb	Change in SF-36	NA	NA	MD 2.56 (1.20, 3.92)	A 1 g/dL increase in Hb
Level II Fair	analysis of prospectively collected data N=438	haemodialysis 10/95 to 6/98	US	from baseline to 6 months	score from baseline to 1 year (social functioning)	and QoL at 12 month	s, or due to prior evidence	ciation with both Hb at 6 months of association with QoL: age, race, isease), albumin and creatinine.	from baseline to 6 months is significantly associated with an increase in social functioning score P<0.05
SF-36-PAIN		1	1		1				
СКД									

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results				
Level of evidence Quality	sample size included in analysis	Surgical procedure	Location			Score ± SD	Score ± SD	Risk estimate (95% CI)	Significance P-value Heterogeneity	
Perlman 2005 Level II	1 cross-sectional analysis of prospectively	<u>CKD</u> defined as a GFR ≤50 mL/min/1.73 m2 (estimated by MDRD)	Hospital US	Hb	SF-36 (pain)	NA	NA	Parameter estimate 2.3	Hb level is <u>not</u> significantly associated with pain score	
Fair	collected data					Adjusted for age, sex stage 4, albumin, CH		I, marital status, GFR stage 3, GFR	P = NR	
Dialysis			•		•					
Merkus 1997	Cross-sectional	Adults started on	Hospital	Hb	SF-36 (bodily	NA	NA	NR	Hb is <u>not</u> significantly	
Level II <i>Fair</i>	analysis of prospectively collected data N=226	chronic haemodialysis or peritoneal dialysis in 13 Dutch dialysis centres between October 1993 and April 1995	The Netherlands		pain) Variables shown to be P<0.20 in univariate analysis were included in a multiple linear regression (forward stepwise selection strategy): age, employment status, primary kidney disease, no of comorbid conditions, nPCR/nPNA, residual GFR and dialysis modality.		ategy): age, employment status,	associated with bodily pain score P=NR		
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	1 g/dL increment 6-	1-year SF-36	NA	NA	MD 3.12 (0.94, 5.29)	A 1 g/dL increment in 6-	
Level II Fair	analysis of prospectively collected data N=438	haemodialysis 10/95 to 6/98	US	month Hb	(bodily pain)	and QoL at 12 month	ted for variables that had a significant association with both Hb at 6 months DoL at 12 months, or due to prior evidence of association with QoL: baseline score, age, race, sex, Index of Coexistent Disease, albumin and creatinine.		month Hb is significantly associated with an increase in bodily pain score P<0.05	
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	1 g/dL increase in Hb	Change in SF-36	NA	NA	MD 1.57 (0.20, 2.94)	A 1 g/dL increase in Hb	
Level II <i>Fair</i>	analysis of prospectively collected data N=438	haemodialysis during 10/95 to 6/98	US	from baseline to 6 months	score from baseline to 1 year (bodily pain)	Adjusted for variables that had a significant association with both Hb at 6 months and QoL at 12 months, or due to prior evidence of association with QoL: age, race, sex, baseline comorbidity (Index of Coexistent Disease), albumin and creatinine.		from baseline to 6 months is significantly associated with an increase in bodily pain score P<0.05		
SF-36-GENERAL HEA	_TH									
CKD										
Perlman 2005 Level II	1 cross-sectional analysis of prospectively	<u>CKD</u> defined as a GFR ≤50 mL/min/1.73 m2 (estimated by MDRD)	Hospital US	Hb	SF-36 (general health)	NA	NA	Parameter estimate 2.0	Hb level is significantly associated with general bealth score	
Fair	collected data						, race, diabetes, CAD, HTN F, BMI, education.	I, marital status, GFR stage 3, GFR	− health score P <0.05	

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results				
Level of evidence <i>Quality</i>	sample size included in analysis	Surgical procedure	Location			Score ± SD	Score ± SD	Risk estimate (95% CI)	Significance P-value Heterogeneity	
Dialysis										
Merkus 1997 Level II Fair	Cross-sectional analysis of prospectively collected data N=226	Adults started on chronic haemodialysis or peritoneal dialysis in 13 Dutch dialysis centres between October 1993 and April 1995	Hospital The Netherlands	Hb	SF-36 (general health perceptions)	linear regression (for	NA e P≤0.20 in univariate analys ward stepwise selection strate se, no of comorbid conditions	NR is were included in a multiple egy): age, employment status, nPCR/nPNA, residual GFR and	Hb is <u>not</u> significantly associated with general health perceptions score P=NR	
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	1 g/dL increment 6-	1-year SF-36	NA	NA	MD 5.28 (2.38, 8.18)	A 1 g/dL increment in 6-	
Level II Fair	analysis of prospectively collected data N=438	haemodialysis 10/95 to 6/98	US	month Hb	(general health)	Adjusted for variables and QoL at 12 month QoL score, age, race	month Hb is significantly associated with an increase in general health score P<0.05			
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	1 g/dL increase in Hb	Change in SF-36	NA	NA	MD 1.33 (0.41, 2.26)	A 1 g/dL increase in Hb	
Level II Fair	analysis of prospectively collected data N=438	haemodialysis during 10/95 to 6/98	US	from baseline to 6 months	score from baseline to 1 year (general health)	Adjusted for variables that had a significant association with both Hb at 6 months and Ool at 12 months or due to prior evidence of association with Ool - are race		association with QoL: age, race,	from baseline to 6 months is significantly associated with an increase in general health score P<0.05	
SF-36-VITALITY	1		1							
СКД										
Perlman 2005 Level II Fair	1 cross-sectional analysis of prospectively collected data N=NR	<u>CKD</u> defined as a GFR ≤50 mL/min/1.73 m2 (estimated by MDRD)	Hospital US	Hb	SF-36 (vitality)	NA Adjusted for age, sex stage 4, albumin, CH		Parameter estimate 2.3 marital status, GFR stage 3, GFR	Hb level is significantly associated with vitality score P <0.05	

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results				
Level of evidence <i>Quality</i>	sample size included in analysis	Surgical procedure	Location	Score ± SD	Score ± SD	Risk estimate (95% CI)	Significance P-value Heterogeneity			
Dialysis	·		•		•		·			
Merkus 1997 Level II <i>Fair</i>	Cross-sectional analysis of prospectively collected data N=226	Adults started on chronic haemodialysis or peritoneal dialysis in 13 Dutch dialysis centres between October 1993 and April	Hospital The Netherlands	Hb	SF-36 (vitality)	NA	NA	Regression coefficient 0.15 Partial explained variance 2.5%	Hb is significantly associated with vitality score P=NR	
		1995				linear regression (for	ward stepwise selection stra	ysis were included in a multiple ttegy): age, employment status, ns, nPCR/nPNA, residual GFR and		
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	1 g/dL increment 6-	1-year SF-36	NA	NA	MD 2.44 (1.10, 3.78)	A 1 g/dL increment in 6-	
Level II Fair	analysis of prospectively collected data N=438	haemodialysis during 10/95 to 6/98	US	month Hb	(vitality)	(vitality) Adjusted for variables that had a significant association with both Hb a and QoL at 12 months, or due to prior evidence of association with Qu QoL score, age, race, sex, Index of Coexistent Disease, albumin and		of association with QoL: baseline	month Hb is significantly associated with an increase in vitality score P<0.05	
Plantinga 2007	1 cross-sectional	Patients initiating	s <u>initiating</u> Hospital 1 g/dL increase in Hb C	Change in SF-36	NA	NA	MD 1.59 (0.55, 2.62)	A 1 g/dL increase in Hb		
Level II Fair	analysis of prospectively collected data N=438	haemodialysis during 10/95 to 6/98	US	from baseline to 6 months	score from baseline to 1 year (vitality)	Adjusted for variables that had a significant association with both Hb at 6 months and QoL at 12 months, or due to prior evidence of association with QoL: age, race, sex, baseline comorbidity (Index of Coexistent Disease), albumin and creatinine.			from baseline to 6 months is significantly associated with an increase in vitality score P<0.05	
SF-36-MENTAL HEAL	ſH	1	I			1				
CKD										
Perlman 2005 Level II	1 cross-sectional analysis of prospectively	<u>CKD</u> defined as a GFR ≤50 mL/min/1.73 m2 (estimated by MDRD)	Hospital US	Hb	SF-36 (mental health)	NA	NA	Parameter estimate 1.6	Hb level is significantly associated with mental health score	
Fair	collected data					Adjusted for age, sex, race, diabetes, CAD, HTN, marital status, GFR stage 3, GFR stage 4, albumin, CHF, BMI, education.		, marital status, GFR stage 3, GFR	P <0.05	
Dialysis	·		·	•	•	·				
Merkus 1997	Cross-sectional	Adults started on	Hospital	Hb	SF-36 (mental	NA	NA	NR	Hb is not significantly	
Level II <i>Fair</i>	analysis of prospectively collected data N=226	chronic haemodialysis or peritoneal dialysis in 13 Dutch dialysis centres between October 1993 and April 1995	The Netherlands		health) Variables shown to be P≤0.20 in univariate analysis were included in a mul linear regression (forward stepwise selection strategy): age, employment st primary kidney disease, no of comorbid conditions, nPCR/nPNA, residual C dialysis modality.		itegy): age, employment status,	associated with mental health score d P=NR		
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	1 g/dL increment 6-	1-year SF-36	NA	NA	MD 1.90 (0.27, 3.52)	A 1 g/dL increment in 6	

Study	No. of trials /								
Level of evidence Quality	sample size included in analysis	Surgical procedure	Location			Score ± SD	Score ± SD	Risk estimate (95% CI)	Significance P-value
	unurgoio								Heterogeneity
Level II <i>Fair</i>	analysis of prospectively collected data N=438	haemodialysis 10/95 to 6/98	US	month Hb	(mental health)	Adjusted for variables that had a significant association with both Hb at 6 months and QoL at 12 months, or due to prior evidence of association with QoL: baseline QoL score, age, race, sex, Index of Coexistent Disease, albumin and creatinine.			month Hb is significantly associated with an increase in mental health score P<0.05
Plantinga 2007	1 cross-sectional	Patients initiating	Hospital	1 g/dL increase in Hb	Change in SF-36	NA	NA	MD 1.13 (0.21, 2.04)	A 1 g/dL increase in Hb
Level II Fair	analysis of prospectively collected data N=438	<u>haemodialysis</u> during 10/95 to 6/98	US	from baseline to 6 months	score from baseline to 1 year (mental health)	Adjusted for variables that had a significant association with both Hb at 6 months and QoL at 12 months, or due to prior evidence of association with QoL: age, race, sex, baseline comorbidity (Index of Coexistent Disease), albumin and creatinine.		from baseline to 6 months is significantly associated with an increase in mental health score P<0.05	

BDI, Beck depression index; BMI, body mass index; CAD; coronary artery disease; CHF, congestive heart failure; CI, confidence interval; GFR, glomerular filtration rate; Hb, haemoglobin; HTN, hypertension; MD, mean difference; MDRD, modification of diet for renal disease; NA, not applicable; NR, not reported; nPCR, normalised protein catabolic rate; nPNA, normalised protein nitrogen appearance; QoL, quality of life; SD, standard deviation; SF-36, short form 36-question general health survey; US, United States of America.

3.2 Question 2

Question 2 (Intervention)

In medical patients, what is the effect of RBC (allogeneic) transfusion on patient outcomes?

3.2.1 Medical population

Eviden	ce statements – medical population	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES2.1	In medical patients, the effect of a restrictive versus liberal RBC transfusion strategy on mortality is uncertain.		$\sqrt{\sqrt{1}}$	Х		$\sqrt{\sqrt{1}}$
	(See evidence matrix EM2.A in Volume 2 of the technical report)					
	ce statement; RBC, red blood cell /=B; √=C; X=D; NA, not applicable					

Prac	tice points – medical population
PP1	RBC transfusion should not be dictated by a Hb concentration alone, but should also be based on assessment of the patient's clinical status.
PP2	Where indicated, transfusion of a single unit of RBC, followed by clinical reassessment to determine the need for further transfusion, is appropriate. This reassessment will also guide the decision on whether to retest the Hb level.

PP3	Direct evidence is not available in general medical patients. ^a Evidence from other patient groups and CRG consensus suggests that, with a:
	• Hb concentration <70 g/L , RBC transfusion may be associated with reduced mortality and is likely to be appropriate. However, transfusion may not be required in well-compensated patients or where other specific therapy is available.
	• Hb concentration of 70–100 g/L, RBC transfusion is not associated with reduced mortality. The decision to transfuse patients (with a single unit followed by reassessment) should be based on the need to relieve clinical signs and symptoms of anaemia, and the patient's response to previous transfusions. No evidence was found to warrant a different approach for patients who are elderly or who have respiratory or cerebrovascular disease.
	• Hb concentration >100 g/L , RBC transfusion is likely to be unnecessary and is usually inappropriate. Transfusion has been associated with increased mortality in patients with ACS.
	a Recommendations and practice points for medical patients in a critical care setting will be found in the <i>Patient Blood Management Guidelines: Module 4 – Critical Care.</i> ³ Recommendations and practice points for specific medical subgroups (ACS, CHF, cancer, acute upper gastrointestinal bleeding and chronically transfused) appear elsewhere in this module.
PP4	In patients with iron deficiency anaemia, iron therapy is required to replenish iron stores regardless of whether a transfusion is indicated.
	e coronary syndrome; CHF, chronic heart failure; CRG, Clinical/Consumer Reference Group; Hb, haemoglobin; ce point; RBC, red blood cell

3.2.2 Acute coronary syndrome

Evide	ence statements – acute coronary syndrome	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES2.2	In ACS patients with a Hb concentration >100 g/L, RBC transfusion may be associated with a higher risk of mortality, proportional to Hb concentration.	\checkmark	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{2}}$
	(See evidence matrix EM2.B in Volume 2 of the technical report)					
ES2.3	In ACS patients with an <i>admission</i> Hb concentration <100 g/L, RBC transfusion may be associated with a lower risk of mortality.	X	$\sqrt{\sqrt{1}}$	V	$\sqrt{\sqrt{2}}$	V
	(See evidence matrix EM2.B in Volume 2 of the technical report)					

Evide	ence statements – acute coronary syndrome	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES2.4	In ACS patients with a <i>nadir</i> Hb concentration <80 g/L, RBC transfusion may be associated with a lower risk of mortality. (See evidence matrix EM2.B in Volume 2 of the technical report)	N	$\sqrt{\sqrt{1}}$	X	~~~	$\sqrt{\sqrt{1}}$
ES2.5	In ACS patients with a <i>nadir</i> Hb concentration of 80– 100 g/L, RBC transfusion is not associated with an altered mortality risk. (See evidence matrix EM2.B in Volume 2 of the technical report)	V	$\sqrt{\sqrt{1-1}}$	NA	1	$\sqrt{\sqrt{2}}$
ES2.6	In patients with ACS, RBC transfusion may be associated with an increased risk of recurrence (up to 6 months) of MI. (See evidence matrix EM2.C in Volume 2 of the technical report)	V	NA	11	$\sqrt{}$	$\sqrt{\sqrt{1}}$
	tute coronary syndrome; ES, evidence statement; Hb, haemoglo $\sqrt{\sqrt{=B}}$; $\sqrt{=C}$; X=D; NA, not applicable	bin; MI, myo	ocardial infa	arction; RBC	C, red blood	cell

Recom	mendation – acute coronary syndrome
R1 Grade C	In ACS patients with a Hb concentration >100 g/L, RBC transfusion may not be recommended because of an association with increased mortality.
Practice	e points – acute coronary syndrome
PP5	In patients with ACS and a Hb concentration <80 g/L, RBC transfusion may be associated with reduced mortality and is likely to be appropriate. (See PP1 and PP2.)
PP6	In patients with ACS and a Hb concentration of 80–100 g/L, the effect of RBC transfusion on mortality is uncertain and may be associated with an increased risk of recurrence of MI. Any decision to transfuse should be made with caution and based on careful consideration of the risks and benefits. (See PP1 and PP2.)
ACS, acute co blood cell	ronary syndrome; Hb, haemoglobin; MI, myocardial infarction; PP, practice point; R, recommendation; RBC, red

3.2.3 Heart failure

Evide	ence statements – heart failure	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES2.7	In patients with heart failure, the effect of RBC transfusion on the risk of mortality is uncertain.	\checkmark	NA	NA	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$
	(See evidence matrix EM2.D in Volume 2 of the technical report)					
	ence statement; RBC, red blood cell $\sqrt{\sqrt{=B}}$; $\sqrt{=C}$; X=D; NA, not applicable					

Practic	e point – heart failure
PP7	In all patients with heart failure, there is an increased risk of transfusion- associated circulatory overload. This needs to be considered in all transfusion decisions. Where indicated, transfusion should be of a single unit of RBC followed by reassessment of clinical efficacy and fluid status. For further guidance on how to manage patients with heart failure, refer to general medical or ACS sections, as appropriate (R1, R3, PP3–PP6).

ACS, acute coronary syndrome; CHF, chronic heart failure; PP, practice point; RBC, red blood cell

3.2.4 Cancer

Evide	ence statements – cancer	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES2.8	In patients with cancer, RBC transfusion may be associated with an increased risk of in-hospital mortality. (See evidence matrix EM2.E in Volume 2 of the technical report)	N	NA	\checkmark	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{1}}$
ES2.9	In patients with cancer, RBC transfusion may be associated with an increased risk of in-hospital venous and arterial thromboembolic events. (See evidence matrix EM2.F in Volume 2 of the technical report)	V	NA	V	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{1}}$
	lence statement; RBC, red blood cell $\sqrt{\sqrt{B}}$; $\sqrt{-C}$; X=D; NA, not applicable		1	1	1	

Practice points – cancer								
PP8	In patients with cancer, the aetiology of anaemia is often multifactorial; where appropriate, reversible causes should be identified and treated.							
PP9	There is a lack of specific evidence relating to the effects of RBC transfusion in patients with cancer. Any decision to transfuse should be based on the need to relieve clinical signs and symptoms of anaemia. When treating patients with cancer, refer also to the general medical points PP1–PP4.							
PP, practice	point; RBC, red blood cell							

3.2.5 Acute upper gastrointestinal blood loss

Evide	nce statements – acute upper gastrointestinal blood loss	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES2.10	In patients with acute upper gastrointestinal blood loss, the effect of a restrictive versus liberal RBC transfusion strategy on mortality is uncertain. (See evidence matrix EM2.G in Volume 2 of the technical report)	X	NA	NA	$\sqrt{\sqrt{2}}$	Х
ES2.11	In patients with acute upper gastrointestinal blood loss, the effect of RBC transfusion on mortality is uncertain. (See evidence matrix EM2.H in Volume 2 of the technical report)	V	NA	NA	111	V
	nce statement; RBC, red blood cell $\sqrt{=B}$; $\sqrt{=C}$; X=D; NA, not applicable	1				1

Practice points – acute upper gastrointestinal blood loss							
PP10	In well-compensated patients with acute upper gastrointestinal blood loss that is non-critical, there is no evidence to favour a liberal transfusion policy. Therefore, a more restrictive approach may be appropriate. There are no data to support a specific Hb treatment target in these patients.						
PP11	For critically bleeding patients, refer to <i>Patient Blood Management Guidelines:</i> Module 1 – Critical Bleeding/Massive Transfusion (2011). ¹¹⁰						
Hb, haemog	lobin; PP, practice point						

3.2.6 Summary of evidence

Five different populations were considered for this question: (i) a mixed/general population; (ii) patients with acute coronary syndrome (ACS), (iii) patients with heart failure, (iv) patients with cancer and (v) patients with upper gastrointestinal blood loss. These were the populations that were included in relevant studies identified via the literature search.

As this is an intervention question, the levels of evidence are as follows: Level I – a systematic review of two or more Level II studies; Level II – a randomised controlled trial (RCT); Level III-1 – a pseudorandomised trial; Level III-2 – a comparative study with concurrent controls (including non-randomised, experimental trials, cohort studies, case-control studies and interrupted time series with a control group); Level III-3 – a comparative study without concurrent controls (including historical control studies, two or more single arm studies, interrupted time series without a parallel control group); and Level IV – case series with either post-test or pre-test/post-test outcomes.

For this review, only evidence down to Level III-2 was considered. In addition, for Level III evidence, only studies which included ≥500 subjects and adjusted for potential confounding variables using multivariate analysis were included; studies in which only univariate analyses were undertaken were excluded. The studies included for this question identified potential confounding variables in various ways. In some cases, variables have been identified which have been shown to be associated with blood transfusion or the specified outcome in previous studies, while in other cases a wide range of variables have been examined using univariate analysis and those shown to be associated with blood transfusion or the outcome have been included in the analysis. In some studies, all potential confounding variables have been used (eg, backwards or forwards stepwise regression) to include only those variables which are shown to be independent predictors in the analysis.

There were two different comparisons made in this review: (1) transfusion versus no transfusion; and (2) restrictive transfusion versus liberal transfusion. As it is not considered ethical to withhold blood transfusion, RCTs were not available for the transfusion versus no transfusion comparison; the evidence for this comparison came from observational studies (Level III) only. Proof of causation can only be determined using a randomised, controlled trial. Thus, while the results of these adjusted Level III study analyses indicate whether or not blood transfusion is an independent risk factor for specific outcomes, they do not prove that blood transfusion *causes* these outcomes.

MEDICAL POPULATION

While the aim of this review is to assess the effect of allogeneic RBC transfusion on adverse outcomes specifically in *medical* patients, there is a large amount of evidence available in other populations, in particular in the surgical and critical care settings. Thus, studies which assessed the effect of allogeneic RBC transfusion across a wide population (including medical) were considered eligible for assessment. Of the adverse outcomes specified for this question, three are covered for this wide population: mortality, thromboembolic events and transfusion-related adverse events.

Methods

There were two studies identified for this population from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature pertaining to Australia's Indigenous population relevant to this research question.

Level I evidence

The literature search identified one systematic review of Level II evidence (RCT) examining the effect of RBC transfusion in a mixed population from medical, critical care and surgical settings.

Level II evidence

The literature search did not identify any Level II studies relevant to this population.

Level III evidence

The literature search did not identify any Level III studies relevant to this population.

Level IV evidence

Level IV evidence was not searched for this question.

Results

Level I evidence

One Level I study was identified which assessed the efficacy and safety of restrictive versus liberal RBC transfusion in a mixed population which included medical, critical care and surgical patients. This study by Carless et al (2002)¹¹¹ was a Cochrane review with the literature updated to August 2009. The review assessed data from 17 RCTs including a total of 3746 patients. Only three of the included studies were in a medical population (two in gastrointestinal haemorrhage and one in leukaemia); the remaining studies were in surgical patients (eight studies), critical care (5 studies) and paediatric critical care (one study). Of the three medical studies included in Carless et al (2010), only one was considered eligible for inclusion in this review.¹¹² The remaining two medical studies were excluded for being available as an abstract only (Colomo et al 2008) and for assessing the wrong outcomes (Webert et al 2008). Thus, while the Carless review provides a comprehensive assessment of the efficacy and safety of restrictive versus liberal RBC transfusion in a broad population, its generalisability to the medical population needs to be considered.

Level I evidence								
Author	Study type Study quality	Population	Outcomes					
Carless et al (2010) ¹¹¹	Systematic review of 17 RCTs Good	Any (2 GI haemorrhage, 1 leukaemia, 8 surgery, 5 critical care and 1 paediatric critical care)	Mortality Thromboembolic events Transfusion-related adverse events					

 Table 3.44
 Question 1 (Medical): Characteristics and quality of Level I evidence

GI, gastrointestinal; RCT, randomised controlled trial.

The effect of liberal versus restrictive RBC transfusion on mortality

One Level I study assessed the effect of a restrictive versus liberal RBC transfusion strategy on mortality in a mixed population, as shown in Table 3.45The authors note that there was a variation in the thresholds used in the individual studies for the restrictive and liberal

transfusion strategies. For restrictive transfusion, the majority of trials used a Hb threshold of between 7.0 g/dL and 9.0 g/dL, while two studies specified Hct levels of 25% or 30%. The definition of liberal transfusion varied to a greater degree and included transfusion in all in some trials, transfusion sufficient to maintain a Hb of \geq 9, 10 or 12 g/dL in most studies, and Hct 32% in two trials.

The study by Carless et al (2010)¹¹¹ showed no difference between the two strategies for all mortality outcomes with the exception of in-hospital mortality, where restrictive transfusion resulted in 22% less mortality than liberal transfusion. The results for 30-day mortality also suggested a possible reduction in mortality for restrictive transfusion, although this failed to reach statistical significance. The Blair 1986 study was included in the 30-day mortality and hospital mortality analyses; the Colomo study was included in the unspecified follow-up period analysis. Based on their review, which includes an assessment of harms as well, the authors' conclude that "the existing evidence supports the use of restrictive transfusion triggers in patients who are free of serious cardiac disease". When considering the results of this study, it is important to keep in mind that the analyses are driven by the results of studies conducted in the surgical and critical care settings, and that these may not be generalisable to a medical population.

Table 3.45 Question 2 (Medical): Results for Level I evidence – mortality

Study	No. of trials /	Patient population	Setting	Intervention vs	Outcome	Results			
Level of evidence ^a <i>Quality</i> (Level I/Level II)	sample size included in analysis		Location	comparator		Restrictive transfusion n/N (%)	Liberal transfusion n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
LEVEL I EVIDENCE									
Any population (inclu	des critical care and s	urgical)							
Carless 2010 Level I Good/fair	2 RCTs N=821	Any (includes critical care and surgical)	Hospital Various	Restrictive transfusion trigger vs liberal transfusion trigger	<15-day mortality	1/408 (0.2)	3/413 (0.7)	RR 0.44 (0.006, 2.96)	No difference P=0.40 No heterogeneity (Phet=0.84; I ² =0%)
Carless 2010 Level I Good/fair	9 RCTs N=2461	Any (includes critical care and surgical)	Hospital Various	Restrictive transfusion trigger vs liberal transfusion trigger	30-day mortality	113/1226 (9.2)	134/1235 (10.9)	RR 0.83 (0.66, 1.05)	No difference P=0.12 No heterogeneity (Phet=0.65; I ² =0%)
Carless 2010 Level I Good/fair	2 RCTs N=922	Any (includes critical care and surgical)	Hospital Various	Restrictive transfusion trigger vs liberal transfusion trigger	60-day mortality	100/460 (21.7)	113/462 (24.5)	RR 1.09 (0.46, 2.60)	No difference P=0.85 Moderate heterogeneit (Phet=0.19; I ² =42%)
Carless 2010 Level I Good/poor	1 RCT N=69	Any (includes critical care and surgical)	Hospital Various	Restrictive transfusion trigger vs liberal transfusion trigger	120-day mortality	13/33 (39.4)	11/36 (30.6)	RR 1.29 (0.67, 2.47)	No difference P=NR Not applicable (Phet=NA)
Carless 2010 Level I Good/fair	4 RCTs N=1409	Any (includes critical care and surgical)	Hospital Various	Restrictive transfusion trigger vs liberal transfusion trigger	Hospital mortality	96/701 (13.7)	126/708 (17.8)	RR 0.78 (0.62, 0.98)	Favours restrictive transfusion P=0.031 No heterogeneity (Phet=0.53; I ² =0%)
Carless 2010 Level I Good/fair	3 RCTs N=736	Any (includes critical care and surgical)	Hospital Various	Restrictive transfusion trigger vs liberal transfusion trigger	ICU mortality	19/373 (5.1)	15/363 (4.1)	RR 1.15 (0.59, 2.23)	No difference P=0.68 No heterogeneity (Phet=0.52; l2=0%)
Carless 2010 Level I Good/poor	1 RCT N=214	Any (includes critical care and surgical)	Hospital Various	Restrictive transfusion trigger vs liberal transfusion trigger	Mortality (unspecified follow-up)	12/109 (11.0)	17/105 (16.2)	RR 0.68 (0.34, 1.35)	No difference P=NR Not applicable (Phet=NA)

CI, confidence interval; NA, not applicable; NR, not reported; RCT, randomised controlled trial; RR, risk ratio

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

The effect of liberal versus restrictive RBC transfusion on thromboembolic events

One Level I study assessed the effect of RBC transfusion on MI/stroke and related cardiac and thromboembolic events. The study by Carless et al (2010)¹¹¹ showed a 24% reduction in the number of patients experiencing cardiac events (defined as MI, cardiac arrhythmias, cardiac arrest, pulmonary oedema and angina) when a restrictive RBC transfusion threshold is used. Analysis of MI showed no significant difference; however, the risk estimate was low (RR 0.50) so underpowering may have been an issue in this analysis. Analyses of stroke and thromboembolism also showed no significant difference between the use of restrictive and liberal transfusion thresholds, with RRs of 0.98 and 0.95, respectively. These analyses included data from surgical and critical care populations only.

Table 3.46	Question 2 (Medical): Results for Level I evidence – thromboembolic events
------------	--

Study	No. of trials / sample	Patient population	Setting	Intervention vs	Outcome	Results			
Level of evidence ^a Quality	size included in analysis		Location	comparator		Restrictive transfusion n/N (%)	Liberal transfusion n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneityb
LEVEL I EVIDENCE									
Any population (include:	s critical care and surgical)								
Carless 2010 Level I Good	5 RCTs N=1530	Any (includes critical care and surgical)	Hospital Various	Restrictive transfusion trigger vs liberal transfusion trigger	Cardiac events	113/762 (14.8)	152/768 (19.8)	RR 0.76 (0.57, 1.00)	Favours restrictive transfusion P=0.049 Mild heterogeneity (Phet=0.30; I ² =18%)
Carless 2010 Level I Good	7 RCTs N=1868	Any (includes critical care and surgical)	Hospital Various	Restrictive transfusion trigger vs liberal transfusion trigger	Myocardial infarction	7/931 (0.8)	16/937 (1.7)	RR 0.50 (0.21, 1.21)	No difference P=0.12 No heterogeneity (Phet=0.54; I ² =0%)
Carless 2010 Level I Good	3 RCTs N=242	Any (includes critical care and surgical)	Hospital Various	Restrictive transfusion trigger vs liberal transfusion trigger	Stroke	2/122 (1.6)	2/120 (1.7)	RR 0.98 (0.17, 5.52)	No difference P=0.98 No heterogeneity (Phet=0.65; I2=0%)
Carless 2010 Level I Good	2 RCTs N=204	Any (includes critical care and surgical)	Hospital Various	Restrictive transfusion trigger vs liberal transfusion trigger	Thromboembolism	2/102 (2.0)	2/102 (2.0)	RR 0.95 (0.14, 6.36)	No difference P=0.96 No heterogeneity (Phet=0.37; 12=0%)

CI, confidence interval; NA, not applicable; NR, not reported; RCT, randomised controlled trial; RR, risk ratio

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25-50%; substantial heterogeneity I² >50%.

The effect of liberal versus restrictive RBC transfusion on transfusion-related adverse events

One Level I study assessed the effect of a restrictive RBC transfusion threshold on transfusion-related adverse events including pulmonary oedema, pneumonia and infection. The study by Carless et al (2010)¹¹¹ showed that a restrictive strategy significantly reduced the risk of infection (RR 0.76; 95% CI 0.60, 0.97). There was no significant difference for pneumonia or pulmonary oedema. However, the risk estimate for pulmonary oedema was low (RR 0.49) and the event rate was small (2.9% for restrictive versus 6.3% for liberal) suggesting that this analysis may have been underpowered.

Table 3.47 Question 2 (Medical): Results for Level I evidence – transfusion-related adverse events

Study	No. of trials / sample	Patient population	Setting	Intervention vs	Outcome	Results			
Level of evidence ^a Quality	size included in analysis		Location	comparator		Restrictive transfusion n/N (%)	Liberal transfusion n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity ^b
LEVEL I EVIDENCE									
Any population (includes	critical care and surgical)								
Carless 2010 Level I Good	4 RCTs N=1633	Any (includes critical care and surgical)	Hospital Various	Restrictive transfusion trigger vs liberal transfusion trigger	Pulmonary oedema	24/818 (2.9)	51/815 (6.3)	RR 0.49 (0.18, 1.31)	No difference P=0.16 Mild heterogeneity (Phet=0.30; I ² =19%)
Carless 2010 Level I Good	4 RCTs N=1679	Any (includes critical care and surgical)	Hospital Various	Restrictive transfusion trigger vs liberal transfusion trigger	Pneumonia	99/840 (11.8)	100/839 (11.9)	RR 1.00 (0.78, 1.29)	No difference P=0.98 No heterogeneity (Phet=0.68; I ² =0%)
Carless 2010 Level I Good	4 RCTs N=1788	Any (includes critical care and surgical)	Hospital Various	Restrictive transfusion trigger vs liberal transfusion trigger	Infection	94/891 (10.5)	124/897 (13.8)	RR 0.76 (0.60, 0.97)	Favours restrictive transfusion P=0.029 No heterogeneity (Phet=0.43; I ² =0%)

CI, confidence interval; RCT, randomised controlled trial; RR, risk ratio

^a Where only one study is available in a systematic review, the level of evidence will be downgraded to Level I/II. The quality of the included level II study will be rated based on the quality assessment of the systematic review.

^b Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I2<25%; (ii) mild heterogeneity if I2 <25%; moderate heterogeneity if I2 between 25-50%; substantial heterogeneity I2 >50%.

ACUTE CORONARY SYNDROME

The term acute coronary syndrome refers to a range of acute myocardial ischaemic states. It encompasses unstable angina, non-ST segment elevation myocardial infarction (NSTE-ACS; ST segment elevation generally absent), and ST segment elevation infarction (STEMI; persistent ST segment elevation usually present).

Of the adverse outcomes specified for this question, two are covered for this population: mortality and MI.

Methods

There were 6 studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature pertaining to Australia's Indigenous population relevant to this research question.

Level I evidence

The literature search identified no Level I studies examining the effect of RBC transfusion in patients with ACS.

Level II evidence

The literature search identified no Level II studies examining the effect of RBC transfusion in patients with ACS.

Level III evidence

The literature search identified six Level III studies examining the effect of RBC transfusion in patients with ACS.

Level IV evidence

Level IV evidence was not searched for this question.

Results

Level III evidence

Six Level III-2 studies were included for this question: all six studies provided evidence for mortality and one provided evidence for thromboembolic events, as summarised in Table 3.48.^{16,113-117}

Author	Study type Study quality	Population	Outcomes
Level III evidence			
Alexander et al (2008) ¹¹³	Retrospective cohort study <i>Fair</i>	Patients with NSTE-ACS presenting within 24 hours of their last symptoms (subgroups defined by nadir Hct) N=44,242	Mortality
Rao et al (2004) ¹¹⁴	Cohort analysis of data from 3 RCTs Good	ACS N=24,112	Mortality
Sabatine et al (2005) ¹⁶	Cohort analysis of data from 16 RCTs <i>Fair</i>	STEMI (subgroups defined by baseline Hb) and NSTE- ACS N=39,922	Mortality
Shishehbor et al (2009) ¹¹⁵	Cohort analysis of data from a RCT <i>Good</i>	STEMI N=3,575	Mortality Thromboembolic events
Wu et al (2001) ¹¹⁶	Retrospective cohort study <i>Fair</i>	Aged ≥65 years with confirmed acute MI (subgroups defined by Hct) N=78,974	Mortality
Yang et al (2005) ¹¹⁷	Retrospective cohort study Poor	NSTE-ACS (excluding patients undergoing CABG) N=74,271	Mortality

Table 3.48 Question 2 (ACS): Characteristics and quality of Level III evidence

ACS, acute coronary syndrome; CABG, coronary artery bypass graft; Hb, haemoglobin; NSTE-ACS, non-ST segment elevation acute coronary syndrome; RCT, randomised controlled trial; STEMI, ST-segment elevation infarction; Hct, hematocrit; MI, myocardial infarction.

The effect of RBC transfusion on mortality

Four level III-2 studies assessed the **association between RBC transfusion and mortality in the overall ACS population**, as shown in Table 3.49.^{16,114,115,117} The study by Rao et al (2004)¹¹⁴ assessed the association between blood transfusion (whole blood or pRBCs) and 30-day mortality and 30-day mortality/MI in 24,112 patients with ACS who took part in three RCTs (GUSTO IIb, PURSUIT and PARAGON). Rao et al (2004)¹¹⁴ performed two analyses on the whole population: (i) a Cox regression analysis which incorporated transfusion as a timedependent covariate; and (ii) a landmark analysis in which they assessed transfusion as a time-fixed covariate, with the analysis divided into seven 24-hour periods. While the analyses were adjusted for a large number of potential confounding variables based on previously identified confounders and variables shown to be associated with propensity for bleeding and transfusion in regression analyses conducted specifically for their study, it is unclear if the treatments given in the RCTs were included in these considerations.

In the Cox regression analysis, blood transfusion was significantly and independently associated with 30-day mortality and 30-day mortality/MI (HR 3.94 and 2.92 respectively). In the landmark analysis, blood transfusion was significantly and independently associated with 30-day mortality during the third (49-72 hours) and fifth (97-120 hours) 24-hour periods. The ORs associated with these increased mortality risks were approximately 2.8 and 2.7, respectively.

The study by Sabatine et al (2005)¹⁶ assessed the association between blood transfusion (whole blood or pRBCs) and 30-day cardiovascular mortality/MI/recurrent ischaemia in 39,922 patients diagnosed with NSTE-ACS. The results of the analysis showed that blood transfusion was an independent risk factor for 30-day cardiovascular mortality/MI/recurrent ischaemia (OR 1.54; 95% CI 1.14, 2.09).

Yang et al (2005)¹¹⁷ assessed the effect of blood transfusion (non-autologous whole blood or pRBCs) on in-hospital mortality and in-hospital mortality/MI in patients with NSTE-ACS who did not undergo CABG while hospitalised. The median (25th/75th percentiles) nadir Hct in the transfused group was 26 (24, 26) and 35 (31, 39) in the non-transfused group.

Yang et al (2005)¹¹⁷ found that blood transfusion was associated with a significantly increased risk of mortality (OR 1.67; 95% CI 1.48, 1.88) and mortality/MI (OR 1.44; 95% CI 1.30, 1.60). While this study did assess a large number of potential confounders, adjustment for Hct did not appear to have been carried out which, as will be shown by the following section, may have biased the results of the study.

The study by Shishehbor et al (2009) examined the association between blood transfusion (whole blood or pRBCs) and mortality in patients with STEMI (approximately 4% underwent CABG and 18% underwent PCI within 7 days of randomisation). Baseline and nadir Hb and Hct were significantly lower in the transfused group compared with the non-transfused group.

The analysis showed a large increase in the risk of 30-day, 60-day and 1-year mortality in those undergoing blood transfusion, with HRs ranging from 3.03 to 3.89 (N=up to 3575). In addition, they undertook and propensity score and matching analysis which included 958 subjects, which also showed a significant increased risk of 30-day, 60-day and 1-year mortality associated with blood transfusion (HR 5.44, 4.81 and 3.10, respectively). Only the matched propensity analysis was adjusted for nadir Hb.

Shishhebor et al (2009)¹¹⁵ state that their study results support the results of Rao, although their analysis was based on data from the GUSTO trial, which was one of three RCTs included in the Rao study.

 Table 3.49
 Question 2 (ACS): Results for Level III evidence – mortality (all ACS patients)

Study	No. of trials / sample size	Patient population	Setting	Intervention vs	Outcome	Results			
Level of evidence Quality	included in analysis		Location	comparator		Transfused n/N (%)	Not transfused n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Rao 2004 Level III-2 Good	1 prospective cohort study (analysis of data from 3 RCTs) N=24,112	NSTE-ACS	Hospital Various	Whole or RBC transfusion vs no whole or RBC transfusion	30-day mortality	mellitus, SBP, DBP, prior stroke, prior MI hyperlipidaemia, fan CABG, prior PCI, Kil chronic renal insuffic ECG, β-blocker use,	669/21,711 (3.1) ysis adjusted for: site, ac HR, time from symptom gender, history of angir ily history CAD, history of lip class, baseline Hct, m iency, ST-segment elev calcium channel blocker eding and transfusion pr	na, hypertension, of CHF, PVD, prior naximum CK ratio, ation or depression on r use, nitrate use and	Blood transfusion is significantly associated with increased 30-day mortality in patients with NSTE-ACS P=NR
Rao 2004 Level III-2 Good	1 prospective cohort study (analysis of data from 3 RCTs) N=24,112	NSTE-ACS	Hospital Various	Whole or RBC transfusion vs no whole or RBC transfusion	transfusion vs no mortality/ <u>recurrent MI</u> whole or RBC		2176/21,711 (10.0) <u>ysis</u> adjusted for: site, ac HR, time from symptom gender, history of angir illy history CAD, history of lip class, baseline Hct, m iency, ST-segment elev calcium channel blocket eding and transfusion pr	na, hypertension, of CHF, PVD, prior naximum CK ratio, ation or depression on r use, nitrate use and	Blood transfusion is significantly associated with increased 30-day mortality/recurrent MI in patients with NSTE-ACS P=NR
Rao 2004 Level III-2 Good	1 prospective cohort study (analysis of data from 3 RCTs) N=20,688 at risk	NSTE-ACS	Hospital Various	Whole or RBC transfusion vs no whole or RBC transfusion	30-day mortality <u>(first</u> 24 hours)	mellitus, SBP, DBP, prior stroke, prior MI hyperlipidaemia, fan CABG, prior PCI, Kil chronic renal insuffic ECG, β-blocker use, current smoking, ble haematocrit plus ble	NR djusted for: site, age, ra HR, time from symptom , gender, history of angir ily history CAD, history o lip class, baseline Hct, rr iency, ST-segment eleva calcium channel blocket eding and transfusion pr eding events occurring b zedures (PCI and CABG iod.	onset to hospitalisation, na, hypertension, of CHF, PVD, prior naximum CK ratio, ation or depression on r use, nitrate use and opensity, nadir efore the end of each	Blood transfusion is <u>not</u> significantly associated with 30- day mortality during the first 24 hours in patients with NSTE- ACS P=NR

Study	No. of trials / sample size	Patient population	Setting	Intervention vs	Outcome	Results			
Level of evidence Quality	included in analysis		Location	comparator		Transfused n/N (%)	Not transfused n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Rao 2004 Level III-2 Good	1 prospective cohort study (analysis of data from 3 RCTs) N=20,464 at risk	NSTE-ACS	Hospital Various	Whole or RBC transfusion vs no whole or RBC transfusion	30-day mortality <u>(second 24</u> <u>hours)</u>	NR NR Landmark analysis adjusted for: site, age, race, weight, diabetes mellitus, SBP, DBP, HR, time from symptom onset to hospitalisation, prior stroke, prior MI, gender, history of angina, hypertension, hyperlipidaemia, family history CAD, history of CHF, PVD, prior CABG, prior PCI, Killip class, baseline Hct, maximum CK ratio, chronic renal insufficiency, ST-segment elevation or depression on ECG, β-blocker use, calcium channel blocker use, nitrate use and current smoking, bleeding and transfusion propensity, nadir haematocrit plus bleeding events occurring before the end of each time period, and procedures (PCI and CABG) occurring before the end of each time period. NR NR			Blood transfusion is <u>not</u> significantly associated with 30- day mortality during the second 24 hours in patients with NSTE-ACS P=NR
Rao 2004 Level III-2 Good	1 prospective cohort study (analysis of data from 3 RCTs) N=20,256 at risk	NSTE-ACS	Hospital Various	Whole or RBC transfusion vs no whole or RBC transfusion	30-day mortality <u>(third</u> 24 hours)	Landmark analysis a mellitus, SBP, DBP, prior stroke, prior MI hyperlipidaemia, fan CABG, prior PCI, Ki chronic renal insuffi ECG, β-blocker use current smoking, ble haematocrit plus ble	adjusted for: site, age, ra HR, time from symptom , gender, history of angi nily history CAD, history llip class, baseline Hct, r ciency, ST-segment elev , calcium channel blocke weding and transfusion p eeding events occurring b cedures (PCI and CABC	ce, weight, diabetes onset to hospitalisation, na, hypertension, of CHF, PVD, prior naximum CK ratio, ation or depression on r use, nitrate use and ropensity, nadir before the end of each	Blood transfusion is significantly associated with increased 30-day mortality during the third 24 hours in patients with NSTE- ACS P=NR
Rao 2004 Level III-2 Good	1 prospective cohort study (analysis of data from 3 RCTs) N=20,013 at risk	NSTE-ACS	Hospital Various	Whole or RBC transfusion vs no whole or RBC transfusion	30-day mortality <u>(fourth 24</u> <u>hours)</u>	mellitus, SBP, DBP, prior stroke, prior MI hyperlipidaemia, fan CABG, prior PCI, Ki chronic renal insuffit ECG, β-blocker use current smoking, ble haematocrit plus ble	, gender, history of angi nily history CAD, history llip class, baseline Hct, r iency, ST-segment elev , calcium channel blocke weding and transfusion p reding events occurring I cedures (PCI and CABC	onset to hospitalisation, na, hypertension, of CHF, PVD, prior naximum CK ratio, ation or depression on r use, nitrate use and ropensity, nadir before the end of each	Blood transfusion is <u>not</u> significantly associated with 30- day mortality during the fourth 24 hours in patients with NSTE-ACS P=NR

Study	No. of trials / sample size	Patient population	Setting	Intervention vs	Outcome	Results			
Level of evidence Quality	included in analysis		Location	comparator		Transfused n/N (%)	Not transfused n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Rao 2004 Level III-2 Good	1 prospective cohort study (analysis of data from 3 RCTs) N=19,816 at risk	NSTE-ACS	Hospital Various	Whole or RBC transfusion vs no whole or RBC transfusion	30-day mortality <u>(fifth</u> 24 hours)	NR NR Landmark analysis adjusted for: site, age, race, weight, diabetes mellitus, SBP, DBP, HR, time from symptom onset to hospitalisation, prior stroke, prior MI, gender, history of angina, hypertension, hyperlipidaemia, family history CAD, history of CHF, PVD, prior CABG, prior PCI, Killip class, baseline Hct, maximum CK ratio, chronic renal insufficiency, ST-segment elevation or depression on ECG, β-blocker use, calcium channel blocker use, nitrate use and current smoking, bleeding and transfusion propensity, nadir haematocrit plus bleeding events occurring before the end of each time period, and procedures (PCI and CABG) occurring before the end of each time period. NR NR			Blood transfusion is significantly associated with increased 30-day mortality during the fifth 24 hours in patients with NSTE- ACS P=NR
Rao 2004 Level III-2 Good	1 prospective cohort study (analysis of data from 3 RCTs) N=19,625 at risk	NSTE-ACS	Hospital Various	Whole or RBC transfusion vs no whole or RBC transfusion	30-day mortality <u>(sixth</u> 24 hours)	Landmark analysis a mellitus, SBP, DBP, prior stroke, prior MP, hyperlipidaemia, fan CABG, prior PCI, Kii chronic renal insuffic ECG, β-blocker use, current smoking, ble haematocrit plus ble	adjusted for: site, age, ra HR, time from symptom , gender, history of angi iliy history CAD, history lip class, baseline Hct, r ciency, ST-segment elev calcium channel blocke eding and transfusion p eding events occurring J cedures (PCI and CABC	ice, weight, diabetes onset to hospitalisation, na, hypertension, of CHF, PVD, prior naximum CK ratio, ation or depression on rr use, nitrate use and ropensity, nadir before the end of each	Blood transfusion is <u>not</u> significantly associated with 30- day mortality during the sixth 24 hours in patients with NSTE- ACS P=NR
Rao 2004 Level III-2 Good	1 prospective cohort study (analysis of data from 3 RCTs) N=19,450 at risk	NSTE-ACS	Hospital Various	Whole or RBC transfusion vs no whole or RBC transfusion	30-day mortality <u>(seventh 24</u> <u>hours)</u>	mellitus, SBP, DBP, prior stroke, prior MI hyperlipidaemia, fan CABG, prior PCI, Kil chronic renal insuffic ECG, β-blocker use, current smoking, ble haematocrit plus ble	, gender, history of angi nily history CAD, history lip class, baseline Hct, r iency, ST-segment elev calcium channel blocke eeding and transfusion p eding events occurring J cedures (PCI and CABC	onset to hospitalisation, na, hypertension, of CHF, PVD, prior naximum CK ratio, ration or depression on r use, nitrate use and ropensity, nadir pefore the end of each	Blood transfusion is <u>not</u> significantly associated with 30- day mortality during the seventh 24 hours in patients with NSTE-ACS P=NR

Study	No. of trials / sample size	Patient population	Setting	Intervention vs	Outcome	Results			
Level of evidence Quality	included in analysis		Location	comparator		Transfused n/N (%)	Not transfused n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Sabatine 2005 Level III-2 Fair	1 prospective cohort study (analysis of data from 16 RCTs) N=14,503	NSTE-ACS	Hospital Various	Whole or RBC transfusion vs no whole or RBC transfusion	30-day <u>cardiovascular</u> <u>mortality/MI/recurrent</u> <u>ischaemia</u>	history, creatinine c prior percutaneous cerebrovascular dis blocker, ACEI, angi index hospitalisation or hypolipidemic us	NR ender, race, hypertensio learance, prior MI, prior of coronary intervention, pri ease, peripheral arterial otensin receptor blocker, a spirin, β -blocker, angi e, index revascularisation bleeding and anterior loc	congestive heart failure, ior CABG, disease, prior aspirin, β- or hypolipidemic use, otensin receptor blocker, n, transfusion, transfusion	Whole or pRBC transfusion is significantly associated with increased 30-day cardiovascular mortality in patients with NSTE-ACS patients P=NR
Yang 2005 Level III-2 Poor	1 retrospective cohort study N=74,271	NSTE-ACS (excludes patients undergoing CABG)	Hospital US	Whole or RBC transfusion vs no whole or RBC transfusion	In-hospital mortality	risk factors (family h current/recent smok morbidities (renal in CABG, previous CH (ST-segment depre	3.8% OR 1.67 (1.48, 1.88) patient demographics (age, gender, BMI, race), cardiac amily history of CAD, hypertension, diabetes, it smoker, hypercholesterolaemia), medical co- enal insufficiency, previous MI, previous PCI, previous bus CHF, previous stroke), presenting characteristics depression, ST-segment elevation, positive cardiac is of CHF at presentation, HR, SBP) and socioeconomic ance status).		Blood transfusion is significantly associated with in- increased hospital mortality in patients with NSTE-ACS who haven't undergone CABG while hospitalised P=NR
Yang 2005 Level III-2 Poor	1 retrospective cohort study N=74,271	NSTE-ACS (excludes patients undergoing CABG)	Hospital US	Whole or RBC transfusion vs no whole or RBC transfusion	In-hospital mortality/ <u>MI</u>	risk factors (family f current/recent smok morbidities (renal in CABG, previous CF (ST-segment depre marker, signs of CF	13.4% 5.8% OR 1.44 (1.30, 1.60) Adjusted for: patient demographics (age, gender, BMI, race), cardiac risk factors (family history of CAD, hypertension, diabetes, current/recent smoker, hypercholesterolaemia), medical comorbidities (renal insufficiency, previous MI, previous PCI, previous CABG, previous CHF, previous stroke), presenting characteristics (ST-segment depression, ST-segment elevation, positive cardiac marker, signs of CHF at presentation, HR, SBP) and socioeconomic status (insurance status).		
Shishehbor 2009 Level III-2 Good	1 prospective cohort study (analysis of data from a RCT) N=3575	STEMI	Hospital Various (including Australia)	Whole or RBC transfusion vs no whole or RBC transfusion	30-day mortality	height, weight, cour hypertension, hyper insufficiency, PAD, history of PCI and C	HF, stroke, cancer diagn CABG, Killip class, family ictors, medical therapy a	es including diabetes, ng, COPD, chronic renal osed in past 5 years, history of cardiac	Blood transfusion is significantly associated with increased 30-day mortality in patients with STEMI P<0.001

Study	No. of trials / sample size	Patient population	Setting	Intervention vs	Outcome	Results			
Level of evidence Quality	included in analysis		Location	comparator		Transfused n/N (%)	Not transfused n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Shishehbor 2009	1 prospective cohort study	STEMI	Hospital	Whole or RBC	6-month mortality	NR	NR	HR 3.63 (2.67, 4.95)	Blood transfusion is
Level III-2 Good	(analysis of data from a RCT) N=3538		Various (including Australia)	transfusion vs no whole or RBC transfusion		height, weight, cour hypertension, hype insufficiency, PAD, history of PCI and (azards analysis adjusted t htty of origin, comorbiditie rcholesterolaemia, smoki HF, stroke, cancer diagn CABG, Killip class, family actors, medical therapy a hospital).	es including diabetes, ng, COPD, chronic renal osed in past 5 years, history of cardiac	significantly associated with increased 6-month mortality in patients with STEMI P<0.001
Shishehbor 2009	1 prospective cohort study	STEMI	Hospital	Whole or RBC	1-year mortality	NR	HR 3.03 (2.25, 4.08)	Blood transfusion is	
Level III-2 Good	(analysis of data from a RCT) N=3465		Various (including Australia)	transtusion vs no whole or RBC transfusion			azards analysis adjusted to httry of origin, comorbiditie rcholesterolaemia, smoki HF, stroke, cancer diagn ABG, Killip class, family actors, medical therapy a hospital).	es including diabetes, ng, COPD, chronic renal osed in past 5 years, history of cardiac	significantly associated with increased 6-month mortality in patients with STEMI P<0.001
Shishehbor 2009 Level III-2	1 prospective cohort study (analysis of data from a	Various (including transfusion vs no	30-day mortality	0-day mortality NR NR HR 5.44 (3.21, 9.22)					
Good	RCT) N=943		Australia)	whole or RBC transfusion		Propensity score an race, height, weigh diabetes, hypertens chronic renal insuff 5 years, history of f cardiac diseases an (ambulatory and in-	associated with increased 30-day mortality in patients with STEMI P<0.001		
Shishehbor 2009	1 prospective cohort study	STEMI	Hospital	Whole or RBC	6-month mortality	NR	NR	HR 4.81 (3.00, 7.71)	Blood transfusion is
Level III-2 Good	(analysis of data from a RCT) N=958		Various (including Australia)	transfusion vs no whole or RBC transfusion		race, height, weigh diabetes, hypertens chronic renal insuff 5 years, history of F cardiac diseases an	nd matching analysis adju t, country of origin, comor sion, hypercholesterolaen iciency, PAD, HF, stroke, PCI and CABG, Killip clas nd risk factors, medical th hospital) and nadir Hb.	bidities including nia, smoking, COPD, cancer diagnosed in past s, family history of	significantly associated with increased 6-month mortality in patients with STEMI P<0.001
Shishehbor 2009 Level III-2	1 prospective cohort study (analysis of data from a	STEMI	Hospital Various (including	Whole or RBC transfusion vs no	1-year mortality	NR	NR	HR 3.10 (2.18, 4.40)	Blood transfusion is significantly
Good	ŘCT) N=958		Australia)	whole or RBC transfusion		race, height, weigh diabetes, hypertens chronic renal insuff 5 years, history of F cardiac diseases an	nd matching analysis adju t, country of origin, comor sion, hypercholesterolaen iciency, PAD, HF, stroke, PCI and CABG, Killip clas nd risk factors, medical th hospital) and nadir Hb.	bidities including nia, smoking, COPD, cancer diagnosed in past s, family history of	associated with increased 1-year mortality in patients with STEMI P<0.001

ACS, acute coronary syndrome; CABG, coronary artery bypass graft; CI, confidence interval; HR, hazard ratio; NR, not reported; NSTE-ACS, non-ST segment elevation acute coronary syndrome; OR, odds ratio; RBC, red blood cell; RCT, randomised controlled trial; STEMI, ST-segment elevation infarction; MI, myocardial infarction; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; CAD, coronary artery disease; CHF, coronary heart failure; PVD, peripheral artery disease; PCI, percutaneous coronary intervention; CK, creatine kinase; ECG, electrocardiogram; ACEI, angiotensin converting enzyme inhibitor; COPD, chronic obstructive pulmonary disease.

As shown in the previous section, the results of all four studies which assessed the association between blood transfusion and mortality in the overall population suggest that blood transfusion is associated with an increased risk of mortality.

Four Level III-2 studies assessed the association between blood transfusion and mortality, stratified by Hct/Hb level, as shown in Table 3.50.^{16,113,114,116} The first of these was performed by Wu et al (2001),¹¹⁶ who carried out two analyses of the association between blood transfusion (whole blood or pRBCs) and mortality in a population aged \geq 65 years with confirmed acute MI: (i) including all patients and (ii) excluding patients who died within the first 48 hours. This second analysis was carried out in order to account for those patients who may have died before receiving a transfusion. The blood transfusion rate was 71.3% in those in the lowest admission Hct category (5.0-24.0%; N=380) and 1.6% in those in the highest admission Hct category (39.1-48.0%; N=44,699).

In the analysis including all subjects, Wu et al found that blood transfusion was associated with a reduction in mortality in patients with admission Hct levels of \leq 33%, with the OR ranging from 0.22 to 0.69. Admission Hct >36% was associated with an increase in mortality (OR 1.38-1.46). A similar result was seen for the second analysis excluding those who died within the first 48 hours, with a decreased risk of mortality associated with blood transfusion seen in patients with an admission Hct of <30% (OR 0.36-0.75). The risk of mortality associated with blood transfusion in patients who survived at least 2 days with Hct >33% was not reported.

The study by Rao et al (2004)¹¹⁴ examined the relationship between blood transfusion (whole blood or pRBCs) and 30-day mortality, stratified by nadir Hct in patients with ACS. The median nadir Hct (IQR) was 29.0 (24.6-35.2) in the transfused group (N=2401) and 37.6 (34.4-40.5) in the non-transfused group (N=21,711), while the baseline Hct was 39.9 (36.3-43.1) in the transfused group and 41.7 (38.8-44.5) in the non-transfused group. There was no significant association between blood transfusion and mortality at nadir Hct levels of 20% and 25%, but there was a large and significant association at nadir Hct levels of 30% and 35% (OR 168 and 292, respectively).

Rao et al (2004)¹¹⁴ note the disparity between the results of their study and the Wu study; ie, blood transfusion in patients with lower admission Hct resulted in lower mortality in the Wu study, while blood transfusion in patients with a lower nadir Hct resulted in no significant difference in mortality risk in the Rao study. Rao presents a number of possible reasons for the discrepancy including: (i) the use of admission Hct in the Wu study compared with nadir Hct in the Rao study, which they state is a critical issue as "a fundamental problem facing clinicians is whether to use transfusion in patients who are otherwise stable but have developed anaemia [during hospitalisation] as a consequence of medications, procedures or both"; (ii) the difference in methods of data collections (i.e. Medicare claims database for Wu and RCTs for Rao, which had better data collection, particularly for bleeding and transfusion); (iii) the more restricted population in the Wu study which excluded patients <65 years, those with bleeding within 48 hours of admission and those who underwent open-heart surgery; and (iv) different statistical methods, with Rao carrying out analyses with transfusion as both a time-dependent variable and in a landmark analysis, which they consider minimised survivor bias.

Sabatine et al $(2005)^{16}$ analysed the relationship between blood transfusion (whole blood or pRBCs) and cardiovascular mortality, stratified by admission Hb level. In patients with STEMI and a Hb <12 g/dL, blood transfusion was significantly associated with a decreased risk of

cardiovascular mortality (OR 0.42; 95% CI 0.20, 0.89). In patients with STEMI and a Hb \geq 12 g/dL, blood transfusion was associated with a potentially increased risk of cardiovascular mortality (OR 1.42), although this was not statistically significant.

The results of the Sabatine et al (2005)¹⁶ study are consistent with those of the Wu study, where blood transfusion appears to be beneficial at a lower Hct/Hb. Sabatine et al note that the Wu and Rao studies had conflicting results. They state that in their study there was a reduction in cardiovascular mortality in STEMI patients with an admission Hb <12 g/dL who were transfused, but an increase in cardiovascular mortality/MI/recurrent ischaemia in patients with NSTE-ACS (not stratified by Hb) who were transfused.

Alexander et al (2008)¹¹³ assessed the association between blood transfusion (nonautologous whole blood or pRBCs) and in-hospital mortality, stratified by different categories of nadir Hct. The transfusion rate was 79.2% in the Hct ≤24% group, 59.1% in the Hct 24.1-27.0% group, 21.8% in the Hct 27.1-30.0% group and 0.9% in the Hct >30% group.

After performing two adjusted analyses (the first adjusting for clinical factors and the second adjusting for clinical factors, baseline Hct and transfusion by nadir Hct interaction) they found no significant association between blood transfusion and mortality when the nadir Hct was ≤30% (although there was a trend towards reduced mortality), and a significant and independent association between blood transfusion and mortality when the nadir Hct was >30% (OR 2.89 and 3.47, respectively).

In their discussion Alexander et al (2008)¹¹³ also state that two previous studies by Wu and Rao arrive at different conclusions, and note that the Wu study was performed exclusively in the elderly and did not consider the "effects of bleeding, baseline and nadir HCTs."

 Table 3.50
 Question 2 (ACS): Results for Level III evidence – mortality (stratified by Hct/Hb level)

Study	No. of trials / sample size	Patient population	Setting	Intervention vs	Outcome	Results			
Level of evidence Quality	included in analysis		Location	comparator		Transfused n/N (%)	Not transfused n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Wu 2001 Level III-2 Fair	1 retrospective cohort study N=380	Aged ≥65 years with confirmed acute MI and <u>admission</u> Hct 5.0- 24 %	Hospital US	Whole or RBC transfusion vs no whole or RBC transfusion	30-day mortality	NR NR OR 0.22 (0.11, 0.45) Adjusted for: APACHE II score, do-not-resuscitate order on admission, MI location, CHF, MAP, HR, renal insufficiency: primary reperfusion therapy, aspirin use on admission, beta-blocker use on admission and predictors of the use of blood transfusion. NR NR OR 0.48 (0.34, 0.69)		Blood transfusion is significantly associated with <u>decreased</u> 30- day mortality in elderly patients with AMI and a Hct 5.0- 24.0% P=NR	
Wu 2001 Level III-2 Fair	1 retrospective cohort study N=838	Aged ≥65 years with confirmed acute MI and <u>admission</u> Hct 24.1- 27%	Hospital US	Whole or RBC transfusion vs no whole or RBC transfusion	30-day mortality	NR Adjusted for: APAC admission, MI locat reperfusion therapy admission and pred	Blood transfusion is significantly associated with <u>decreased</u> 30- day mortality in elderly patients with AMI and a Hct 24.1- 27.0% P=NR		
Wu 2001 Level III-2 Fair	1 retrospective cohort study N=2106	Aged ≥65 years with confirmed acute MI and <u>admission</u> Hct 27.1- 30%	Hospital US	Whole or RBC transfusion vs no whole or RBC transfusion	30-day mortality	NR OR 0.60 (0.47, 0.76) Adjusted for: APACHE II score, do-not-resuscitate order on admission, MI location, CHF, MAP, HR, renal insufficiency: primary reperfusion therapy, aspirin use on admission, beta-blocker use on admission and predictors of the use of blood transfusion.		al insufficiency; primary on, beta-blocker use on	Blood transfusion is significantly associated with <u>decreased</u> 30- day mortality in elderly patients with AMI and a Hct 27.1- 30.0% P=NR
Wu 2001	1 retrospective cohort	Aged ≥65 years with	Hospital	Whole or RBC	30-day mortality	NR	NR	OR 0.69 (0.53, 0.89)	Blood transfusion is

Study	No. of trials / sample size	Patient population	Setting	Intervention vs	Outcome	Results			
Level of evidence Quality	included in analysis		Location	comparator		Transfused n/N (%)	Not transfused n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
						admission, MI local reperfusion therapy		nal insufficiency; primary ion, beta-blocker use on	
Wu 2001	1 retrospective cohort	Aged ≥65 years with	Hospital	Whole or RBC	30-day mortality	NR	NR	OR 1.13 (0.89, 1.44)	Blood transfusion
Level III-2 Fair	study N=9885	confirmed acute MI and <u>admission</u> Hct 33.1- 36%	US	transfusion vs no whole or RBC transfusion		admission, MI local reperfusion therapy		nal insufficiency; primary ion, beta-blocker use on	is <u>not</u> associated with 30-day mortality in elderly patients with AMI and a Hct 33.1-36.0% P=NR
Wu 2001	1 retrospective cohort	Aged ≥65 years with	Hospital	Whole or RBC	30-day mortality	NR	OR 1.38 (1.05, 1.80)	Blood transfusion is	
Level III-2 Fair	study N=16,218	confirmed acute MI and <u>admission</u> Hct 36.1- 39%	US	transfusion vs no whole or RBC transfusion		Adjusted for: APAC admission, MI loca reperfusion therapy admission and pred	significantly associated with <u>increased</u> 30- day mortality in elderly patients with AMI and a Hct 36.1- 39.0% P=NR		
Wu 2001	1 retrospective cohort	Aged ≥65 years with	Hospital	Whole or RBC	30-day mortality	NR	NR	OR 1.46 (1.18, 1.81)	Blood transfusion is
Level III-2 Fair	study N=44,699	confirmed acute MI and <u>admission</u> Hct 39.1- 48%	US	transfusion vs no whole or RBC transfusion	BC	admission, MI local reperfusion therapy		nal insufficiency; primary ion, beta-blocker use on	significantly associated with increased 30- day mortality in elderly patients with AMI and a Hct 39.1- 48.0% P=NR
Wu 2001	1 retrospective cohort	Aged ≥65 years with	Hospital	Whole or RBC	30-day mortality	NR	NR	OR 0.36 (0.15, 0.83)	Blood transfusion is

Study	No. of trials / sample size	Patient population	Setting	Intervention vs	Outcome	Results			
Level of evidence Quality	included in analysis		Location	comparator		Transfused n/N (%)	Not transfused n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
						admission, MI location reperfusion therapy,		al insufficiency; primary on, beta-blocker use on	
Wu 2001	1 retrospective cohort	Aged ≥65 years with	Hospital	Whole or RBC	30-day mortality	NR	NR	OR 0.69 (0.47, 1.01)	Blood transfusion
Level III-2 Fair	study N=NR	confirmed acute MI and <u>admission</u> Hct 24.1- 27%, <u>excluding those</u> who died in the first 48 hours	US	transfusion vs no whole or RBC transfusion		Adjusted for: APACHE II score, do-not-resuscitate order on admission, MI location, CHF, MAP, HR, renal insufficiency; primary reperfusion therapy, aspirin use on admission, beta-blocker use on admission and predictors of the use of blood transfusion.			may be associated with <u>decreased</u> 30- day mortality in elderly patients with AMI and a Hct 24.1- 27.0% P=NR
Wu 2001	1 retrospective cohort	Aged ≥65 years with	Hospital	Whole or RBC	30-day mortality	NR	NR	OR 0.75 (0.58, 0.96)	Blood transfusion is
Level III-2 Fair	study N=NR	confirmed acute MI and <u>admission</u> Hct 27.1- 30%, <u>excluding those</u> who died in the first 48 hours	US	transfusion vs no whole or RBC transfusion		Adjusted for: APACHE II score, do-not-resuscitate order on admission, MI location, CHF, MAP, HR, renal insufficiency; primary reperfusion therapy, aspirin use on admission, beta-blocker use on admission and predictors of the use of blood transfusion.			significantly associated with <u>decreased</u> 30- day mortality in elderly patients with AMI and a Hct 27.1- 30.0% P=NR
Wu 2001	1 retrospective cohort	Aged ≥65 years with	Hospital	Whole or RBC	30-day mortality	NR	NR	OR 0.98 (0.76, 1.25)	Blood transfusion
Level III-2 Fair	study N=NR	confirmed acute MI and <u>admission</u> Hct 30.1- 33%, <u>excluding those</u> who died in the first 48 hours	US	transfusion vs no whole or RBC transfusion		Adjusted for: APACHE II score, do-not-resuscitate order on admission, MI location, CHF, MAP, HR, renal insufficiency; primary reperfusion therapy, aspirin use on admission, beta-blocker use on admission and predictors of the use of blood transfusion.			is <u>not</u> associated with 30-day mortality in elderly patients with AMI and a Hct 30.1-33.0% P=NR

Study	No. of trials / sample size	Patient population	Setting	Intervention vs	Outcome	Results			
Level of evidence Quality	included in analysis		Location	comparator		Transfused n/N (%)	Not transfused n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Rao 2004 Level III-2 Good	1 prospective cohort study (analysis of data from 3 RCTs) N=NR	ACS and <u>nadir</u> Hct 20%	Hospital Various	Whole or RBC transfusion vs no whole or RBC transfusion	30-day mortality	NR OR 1.59 (0.95, 2.66) Logistic regression analysis adjusted for: site, age, race, weight, diabetes mellitus, SBP, DBP, HR, time from symptom onset to hospitalisation, prior stroke, prior MI, gender, history of angina, hypertension, hyperlipidaemia, family history CAD, history of CHF, PVD, prior CABG, prior PCI, Killip class, baseline Hct, maximum CK ratio, chronic renal insufficiency, ST-segment elevation or depression on ECG, β-blocker use, calcium channel blocker use, nitrate use and current smoking, bleeding and transfusion propensity, nadir haematocrit plus bleeding events occurring before the end of each time period plus nadir Hct. NR NR OR 1.13 (0.70, 1.82) OR 1.13 (0.70, 1.82)			Blood transfusion is <u>not</u> significantly associated with 30- day mortality in patients with NSTE- ACS with a nadir Hct of 20% P=NR
Rao 2004 Level III-2 Good	1 prospective cohort study (analysis of data from 3 RCTs) N=NR	ACS and <u>nadir</u> Hct 25%	Hospital Various	Whole or RBC transfusion vs no whole or RBC transfusion	30-day mortality	Logistic regression a diabetes mellitus, SI hospitalisation, prior hypertension, hyper PVD, prior CABG, p ratio, chronic renal ii on ECG, β-blocker u current smoking, ble haematocrit plus ble	n analysis adjusted for: site, age, race, weight, SBP, DBP, HR, time from symptom onset to or stroke, prior MI, gender, history of angina, erlipidaemia, family history CAD, history of CHF, prior PCI, Killip class, baseline Hct, maximum CK I insufficiency, ST-segment elevation or depression r use, calcium channel blocker use, nitrate use and bleeding and transfusion propensity, nadir lededing events occurring before the end of each rocedures (PCI and CABG) occurring before the		Blood transfusion is <u>not</u> significantly associated with 30- day mortality in patients with NSTE- ACS with a nadir Hct of 25% P=NR
Rao 2004 Level III-2 Good	1 prospective cohort study (analysis of data from 3 RCTs) N=NR	ACS and <u>nadir</u> Hct 30%	Hospital Various	Whole or RBC transfusion vs no whole or RBC transfusion	30-day mortality	diabetes mellitus, SI hospitalisation, prior hypertension, hyper PVD, prior CABG, p ratio, chronic renal i on ECG, β-blocker u current smoking, ble haematocrit plus ble	rior PCI, Killip class, ba nsufficiency, ST-segme use, calcium channel blo eding and transfusion p eding events occurring cedures (PCI and CAB)	symptom onset to r, history of angina, y CAD, history of CHF, seline Hct, maximum CK nt elevation or depression cker use, nitrate use and ropensity, nadir before the end of each	Blood transfusion is significantly associated with increased 30- day mortality in patients with NSTE- ACS with a nadir Hct of 30% P=NR

Study	No. of trials / sample size	Patient population	Setting	Intervention vs	Outcome	Results			
Level of evidence Quality	included in analysis		Location	comparator		Transfused n/N (%)	Not transfused n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Rao 2004 Level III-2 Good	1 prospective cohort study (analysis of data from 3 RCTs) N=NR	ACS and <u>nadir</u> Hct 35%	Hospital Various	transfusion vs no whole or RBC transfusion		diabetes mellitus, SE hospitalisation, prior hypertension, hyperl PVD, prior CABG, pr ratio, chronic renal ir on ECG, β-blocker u current smoking, ble haematocrit plus ble	ior PCI, Killip class, bas isufficiency, ST-segmen se, calcium channel blo eding and transfusion p eding events occurring	symptom onset to , history of angina, y CAD, history of CHF, seline Hct, maximum CK at elevation or depression cker use, nitrate use and ropensity, nadir before the end of each	Blood transfusion is significantly associated with increased 30- day mortality in patients with NSTE- ACS with a nadir Hct of 35% P=NR
Sabatine 2005	1 prospective cohort study	STEMI and admission	Hospital		end of each time per		G) occurring before the OR 0.42 (0.20, 0.89)	Whole or pRBC	
Level III-2 Fair	(analysis of data from 16 RCTs) N=1441	Hb <12 g/dL	Various	transfusion vs no whole or RBC transfusion	mortality	Adjusted for: age, ge history, creatinine cli prior percutaneous c cerebrovascular dise blocker, ACEI, angio index hospitalisation or hypolipidemic use	nder, race, hypertensic earance, prior MI, prior oronary intervention, pr ase, peripheral arterial tensin receptor blocker aspirin, β-blocker, angi	n, diabetes, smoking congestive heart failure, ior CABG, disease, prior aspirin, β - or hypolipidemic use, otensin receptor blocker, n, transfusion, transfusion	transfusion is significantly associated with <u>decreased</u> 30- day cardiovascular mortality in patients with STEMI with a Hb <12 g/dL P=NR
Sabatine 2005	1 prospective cohort study	STEMI and admission	Hospital	Whole or RBC	30-day cardiovascular	NR	NR	OR 1.42 (0.94, 2.17)	Whole or pRBC

Study	No. of trials / sample size	Patient population	Setting	Intervention vs	Outcome	Results			
Level of evidence Quality	included in analysis		Location	comparator		Transfused n/N (%)	Not transfused n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
						history, creatinine cle prior percutaneous c cerebrovascular dise blocker, ACEI, angio index hospitalisation	disease, prior aspirin, β- , or hypolipidemic use, otensin receptor blocker, n, transfusion, transfusion		
Alexander 2008	1 retrospective cohort	NSTE-ACS presenting with 24 hours of their last	Hospital	Whole or packed RBCs vs no	Mortality (in-hospital)	NR	NR	OR 0.75 (0.50, 1.12)	Transfusion is not
Level III-2 Fair	study N=1633	symptoms with a <u>nadir</u> Hct <24%	US	whole or packed RBCs		hypertension, diabet hypercholesterolaem prior stroke, renal ins depression, transien	x, BMI, race, family hisi es, current/recent smok iia, prior MI, prior PCI, p sufficiency, ECG chang I ST-segment elevation, IF at presentation, hear	ing status, prior CABG, prior CHF, es (ST-segment), positive cardiac	significantly associated with in- hospital mortality in NSTE-ACS patients with a nadir HCT <24% P=NR
Alexander 2008	1 retrospective cohort	NSTE-ACS presenting with 24 hours of their last	Hospital	Whole or packed RBCs vs no	Mortality (in-hospital)	NR	NR	OR 0.67 (0.45, 1.02)	Transfusion is not
Level III-2 Fair	study N=1633	symptoms with a <u>nadir</u> Hct <24%	US	whole or packed RBCs		hypertension, diabet hypercholesterolaem prior stroke, renal ins depression, transien markers, signs of CH	x, BMI, race, family hisi es, current/recent smok ia, prior MI, prior PCI, p sufficiency, ECG chang I ST-segment elevation, IF at presentation, hear ine HCT and transfusio	ing status, prior CABG, prior CHF, es (ST-segment), positive cardiac t rate and SBP at	significantly associated with in- hospital mortality in NSTE-ACS patients with a nadir HCT <24% P=NR
Alexander 2008	1 retrospective cohort	NSTE-ACS presenting	Hospital	Whole or packed	Mortality (in-hospital)	NR	NR	OR 1.01 (0.79, 1.28)	Transfusion is not
Level III-2 Fair	study N=3263	with 24 hours of their last symptoms with a <u>nadir</u> Hct 24.1–27%	US	RBCs vs no whole or packed RBCs		hypertension, diabet hypercholesterolaem prior stroke, renal ins depression, transien	x, BMI, race, family hisi es, current/recent smok iia, prior MI, prior PCI, p sufficiency, ECG chang t ST-segment elevation IF at presentation, hear	ing status, prior CABG, prior CHF, es (ST-segment), positive cardiac	significantly associated with in- hospital mortality in NSTE-ACS patients with a nadir HCT 24.1% to 27% P=NR
Alexander 2008	1 retrospective cohort	NSTE-ACS presenting	Hospital	Whole or packed	Mortality (in-hospital)	NR	NR	OR 1.01 (0.79, 1.30)	Transfusion is not
Level III-2 Fair	study N=3263	with 24 hours of their last symptoms with a <u>nadir</u> Hct 24.1–27%	US	RBCs vs no whole or packed RBCs		hypertension, diabet hypercholesterolaem prior stroke, renal ins depression, transien markers, signs of CH	x, BMI, race, family his es, current/recent smok ia, prior MI, prior PCI, p sufficiency, ECG chang t ST-segment elevation, IF at presentation, hear line HCT and transfusio	ing status, prior CABG, prior CHF, es (ST-segment), positive cardiac t rate and SBP at	significantly associated with in- hospital mortality in NSTE-ACS patients with a nadir HCT 24.1% to 27% P=NR
Alexander 2008	1 retrospective cohort	NSTE-ACS presenting	Hospital	Whole or packed	Mortality (in-hospital)	NR	NR	OR 1.14 (0.90, 1.46)	Transfusion is not
			•						

Study	No. of trials / sample size	Patient population	Setting	Intervention vs	Outcome	Results			
Level of evidence Quality	included in analysis		Location	comparator		Transfused n/N (%)	Not transfused n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Level III-2 Fair	study N=4919	with 24 hours of their last symptoms with a <u>nadir</u> Hct 27.1–30%	US	RBCs vs no whole or packed RBCs		Adjusted for: age, sex, BMI, race, family history of CAD, hypertension, diabetes, current/recent smoking status, hypercholesterolaemia, prior MI, prior PCI, prior CABG, prior CHF, prior stroke, renal insufficiency. ECG changes (ST-segment depression, transient ST-segment elevation), positive cardiac markers, signs of CHF at presentation, heart rate and SBP at admission).			significantly associated with in- hospital mortality in NSTE-ACS patients with a nadir HCT 27.1% to 30% P=NR
Alexander 2008	1 retrospective cohort	NSTE-ACS presenting	Hospital	Whole or packed	Mortality (in-hospital)	NR	NR	OR 1.18 (0.92, 1.50)	Transfusion is <u>not</u> significantly
Level III-2 Fair	study N=4919	with 24 hours of their last symptoms with a <u>nadir</u> Hct 27.1–30%	US	RBCs vs no whole or packed RBCs	BCs vs no hole or packed		Adjusted for: age, sex, BMI, race, family history of CAD, hypertension, diabetes, current/recent smoking status, hypercholesterolaemia, prior MI, prior PCI, prior CABG, prior CHF, prior stroke, renal insufficiency, ECG changes (ST-segment depression, transient ST-segment elevation), positive cardiac markers, signs of CHF at presentation, heart rate and SBP at admission) and baseline HCT and transfusion by nadir HCT interaction.		
Alexander 2008	1 retrospective cohort	NSTE-ACS presenting	Hospital	Whole or packed	Mortality (in-hospital)	NR	NR	OR 2.89 (1.85, 4.51)	Transfusion is
Level III-2 Fair	study N=34,427	with 24 hours of their last symptoms with a <u>nadir</u> Hct >30%	US	RBCs vs no whole or packed RBCs		hypertension, diabet hypercholesterolaen prior stroke, renal in depression, transien	ex, BMI, race, family his es, current/recent smok nia, prior MI, prior PCI, j sufficiency, ECG chang t ST-segment elevation IF at presentation, hear	king status, prior CABG, prior CHF, es (ST-segment), positive cardiac	significantly associated with increased in- hospital mortality in NSTE-ACS patients with a nadir HCT >30% P=NR
Alexander 2008	1 retrospective cohort	NSTE-ACS presenting	Hospital	Whole or packed	Mortality (in-hospital)	NR	NR	OR 3.47 (2.30, 5.23)	Transfusion is
Level III-2 Fair	study N=34,427	with 24 hours of their last symptoms with a <u>nadir</u> Hct >30%	US	RBCs vs no whole or packed RBCs		hypertension, diabet hypercholesterolaem prior stroke, renal in: depression, transien markers, signs of CH	ex, BMI, race, family his es, current/recent smok nia, prior MI, prior PCI, sufficiency, ECG chang t ST-segment elevation IF at presentation, hear lline HCT and transfusie	king status, prior CABG, prior CHF, es (ST-segment), positive cardiac t rate and SBP at	significantly associated with increased in- hospital <u>mortality</u> in NSTE-ACS patients with a nadir HCT >30% P=NR

ACS, acute coronary syndrome; CABG, coronary artery bypass graft; CI, confidence interval; Hb, haemoglobin; Hct/HCT, haematocrit; NR, not reported; NSTE-ACS, non-ST segment elevation acute coronary syndrome; OR, odds ratio; RBC, red blood cell; RCT, randomised controlled trial; STEMI, ST-segment elevation infarction MI, myocardial infarction; AMI, acute myocardial infarction; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; CAD, coronary artery disease; CHF, coronary heart failure; PVD, peripheral artery disease; PCI, percutaneous coronary intervention; CK, creatine kinase; ECG, electrocardiogram; ACEI, angiotensin converting enzyme inhibitor; COPD, chronic obstructive pulmonary disease; MAP, mean arterial pressure; BMI, body mass index.

The effect of RBC transfusion on thromboembolic events

One Level III-2 study assessed the association between RBC transfusion and MI, as shown in Table 3.51. Shishehbor et al $(2009)^{115}$ examined the association between blood transfusion (whole blood or pRBCs) and MI in patients with STEMI. The median ± IQR nadir Hct in the patients who received transfusion was 25.1 ± 4.3 (N=307), and in patients who did not receive transfusion was 37.2 ± 5.1 (N=3268).

The results of the analysis showed that blood transfusion was significantly associated with 30-day (HR 3.44) and 6-month (HR 2.69) MI, but not 1-year MI.

Table 3.51	Question 2 (ACS) Results for Level III evidence – thromboembolic events
------------	---

Study	No. of trials /	Patient population	Setting	Intervention vs	Outcome	Results				
	sample size included in analysis		Location	comparator		Tranfused n/N (%)	Not transfused n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity	
Shishehbor 2009	1 prospective	STEMI	Hospital	Whole or RBC	30-day MI	NR	NR	HR 3.44	Blood transfusion is	
Level III-2 Good	cohort study (analysis of data from a RCT) N=3575		Various (including Australia)	transfusion vs no whole or RBC transfusion		country of origin, comor hypercholesterolaemia, stroke, cancer diagnose	bidities including diabetes, h smoking, COPD, chronic rei d in past 5 years, history of diseases and risk factors, m	nal insufficiency, PAD, HF, PCI and CABG, Killip class,	significantly associated with increased 30-day MI in patients with STEMI P<0.001	
Shishehbor 2009	1 prospective	STEMI	Hospital	Whole or RBC	6-month MI	NR	NR	HR 2.69	Blood transfusion is is	
Level III-2 Good	cohort study (analysis of data from a RCT) N=3538		Various (including Australia)			Cox proportional hazards analysis adjusted for: age, gender, race, height, weight, country of origin, comorbidities including diabetes, hypertension, hypercholesterolaemia, smoking, COPD, chronic renal insufficiency, PAD, HF, stroke, cancer diagnosed in past 5 years, history of PCI and CABG, Killip class, family history of cardiac diseases and risk factors, medical therapy and interventions (ambulatory and in-hospital).			significantly associated with increased 6-month MI in patients with STEMI P<0.001	
Shishehbor 2009	1 prospective	STEMI	Hospital	Whole or RBC	1-year MI	NR	NR	NR	Blood transfusion is not	
Level III-2 Good	cohort study (analysis of data from a RCT) N=3465		Various (including Australia)	transfusion vs no whole or RBC transfusion		country of origin, comor hypercholesterolaemia, stroke, cancer diagnose	bidities including diabetes, h smoking, COPD, chronic rei d in past 5 years, history of diseases and risk factors, m	hal insufficiency, PAD, HF, PCI and CABG, Killip class,	is significantly associated with 6-month MI in patients with STEMI P=NR	

ACS, acute coronary syndrome; CABG, coronary artery bypass graft; CI, confidence interval; HR, hazard ration; MI, myocardial infarction; NR, not reported; RBC, red blood cell; RCT, randomised controlled trial; STEMI, STsegment elevation infarction.

Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

HEART FAILURE

Of the adverse outcomes specified for this question, only mortality is covered for this population.

Methods

There was one study identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature pertaining to Australia's Indigenous population relevant to this research question.

Level I evidence

The literature search identified no Level I studies examining the effect of RBC transfusion in patients with heart failure.

Level II evidence

The literature search identified no Level II studies examining the effect of RBC transfusion in patients with heart failure.

Level III evidence

The literature search identified one Level III study examining the effect of RBC transfusion in patients with heart failure.

Level IV evidence

Level IV evidence was not searched for this question.

Results

One Level III-2 study was included for this question.¹¹⁸ The characteristics of this included study are summarised in Table 3.52.

Level III evidence							
Author	Study type Study quality	Population	Outcomes				
Garty et al (2009) ¹¹⁸	Prospective cohort study Fair	Patients with heart failure admitted to cardiology or internal medicine wards specifically with acute decompensated heart failure. N=2335	Mortality				

Table 3.52	Question 2 (heart failure): Characteristics and quality of Level III evidence
------------	---

The effect of RBC transfusion on mortality

One study assessed the association between blood transfusion (not further defined) and mortality, as shown in Table 3.53. Garty et al $(2009)^{118}$ examined the relationship between blood transfusion and mortality in 2335 hospitalised adults with acute decompensated heart failure. The mean ± SD nadir Hb was 8.7 g/dL ± 1.1 in the transfused group and 12.4 g/dL ± 1.9 in the non transfused group. The analysis was not adjusted for nadir Hb but was adjusted for propensity for blood transfusion.

The results of the analysis showed that blood transfusion was significantly associated with a reduction in 30-day mortality (OR 0.29; 95% Cl 0.13, 0.64; p=0.02) and may be associated with reduced in-hospital mortality (OR 0.48; 95% Cl 0.21, 1.11; p=0.08). Blood transfusion was not significantly associated with 1-year mortality (HR 0.74; 95% Cl 0.50, 1.09) or 4-year mortality (HR 0.86; 95% Cl 0.64, 1.14). The authors conclude that the patients included in this study who received blood transfusion had "worse clinical features and unadjusted outcomes, but BT per se seemed to be safe and perhaps even beneficial".

Table 3.53	Question 2 (heart failure): Results for Level III evidence – mortality
------------	--

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	ne Results				
Level of evidence <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity	
Garty 2009	1 prospective	Acute decompensated	Hospital	Blood transfusion vs	In-hospital	18/166 (10.8)	113/2169 (5.2)	OR 0.48 (0.21, 1.11)	Blood transfusion may be	
Level III-2 Fair	cohort study N=2335	heart failure	Israel	no blood transfusion	mortality		hypertension, diabetes mellit LVEF, eGFR and propensity f	us, current smoking, concurrent or blood transfusion.	significantly associated with <u>decreased</u> in- hospital mortality in patients with ADHF P=0.08	
Garty 2009	1 prospective		183/2153 (8.5)	OR 0.29 (0.13, 0.64)	Blood transfusion is significantly associated					
Level III-2 Fair	cohort study N=2317	heart failure	Israel	no blood transfusion	no blood transfusion		Adjusted for: age, sex, hypertension, diabetes mellitus, current smoking, concurrent ACS, heart rate, SBP, LVEF, eGFR and propensity for blood transfusion.			
Garty 2009	1 prospective	Acute decompensated	Hospital	Blood transfusion vs	1-year mortality	65/164 (39.6)	616/2161 (28.5)	HR 0.74 (0.50, 1.09)	Blood transfusion is not	
Level III-2 Fair	cohort study N=2325	heart failure	Israel	no blood transfusion		Adjusted for: age, sex, hypertension, diabetes mellitus, current smoking, concurre ACS, heart rate, SBP, LVEF, eGFR and propensity for blood transfusion.			t significantly associated with 1-year mortality in patients with ADHF P=0.12	
Garty 2009	1 prospective	Acute decompensated	Hospital	Blood transfusion vs	4-year mortality	114/164 (69.5)	1284/2157 (59.5)	HR 0.86 (0.64, 1.14)	ng, concurrent with 4 year mortality in	
Level III-2 Fair	cohort study N=2321	heart failure	Israel	no blood transfusion			hypertension, diabetes mellit LVEF, eGFR and propensity f	us, current smoking, concurrent for blood transfusion.		

ADHF, acute decompensated heart failure; CI, confidence interval; HR, hazard ratio; NR, not reported; OR, odds ratio; US, United States of America; ACS, acute coronary syndrome; SBP, systolic blood pressure; LVEF, left ventricular ejection fraction; eGFR, estimated glomerular filtration rate. Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

CANCER

Of the adverse outcomes specified for this question, two are covered for this population: mortality and thromboembolic events.

Methods

There was one study identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature pertaining to Australia's Indigenous population relevant to this research question.

Level I evidence

The literature search identified no Level I studies examining the effect of RBC transfusion in patients with cancer.

Level II evidence

The literature search identified no Level II studies examining the effect of RBC transfusion in patients with cancer.

Level III evidence

The literature search identified one Level III study examining the effect of RBC transfusion in patients with cancer.

Level IV evidence

Level IV evidence was not searched for this question.

Results

Level III evidence

One Level III-2 study was included for this question,¹¹⁹ which assessed the association between RBC transfusion and mortality and thromboembolic events, as summarised in Table 3.54.

Level III evidence								
Author	Study type Study quality	Population	Outcomes					
Khorana et al (2008) ¹¹⁹	Retrospective cohort study Fair	Adult patients with cancer admitted to one of 60 academic medical centres in the US N=503.185	Mortality Thromboembolic					
	ΓΔΙΙ	N=303,103	events					

Table 3.54 Question 2 (cancer): Characteristics and quality of Level III evidence

Due to the requirement that analyses were adjusted for multiple potential confounders, studies were limited to those including >500 subjects. This resulted in the exclusion of one study examining the influence of blood transfusion on survival in 130 patients undergoing radiotherapy for uterine cervical cancer.¹²⁰

The effect of RBC transfusion on mortality

One study assessed the association between RBC transfusion and mortality, as shown in Table 3.55. The study by Khorana et al (2008)¹¹⁹ examined the association between blood transfusion (pRBCs) and in-hospital mortality, in 503,185 hospitalised cancer patients. Approximately 12% of the included patients had undergone major oncologic surgery. This analysis showed that RBC transfusion was significantly associated with an increased risk of mortality (OR 1.34; 95% Cl 1.29, 1.38) in hospitalised patients with cancer.

It should be noted that the excluded study by Santin et al (2002)¹²⁰ which included only 130 patients also showed a significant association between blood transfusion and mortality overall (RR 2.6; 95% CI 1.6, 4.0; P<0.001), when considering Stage-IIB patients only (RR 1.9; 95% CI 1.1, 3.3; P=0.013) and in stage-III patients only (RR 3.2; 95% CI 1.2, 8.7; P=0.022).

Table 3.55	Question 2 (cancer): Results for Level III evidence – mortality
------------	---

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Khorana 2008 Level III-2 Fair	1 retrospective cohort study N=503,185	Adult patients with cancer admitted to one of 60 academic medical centres	Hospital US	RBC transfusion vs no RBC transfusion	In-hospital mortality	Adjusted for: age, gender, site or type of cancer, race/ethnicity, chemotherapy, venous catheters, and comorbidities including anaemia, infection, renal disease and lung disease.		RBC transfusion is significantly associated with increased in-hospital mortality in hospitalised	
									patients with cancer P=<0.001

CI, confidence interval; NR, not reported; OR, odds ratio; RBC, red blood cell. Notes: Mortality denotes all-cause mortality unless specifically stated otherwise. Statistically significant results shown in shading.

The effect of RBC transfusion on thromboembolic events

One study assessed the association between RBC transfusion and thromboembolic events, as shown in Table 3.56. The study by Khorana et al (2008)¹¹⁹ examined the association between blood transfusion (pRBCs) and VTE and ATE, in 503,185 hospitalised cancer patients. This analysis showed that RBC transfusion is significantly associated with an increased risk of VTE (OR 1.60; 95% CI 1.53, 1.67) and ATE (OR 1.53; 95% CI 1.46, 1.61) in hospitalised patients with cancer. In addition to RBC transfusion, a large number of other predictors of VTE were identified including age, gender, site or type of cancer, race, chemotherapy, use of venous catheter, platelet transfusion and comorbidities including anaemia, infection, renal disease and lung disease. The authors note that they were unable to identify patients concomitantly receiving outpatient ESA therapy, which is a potential confounding factor.

Table 3.56	Question 2 (cancer): Results for Level III evidence – thromboembolic events
------------	---

Study No. of trials /		Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence <i>Quality</i>	sample size included in analysis		Location			Risk factor n/N (%)	No risk factor n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Khorana 2008	1 retrospective	Adult patients with	Hospital	RBC transfusion vs	In-hospital VTE	NR	NR	OR 1.60 (1.53, 1.67)	RBC transfusion is
Level III-2 Fair	cohort study N=503,185	cancer admitted to one of 60 academic medical centres	US	no RBC transfusion		Adjusted for: age, gender, site of type of cancer, race/ethnicity, chemotherapy, venous catheters, and comorbidities including anaemia, infection, renal disease and lung disease.		significantly associated with increased VTE in hospitalised patients with cancer P=<0.001	
Khorana 2008	1 retrospective	Adult patients with	Hospital	RBC transfusion vs	In-hospital ATE	NR	NR	OR 1.53 (1.46, 1.61)	RBC transfusion is
Level III-2 Fair	cohort study N=503,185	cancer admitted to one of 60 academic medical centres	US	no RBC transfusion		Adjusted for: age, gender, site or type of cancer, race/ethnicity, chemotherapy, venous catheters, and comorbidities including anaemia, infection, renal disease and lung disease.			significantly associated with increased ATE in hospitalised patients with cancer P=<0.001

ATE, arterial thromboembolism; CI, confidence interval; NR, not reported; OR, odds ratio; RBC, red blood cell; VTE, venous thromboembolism.

ACUTE UPPER GASTROINTESTINAL BLOOD LOSS

Of the adverse outcomes specified for this question, only mortality is covered for this population.

Methods

There were three studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

Level I evidence

The literature search identified one Level I study examining the effect of RBC transfusion on adverse outcomes in patients with upper gastrointestinal blood loss. This study by Jairath et al (2010)¹²¹ included data from three trials, only one of which was eligible for inclusion in this review. As this study is already included in the Level II evidence below, the Jairath review will not be considered further.

Level II evidence

The literature search identified one Level II study examining the effect of RBC transfusion on adverse outcomes in patients with upper gastrointestinal blood loss.

Level III evidence

The literature search identified one Level III study examining the effect of RBC transfusion on adverse outcomes in patients with upper gastrointestinal blood loss.

Level IV evidence

Level IV evidence was not searched for this question.

Results

Level II evidence

One Level II study was included for this question; which provided evidence for mortality only.¹¹² The characteristics of this included study is summarised in Table 3.57. It should be noted that this study was small (N=50) and as such is unlikely to be sufficiently powered to detect a difference between treatment arms in mortality.

	Table 3.57	Question 2 (acute	GI haemorrhage):	Characteristics and c	uality of Level II evidence
--	------------	-------------------	------------------	-----------------------	-----------------------------

Level II evidence			
Author	Study type Study quality	Population	Outcomes
Blair et al (1986) ¹¹²	RCT Poor	Patients with acute severe upper GI haemorrhage. N=50	Mortality

GI, gastrointestinal; RCT, randomised controlled trial.

The effect of RBC transfusion on mortality

One study assessed the effect of RBC transfusion on mortality, as shown in Table 3.58. In the study by Blair et al $(1986)^{112}$, the risk of mortality was assessed in patients with acute upper GI haemorrhage. Patients were randomised to one of two treatment arms: (i) blood transfusion within 24 hours of hospitalisation or (ii) no blood transfusion within 24 hours of hospitalisation. The exception to this was if patients had a Hb <8 g/dL or if shock persisted after initial resuscitation with Haemacel; this occurred in 6/24 patients in the transfusion arm and 5/26 patients in the no transfusion arm. Thus, the transfusion arm can be considered equivalent to a liberal transfusion threshold, while the no transfusion arm can be considered equivalent to a restrictive transfusion threshold.

The results of the analysis showed no significant difference in mortality between the two treatment arms; however, as mentioned previously this study was underpowered to detect a difference in mortality.

Table 3.58	Question 2 (acute upper GI blood loss): Results for Level II evidence – mortality
------------	---

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results			
Level of evidence Quality	sample size included in analysis	Surgical procedure	Location		(follow-up)	Restrictive blood transfusion n/N (%)	Liberal blood transfusion n/N (%)	Risk estimate (95% CI)	<i>Significance</i> P-value
Blair 1986 Level II Poor	1 RCT N=50	Acute severe upper gastrointestinal haemorrhage	Hospital UK	Restrictive blood transfusion in first 24 hours vs liberal blood transfusion in first 24 hours	Mortality	0/26 (0)	2/24 (8.3)	NR	No difference P=NR

CI, confidence interval; NR, not reported; RCT, randomised controlled trial.

Level III evidence

One Level III-2 study was included for this question which provided evidence for mortality only.¹²² The characteristics of this included study are summarised in Table 3.59.

Table 3.59	Question 2 (acute upper GI blood loss): Characteristics and quality of Level III
	evidence

Level III evidence			
Author	Study type Study quality	Population	Outcomes
Hearnshaw et al (2010) ¹²²	Prospective cohort study Good	Patients with acute upper GI haemorrhage. N=4370	Mortality

The effect of RBC transfusion on mortality

One Level III study assessed the effect of RBC transfusion on mortality, as shown in Table 3.60. In the study by Hearnshaw et al (2010),¹²² the risk of mortality relating to early RBC transfusion (within 12 hours of presentation) was assessed in patients with acute upper GI haemorrhage. Patients were identified from NHS (UK) hospitals who agreed to take part in the study and submitted data (82%). All patients included had undergone an upper GI endoscopy. RBC transfusion was defined as RBC transfusion within 12 hours of presentation. The mean \pm SD admission Hb was 8.0 \pm 2.16 in the early RBC transfusion group and 12 \pm 2.54 in the no early RBC transfusion group.

The association between RBC within 12 hours and mortality was examined in the overall population (N=4370) and a number of patients subgroups including in-patients only, new admissions only, female or male only, excluding patients on varices and excluding patients on aspirin. The patient numbers for these subgroup analyses ranged from 722 to 3944. All analyses showed no significant association between RBC transfusion within 12 hours and mortality. However, the majority of analyses (except that in the excluding those on aspirin subgroup) resulted in an OR >1.25, suggesting that there may be an increased risk and that the analyses may have been underpowered to detect a significant association.

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results				
Level of evidence <i>Quality</i>	sample size included in analysis	Surgical procedure	Location		(follow-up)	RBC transfusion n/N (%)	No RBC transfusion n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity	
Hearnshaw 2010	1 prospective	Acute upper	Hospital	RBC transfusion	30-day mortality	NR	NR	OR 1.28 (0.94, 1.74)	RBC transfusion within	
Level III-2 Good	cohort study N=4370	gastrointestinal bleeding	UK	within 12 hours vs no RBC transfusion within 12 hours		Adjusted for: Rockall Inc haemorrhage) and base		and major stigmata of recent	12 hours is <u>not</u> significantly associated with 30-day mortality in patients with acute upper GI haemorrhage P=NR	
Hearnshaw 2010	1 prospective	Acute upper	Hospital	ospital RBC transfusion 30-day mortality N		NR	NR	OR 1.33 (0.83, 2.13)	RBC transfusion within	
Level III-2 Good	cohort study N=722	gastrointestinal bleeding (<u>in-patients</u> only)	UK	within 12 hours vs no RBC transfusion within 12 hours		Adjusted for: Rockall Index (age, shock, comorbidity and major stigmata of recent haemorrhage) and baseline Hb		and major stigmata of recent	12 hours is <u>not</u> significantly associated with 30-day mortality in in-patients with acute upper GI haemorrhage P=NR	
Hearnshaw 2010	1 prospective	Acute upper			30-day mortality	NR	NR	OR 1.40 (0.92, 2.13)	RBC transfusion within	
Level III-2 Good	cohort study N=3596	gastrointestinal bleeding (<u>new</u> admissions only)	UK	within 12 hours vs no RBC transfusion within 12 hours		Adjusted for: Rockall Inc haemorrhage) and base	12 hours is <u>not</u> significantly associated with 30-day mortality in newly admitted patients with acute upper GI haemorrhage P=NR			
Hearnshaw 2010	1 prospective	Acute upper	Hospital	RBC transfusion	30-day mortality	NR	NR	OR 1.29 (0.82, 2.03)	RBC transfusion within	
Level III-2 Good	cohort study N=1714	gastrointestinal bleeding (<u>female only</u>)	UK	within 12 hours vs no RBC transfusion within 12 hours			djusted for: Rockall Index (age, shock, comorbidity and major stigmata of rece aemorrhage) and baseline Hb		12 hours is <u>not</u> significantly associated with 30-day mortality in females with acute upper GI haemorrhage P=NR	
Hearnshaw 2010	1 prospective	Acute upper	Hospital	RBC transfusion	30-day mortality	NR	NR OR 1.31 (0.86, 2.02)		RBC transfusion within	
Level III-2 Good	cohort study N=2727	gastrointestinal bleeding (<u>male only</u>)	UK	within 12 hours vs no RBC transfusion within 12 hours		Adjusted for: Rockall Inc haemorrhage) and base		and major stigmata of recent	12 hours is <u>not</u> significantly associated with 30-day mortality in males with acute upper GI haemorrhage P=NR	

Table 3.60 Question 2 (acute upper GI blood loss): Results for Level III evidence – mortality

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results			
Level of evidence <i>Quality</i>	sample size included in analysis	Surgical procedure	Location		(follow-up)	RBC transfusion n/N (%)	No RBC transfusion n/N (%)	Risk estimate (95% CI)	Significance P-value Heterogeneity
Hearnshaw 2010	r		Hospital	RBC transfusion	30-day mortality	NR	NR	OR 1.26 (0.89, 1.79)	RBC transfusion within
Level III-2 Good	cohort study N=3944	gastrointestinal bleeding (<u>excluding</u> <u>patients with varices</u>)	UK	within 12 hours vs no RBC transfusion within 12 hours		Adjusted for: Rockall Index (age, shock, comorbidity and major stigmata of recent haemorrhage) and baseline Hb		12 hours is not significantly associated with 30-day mortality in patients with acute upper GI haemorrhage excluding those with varices P=NR	
Hearnshaw 2010	1 prospective	Acute upper			30-day mortality	rtality NR NR		OR 1.10 (0.75, 1.61)	RBC transfusion within 12 hours is not
Level III-2 Good	cohort study N=3036	gastrointestinal bleeding (<u>excluding</u> <u>patients on aspirin</u>)	UK	within 12 hours vs no RBC transfusion within 12 hours	C transiusion haemo		Adjusted for: Rockall Index (age, shock, comorbidity and major stigmata of recent haemorrhage) and baseline Hb		

CI, confidence interval; GI, gastrointestinal; NR, not reported; OR, odds ratio; RBC, red blood cell.

3.3 Question 3

Question 3 (Intervention)

In medical patients, what is the effect of non-transfusion interventions to increase Hb concentration on morbidity, mortality and need for RBC blood transfusion?

3.3.1 Non-transfusion interventions for patients with cancer

Evide	ence statements – cancer (erythropoiesis-stimulating agents)	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES3.1	In anaemic adults with cancer, ESA therapy increases the risk of all-cause mortality; this effect appears to be greater in patients with a Hb concentration over 100 g/L. (See evidence matrix EM3.A in Volume 2 of the technical report)	$\sqrt{}$	$\sqrt{\sqrt{2}}$	$\sqrt{}$	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{2}}$
ES3.2	In adult cancer patients with non chemotherapy- induced anaemia, ESA therapy increases the risk of all-cause mortality. (See evidence matrix EM3.A in Volume 2 of the technical report)	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{2}}$	$\sqrt{}$	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{2}}$
ES3.3	In adult cancer patients with chemotherapy-induced anaemia, the effect of ESA therapy on mortality is uncertain. (See evidence matrix EM3.A in Volume 2 of the technical report)	~~	~~~	X	~~~	$\sqrt{\sqrt{2}}$
ES3.4	In anaemic adults with cancer, ESA therapy reduces transfusion incidence and volume. (See evidence matrix EM3.B and EM3.C in Volume 2 of the technical report)	$\sqrt{\sqrt{1}}$	$\sqrt{}$	$\sqrt{\sqrt{1}}$	~~~	$\sqrt{\sqrt{2}}$
ES3.5	In anaemic adults with cancer, ESA therapy increases the risk of thromboembolic events. (See evidence matrix EM3.D in Volume 2 of the technical report)	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{2}}$	$\sqrt{}$
ES3.6	In anaemic adults with cancer, ESA therapy may improve functional or performance status; however, the magnitude of this effect appears slight. (See evidence matrix EM3.E in Volume 2 of the technical report)	V	V	X	~~~	$\sqrt{}$

\ \ \ \ \ \	~~~	NA	\\ \\	\ \ \
		V	1	√
	NA	$\sqrt{\sqrt{1}}$	~~~	V
~~~	$\sqrt{\sqrt{1}}$	NA	~~~	N
	NA	NA	~~	V
5	NA	NA	~~~	V
	/ .t	$ \frac{1}{2} $ $ 1$	$ \frac{1}{2} $ $ 1$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Recon	nmendation – cancer
R2 Grade A	In cancer patients with anaemia, the <i>routine</i> use of ESAs is not recommended. If considered necessary, ESAs should be used with caution, balancing the increased risks of mortality and thromboembolic events against the reduced incidence and volume of transfusion.
Practi	ce points – cancer
PP8 ^a	In patients with cancer, the aetiology of anaemia is often multifactorial; where appropriate, reversible causes should be identified and treated.
PP12	In anaemic patients with cancer receiving ESAs, evaluate iron status to guide adjuvant iron therapy.
	from Section 3.2.4, above poiesis-stimulating agent; PP, practice point; R, recommendation

# 3.3.2 ESAs vs no ESAs for anaemic patients with cancer

There were 19 Level I studies and five subsequently published Level II studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no literature pertaining to Australia's Indigenous population relevant to this research question.

#### Level I evidence

From the 19 applicable Level I studies two systematic reviews of RCTs were selected as being the highest quality and most comprehensive reviews that had recently been conducted.^{123,124} These two studies will form the basis of this review and will be updated with any Level II studies published subsequently. Both Level I studies evaluated the use of erythropoiesis stimulating agents (ESAs) in cancer patients with anaemia and the main characteristics of these reviews are summarised in Table 3.61.

The Tonelli et al (2009)¹²³ review compared the use of erythropoietin (EPO) or darbepoetin (DAR) with treatment without EPO or DAR. The review included 52 studies containing data from 12, 006 subjects. Of these studies, 19 had compulsory iron therapy in both study arms, 9 trials had iron therapy as required in either study arm, 1 trial had no iron therapy and 23 studies did not report the use of iron therapy. Data from this review will be used in the assessment of mortality, transfusion incidence, transfusion volume and functional and performance status outcomes. Tonelli et al (2009)¹²³ did not assess thromboembolic events as a separate outcome. For this outcome the earlier review from the Cochrane Collaboration by Bohlius et al (2006)¹²⁴ will be used. The Bohlius et al (2006)¹²⁴ review compared the use of EPO with treatment without EPO and assessed the proportion of subjects experiencing thromboembolic events as a separate category of adverse events. This review also had many studies that included iron therapy and many studies that did not report iron therapy. Data from this review will be updated with any studies included in Tonelli et al (2009)¹²³ that were not included in Bohlius et al (2006).¹²⁴ This will include studies that examined the use of DAR, which was excluded from Bohlius et al (2006).¹²⁴ Any data available from Level II studies published after Tonelli et al (2009)¹²³ will also be included.

Level I evide	ence			
Study	Study type Study quality	Population N	Comparison	Outcomes
Tonelli et al (2009) ¹²³	<i>Level I</i> Good	Adults with cancer-related anaemia 52 RCTs, N=12,006	EPO or DAR vs. no treatment or placebo	All-cause mortality, cardiovascular events and hypertension, QoL, blood transfusion incidence and volume, tumour response, adverse events.
Bohlius et al (2006) ¹²⁴	<i>Level I</i> Good	Cancer patients affected by, or at risk from, treatment-related anaemia	EPO vs. no treatment or placebo	Haematological response, blood transfusion incidence and volume, overall survival, tumour response, QoL, adverse events, predictors of response to EPO.

Table 3.61 Characteristics and quality of Level I evidence

DAR, darbepoetin; EPO, erythropoietin; ESA, erythropoiesis stimulating agents; Hb, haemoglobin; QoL, quality of life; RCT, randomised controlled trial

## Level II evidence

A literature search was conducted to identify Level II evidence published after the literature search conducted in the Tonelli et al (2009)¹²³ systematic review.^a Five studies were identified and the main characteristics of these studies are summarised in Table 3.62. Where the use of iron therapy was reported it has been included in the intervention. Four of the studies (Christodoulou et al [2009],¹²⁵ Hoskin et al [2009],¹²⁶ Pronzato et al [2010]¹²⁷ and Tsuboi et al [2009]¹²⁸) compared treatment with EPO to treatment without EPO. One study, Hernandez et al (2009),¹²⁹ compared the use of DAR with treatment without DAR. Christodoulou et al (2009)¹²⁵ was conducted in Greece, Hoskin et al (2009)¹²⁶ was conducted in the United Kingdom and Tsuboi et al (2009)¹²⁸ was conducted in Japan. Hernandez et al (2009)¹²⁹ was conducted in multiple centres in Australia, New Zealand and North America and Pronzato et al (2010)¹²⁷ was conducted in six European countries. Preliminary results from the Pronzato et al (2010)¹²⁷ study had been published as a conference proceeding in 2002. This earlier version had been identified and included in the Tonelli et al (2009)¹²³ study, but did not appear in any of the meta-analyses shown in that review and updated here. It is possible that the preliminary data may have been included in the subgroup analyses in Tonelli et al (2009),¹²³ as the list of studies that contributed to these analyses was not provided.

^a The literature search in Tonelli et al (2009) included papers published from 1950 to 2007.

Level II eviden	ce				
Study	Study type Study quality	Population N	Intervention	Comparator	Outcomes
Christodoulou et al (2009) ¹²⁵	<i>Level II</i> Poor	Adult cancer patients with solid tumours, Hb ≤120 g/L, concurrent chemotherapy (not high-dose), performance status ≤2 (WHO), life expectancy at least 3 months.	EPO-α All patients received daily 200mg elemental iron.	No treatment	OoL, blood transfusion incidence and volume, tumour response, overall survival.
Hernandez et al (2009) ¹²⁹	<i>Level II</i> Fair	Adult cancer patients with non-myeloid malignancy, Hb <110 g/L, scheduled for ≥12 weeks of chemotherapy	DAR Iron therapy recommended if : serum iron <500 µg/L, serum ferritin <10 ng/ mL, transferring saturation <20%	Placebo	QoL, blood transfusion incidence and volume, change in Hb concentration, adverse events.
Hoskin et al (2009) ¹²⁶	<i>Level II</i> Poor	Adult patients with squamous cell head and neck cancer, Hb <150 g/L, scheduled for radical radiotherapy.	EPO-α All patients received daily 200mg oral iron.	No treatment	Local disease-free survival, overall survival (at 1, 2 and 5 years), change from baseline in anaemia and fatigue.
Pronzato et al (2010) ¹²⁷	Level II Fair	Adult female patients with breast cancer, Hb ≤120 g/L, receiving chemotherapy for minimum 12 weeks, ECOG PS score 0–3, life expectancy 6 months, adequate renal, hepatic, and hematologic function.	ΕΡΟ-α	Best standard care	QOL, hematologic response, tumour response, 6-month and 12-month overall survival rates.
Tsuboi et al (2009) ¹²⁸	<i>Level II</i> Fair	Patients aged 20 to 80 years, with lung cancer or malignant lymphoma, receiving chemotherapy with at least two cycles scheduled after the first study drug administration, Hb 80-110 g/L, an ECOG PS ≤2, life expectancy ≥3 months, adequate renal and liver function.	EPO Oral iron administered if serum iron saturation <15% or MCV <80 µm ³	Placebo	Changes in Hb concentration from baseline, QoL, blood transfusion incidence.

Table 3.62 Characteristics and quality of Level II evidence

DAR, darbepoetin; EPO, erythropoietin; ECOG PS, Eastern Cooperative Oncology Group performance status; ESA, erythropoiesis stimulating agents; g, grams; Hb, haemoglobin; L, litre; QoL, quality of life; RCT, randomised controlled trial

The literature search also identified three studies¹³⁰⁻¹³² that contained socioeconomic data on the use of ESAs in cancer patients. The main characteristics of these studies are summarised in Table 3.63.

Level I evide	ence		
Study	Population Setting	Comparison	Outcomes
Borg et al (2008) ¹³⁰	Cancer patients with chemotherapy- related anaemia Sweden	EPO vs. RBC transfusion	Cost-effectiveness
Cremieux et al (1999) ¹³¹	Cancer patients undergoing chemotherapy, N=4500 US	EPO vs. RBC transfusion	Cost-effectiveness
Roungrong et al (2008) ¹³²	Cancer patients with chemotherapy- induced anaemia Thailand	EPO vs. RBC transfusion	Cost-utility

 Table 3.63
 Characteristics and quality of socioeconomic evidence

EPO, erythropoietin; RBC, red blood cell; US, United States of America.

### Results

### Mortality

Mortality was reported as an outcome in the Tonelli et al (2009)¹²³ systematic review. Three RCTs published after Tonelli et al (2009) (Hernandez et al [2009],¹²⁹ Hoskin et al [2009]¹²⁶ and Pronzato et al [2010]¹²⁷) also reported mortality as an outcome. Table 3.64 provides a summary of the results from these studies.

Tonelli et al (2009)¹²³ identified 28 RCTs (N=6525) that reported all-cause mortality as an outcome. A meta-analysis of the data from these RCTs found a significant increase in the risk of mortality with ESA treatment (RR 1.15; 95% CI: 1.03, 1.29). When the EPO and DAR interventions were analysed separately, only DAR treatment resulted in a significant increase in risk (RR 1.22; 95% CI: 1.01, 1.47). Tonelli et al (2009)¹²³ also analysed the risk of all-cause mortality in subject subgroups with a baseline Hb concentration of <100 g/L, 100-120 g/L or >120 g/L. There was a trend towards a higher relative risk of mortality in subjects with higher baseline Hb who received ESA treatment; however this effect was not statistically significant.

Hernandez et al (2009),¹²⁹ Hoskin et al (2009)¹²⁶ and Pronzato et al (2010)¹²⁷ all reported rates of mortality. In all of the studies the rates of mortality were similar in the two treatment groups; however, none of the studies provided a risk estimate for mortality.

A meta-analysis was conducted to update Tonelli et al (2009)¹²³ with the results from Hernandez et al (2009)¹²⁹ and Pronzato et al (2010)¹²⁷ (see Figure 3.1). Hoskin et al (2009)¹²⁶ had reported the mortality rate as a percentage of subjects affected. This could not be unambiguously converted to actual subject numbers so this study was excluded from the meta-analysis. After the addition of the Hernandez et al (2009)¹²⁹ and Pronzato et al (2010)¹²⁷ RCTs, the analysis still showed a significant increase in the risk of mortality in anaemic cancer patients treated with ESAs (RR 1.14; 95% CI: 1.02, 1.27).

Tonelli et al (2009)¹²³ also reported an increased risk of mortality with ESA treatment in patients whose anaemia is not related to chemotherapy (RR 1.22; 95% CI: 1.06, 1.40), but no significant increase in risk in patients with chemotherapy-related anaemia (RR 1.04; 95% CI:

0.86, 1.26) (see Table 3.64 and Figure 3.2). A study published by Bohlius et al (2009)¹²⁴ compared the association between the use of additional cancer therapies and mortality in patients treated or not treated with ESAs. The authors found that in patients receiving no additional therapy, ESA treatment was associated with a significant increase in mortality (HR 1.33; 95% CI: 1.06, 1.66). In patients receiving chemotherapy, radiotherapy or other therapies there was a trend towards increased mortality in patients treated with ESAs, but the findings did not reach significance.

Table 3.64	Results for ESAs vs no ESAs in cancer: all-cause mortality
------------	------------------------------------------------------------

								F	Results	
Study	Level of evidence <i>Quality</i>	No. of trials (sample size)	Patient population / Surgical procedure	Setting	Intervention	rvention Outcome		Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P value (12)
LEVEL I STUDIES										
Tonelli et al (2009) ¹²³	Level I Good	28 RCTs N=6525	Adults with cancer-related anaemia Hb <100 g/L	Multiple international centres	ESA vs. No ESA	All-cause mortality	NR	NR	Random effects RR 1.04 (0.81, 1.32)	No significant difference I ² =28%
			Adults with cancer-related anaemia Hb 100-120 g/L		ESA vs. No ESA		NR	NR	Random effects RR 1.16 (0.99, 1.36)	No significant difference l ² =0%
			Adults with cancer-related anaemia Hb >120 g/L		ESA vs. No ESA		NR	NR	Random effects RR 3.00 (0.13, 71.82)	No significant difference I²=NA
			Adults with cancer-related anaemia		EPO vs. No EPO		291/2163	207/1581	Random effects RR 1.12 (0.97, 1.29)	No significant difference l ² =0%
					DAR vs. No DAR		224/1626	153/1155	Random effects RR 1.22 (1.01, 1.47)	Favours no ESA treatment. I ² =0%
			Adults with anaemia related to chemotherapy		ESA vs. No ESA		23/	4273	RR 1.04 (0.86, 1.26)	No significant difference
			Adults with anaemia not related to chemotherapy		ESA vs. No ESA		8/2	2252	RR 1.22 (1.06, 1.40)	Favours no ESA treatment.
			Adults with cancer-related anaemia		ESA vs. No ESA		515/3789	360/2736	Random effects RR 1.15 (1.03, 1.29)	Favours no ESA treatment. I ² =0%

								R	esults	
Study	Level of evidence <i>Quality</i>	No. of trials (sample size)	Patient population / Surgical procedure	Setting	Intervention	Outcome	Intervention	Comparator	Risk estimate (95% Cl)	Significance P-value Heterogeneity P value (12)
LEVEL II STUDIES										
Hernandez et al (2009) ¹²⁹	Level II Fair	1 RCT N=386	Adult patients with non- myeloid malignancy, Hb <110 g/L, scheduled for ≥12 weeks of chemotherapy	Conducted at 81 sites in Australia, New Zealand and North America	DAR vs. placebo Iron therapy recommended if : serum iron <500 µg/L, serum ferritin <10 ng/ mL, transferring saturation <20%	All-cause mortality	17/194	20/192	NR	P=NR
Hoskin et al (2009) ¹²⁶	Level II Poor	1 RCT N=282	Adult patients with squamous cell head and neck cancer, Hb <150 g/L, scheduled for radical radiotherapy.	Conducted at 21 sites in the United Kingdom	EPO-α vs. No treatment All patients received daily 200mg oral iron	All-cause mortality	53% ª	50% a	NR	P=NR
Pronzato et al (2010) ¹²⁷	Level II Fair	1 RCT N=223	Adult female patients with breast cancer, Hb ≤120 g/L, receiving myelotoxic chemotherapy for a planned minimum of 12 weeks	Conducted at multiple sites in Italy, Spain, Portugal, Belgium, The Netherlands and the United Kingdom.	EPO-α vs. best standard care	All-cause mortality	23/110	20/113	NR	No significant difference.

CI, confidence interval; DAR, darbepoetin; EPO, erythropoietin; ESA, erythropoiesis-stimulating agents; g, grams; Hb, haemoglobin; L, litre; NR, not reported; RCT, randomised controlled trial; RR, relative risk ^a The study by Hoskin et al (2009)¹²⁶ did not report patient numbers for mortality and these could not be calculated unambiguously post hoc.

	ESA		No Es			Risk Ratio	Risk Ratio
Study or Subgroup		Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
1.2.1 Included in Tonell							
Bamias 2003	7	72	4	72	0.8%	1.75 [0.54, 5.72]	
Cazzola 1995	4	117	3	29	0.6%	0.33 [0.08, 1.40]	· · · · · · · · · · · · · · · · · · ·
Charu 2007	16	226	3	59	0.8%	1.39 [0.42, 4.62]	
Christodoulakis 2005a	2	69	0	34	0.1%	2.50 [0.12, 50.67]	
Christodoulakis 2005b	3	67	0	34	0.1%	3.60 [0.19, 67.81]	· · ·
Dammacco 1998	9	40	5	31	1.2%	1.40 [0.52, 3.74]	<u> </u>
Dammacco 2001	1	69	7	76	0.3%	0.16 [0.02, 1.25]	<b>←</b>
Gordon 2008	11	164	5	54	1.2%	0.72 [0.26, 1.99]	
Hedenus 2003	10	174	4	170	0.9%	2.44 [0.78, 7.64]	
Henke 2003	109	180	89	171	34.4%	1.16 [0.97, 1.40]	
Johnson Pharm 1998	8	136	3	65	0.7%	1.27 [0.35, 4.65]	
Kettelhack 1998	2	52	0	57	0.1%	5.47 [0.27, 111.39]	
Kotasek 2003	7	198	3	51	0.7%	0.60 [0.16, 2.24]	
_ittlewood 2001	35	251	22	124	5.0%	0.79 [0.48, 1.28]	
Mystakidou 2005	3	50	3	50	0.5%	1.00 [0.21, 4.72]	
D'Shaughnessy 2005	1	47	0	47	0.1%	3.00 [0.13, 71.82]	
Oberhoff 1998	8	114	14	104	1.7%	0.52 [0.23, 1.19]	<del></del>
Roche Pharm 2006-1	1	30	0	30	0.1%	3.00 [0.13, 70.83]	
Roche Pharm 2006-2	4	61	0	60	0.1%	8.85 [0.49, 160.97]	
Rose 1994	11	142	4	79	1.0%	1.53 [0.50, 4.65]	<del></del>
Smith 2008	138	515	96	470	22.8%	1.31 [1.04, 1.65]	
Strauss 2008	8	34	5	40	1.1%	1.88 [0.68, 5.22]	
Faylor 2005	20	193	23	193	3.7%	0.87 [0.49, 1.53]	
Ten Bokkel 1998a	1	45	1	17	0.2%	0.38 [0.03, 5.71]	<b>←</b>
Ten Bokkel 1998b	5	42	1	16	0.2%	1.90 [0.24, 15.07]	
Vansteenkiste 2002	22	156	19	158	3.6%	1.17 [0.66, 2.08]	_ <b>_</b>
Wilkinson 2006	3	114	0	59	0.1%	3.65 [0.19, 69.55]	
Witzig 2005	12	166	10	164	1.8%	1.19 [0.53, 2.67]	
Österborg 1996a	12	47	7	25	2.1%	1.14 [0.54, 2.42]	
Österborg 1996a	10	47	7	23	1.8%	0.79 [0.35, 1.77]	
			22				
Österborg 2002 Subtotal (95% CI)	28	170 3789	22	173 <b>2736</b>	4.5% <b>92.7%</b>	1.30 [0.77, 2.17] 1.15 [1.03, 1.29]	
. ,	<b>E1F</b>	5105	360	2100	JE.1 /0		▼
Total events Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =			df = 30 (I	P = 0.63	3); l² = 0%		
1.2.2 Studies published	l after Tor	nelli 20	09				
Hernandez 2009	17	194	20	192	3.2%	0.84 [0.45, 1.56]	— <del>.</del>
Pronzato 2010	23	110	20	113	4.1%	1.18 [0.69, 2.02]	- <b> -</b>
Subtotal (95% CI)		304		305	7.3%	1.02 [0.68, 1.53]	<b>•</b>
Total events	40		40				
Heterogeneity: Tau ² = 0.0		0.66. c		: 0.41):	l ² = 0%		
Test for overall effect: Z =	'	,	``	,,			
Total (95% CI)		4093		3041	100.0%	1.14 [1.02, 1.27]	•
Total events	555		400				
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Test for subgroup differen	00; Chi² = = 2.38 (P :	= 0.02)	df = 32 (l				0.1 0.2 0.5 1 2 5 1 Favours ESA Favours No ES

# Figure 3.1 Meta-analysis of ESAs vs no ESAs in cancer: all-cause mortality

Letters following publication dates indicate separate data sets within a single publication. Numbers following publication dates indicate separate publications published within a single year.

# Figure 3.2 Analysis of ESAs vs. no ESAs in chemotherapy-induced anaemia and not chemotherapy-induced anaemia: all-cause mortality

			Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	IV, Random, 95% CI	IV, Random, 95% CI
Chemotherapy-induced	0.039221	0.092	1.04 [0.87, 1.25]	
Not chemotherapy-induced	0.198851	0.082	1.22 [1.04, 1.43]	<b>+</b>
				0.5 0.7 1 1.5 2 Favours ESA Favours No ESA

The log of the risk ratio and standard error were calculated post hoc from the risk ratio and associated 95% confidence interval reported in Tonelli et al (2009)¹²³. Differences in the bound of the 95% confidence interval are due to data conversion and calculation performed in Review Manager 5 software.

#### RBC transfusion incidence and volume

Tonelli et al (2009)¹²³ identified 26 RCTs (N=5321) that reported the proportion of subjects who received RBC transfusions. A meta-analysis of the data showed a significantly lower risk of transfusion in subjects who received ESA treatment (RR 0.64; 95% CI: 0.56, 0.73). The same effect was observed when the analysis was restricted to treatment with EPO (RR 0.65; 95% CI: 0.56, 0.75) or DAR (RR 0.58; 95% CI: 0.41, 0.83). Transfusion incidence was analysed by subgroups with a baseline Hb concentration of <100 g/L, 100-120 g/L or >120 g/L. The analysis found significant reductions in risk with ESA treatment in subjects with baseline Hb <100 g/L (RR 0.72; 95% CI: 0.62, 0.84) and 100-120 g/L (RR 0.57; 95% CI: 0.47, 0.69), but not in subjects with baseline Hb >120 g/L (RR 0.46; 95% CI: 0.11, 1.88).

The RCTs by Christodoulou et al (2009),¹²⁵ Hernandez et al (2009),¹²⁹ Pronzato et al (2010)¹²⁷ and Tsuboi et al (2009)¹²⁸ reported the proportion of patients requiring RBC transfusion. Christodoulou et al (2009)¹²⁵ and Hernandez et al (2009)¹²⁹ both reported a significantly lower rate of transfusion in subjects treated with ESAs (p=0.0035 and p=0.003, respectively). Tsuboi et al (2009)¹²⁸ and Pronzato et al (2010)¹²⁷ did not find a significant difference in transfusion rates, although Pronzato et al (2010)¹²⁷ did observe a trend towards lower transfusion rates with ESA treatment (see Table 3.65).

A meta-analysis was conducted to update Tonelli et al (2009)¹²³ with the data from Christodoulou et al (2009),¹²⁵ Tsuboi et al (2009)¹²⁸ and Pronzato et al (2010)¹²⁷ (see Figure 3.3). Hernandez et al (2009)¹²⁹ had reported the transfusion rate as a percentage of subjects affected. This could not be unambiguously converted to actual subject numbers so this study was excluded from the meta-analysis. After the addition of the three RCTs the analysis still showed a significantly reduced risk of transfusion in anaemic cancer patients treated with ESAs (RR 0.64; 95% CI: 0.56, 0.72).

Tonelli et al (2009)¹²³ identified 15 RCTs that reported mean transfusion volume. The metaanalysis found significantly lower transfusion volume in patients treated with ESAs (WMD -0.80 units; 95% CI: -0.99, -0.61). Christodoulou et al (2009)¹²⁵ reported a significantly lower mean transfusion volume in patients treated with EPO (difference: -0.37 units, p=0.003). Neither study provided sufficient data to allow an update of the Tonelli et al (2009)¹²³ metaanalysis.

 Table 3.65
 Results for ESAs vs no ESAs in cancer: RBC transfusion incidence and volume

								Re	sults	
Study	Level of evidence <i>Quality</i>	No. of trials (sample size)	Patient population / Surgical procedure	Setting	Intervention	Outcome	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P value (12)
TRANSFUSION IN	CIDENCE					ł				
Level I Studies										
Tonelli et al (2009) ¹²³	Level I Good	26 RCTs N=5321	Adults with cancer-related anaemia Hb <100 g/L	Multiple international centres	ESA vs. No ESA	Patients requiring transfusion	NR	NR	Random effects RR 0.72 (0.62–0.84)	Favours ESA treatment I ² =22%
			Adults with cancer-related anaemia Hb 100-120 g/L		ESA vs. No ESA		NR	NR	Random effects RR 0.57 (0.47–0.69)	Favours ESA treatment l ² =56%
			Adults with cancer-related anaemia Hb >120 g/L		ESA vs. No ESA		NR	NR	Random effects RR 0.46 (0.11–1.88)	No significant difference l ² =34%
			Adults with cancer-related anaemia		EPO vs. No EPO		579/2229	739/1892	Random effects RR 0.65 (0.56, 0.75)	Favours EPO treatment I ² =NR
					DAR vs. No DAR		128/653	213/547	Random effects RR 0.58 (0.41, 0.83)	Favours DAR treatment I ² =NR
					ESA vs. No ESA		707/2882	952/2439	Random effects RR 0.64 (0.56, 0.73)	Favours ESA treatment I ² =NR

								Re	sults	
Study	Level of evidence <i>Quality</i>	No. of trials (sample size)	Patient population / Surgical procedure	Setting	Intervention	Outcome	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P value (I2)
LEVEL II STUDIES Christodoulou et al (2009) ¹²⁵	Level II Poor	1 RCT N=337	Adult patients with solid tumours, Hb ≤120 g/L, concurrent chemotherapy (not high-dose), performance status ≤2 (WHO), life expectancy at least 3 months.	Conducted at multiple centres in Greece	EPO-a vs. No treatment All patients received daily 200mg elemental iron.	Patients requiring transfusion	16/167	36/170	NR	Favours EPO-a treatment P=0.0035
Hernandez et al (2009) ¹²⁹	Level II Fair	1 RCT N=386	Adult patients with non- myeloid malignancy, Hb <110 g/L, scheduled for ≥12 weeks of chemotherapy.	Conducted at 81 sites in Australia, New Zealand and North America	DAR vs. placebo Iron therapy recommended if : serum iron <500 µg/L, serum ferritin <10 ng/ mL, transferring saturation <20%	Patients requiring transfusion (adjusted Kaplan-Meier estimate) ^a	30% N=193	47% N=193	Mean difference: -14.6% (- 31.29, -4.6)	Favours DAR treatment P=0.003
Tsuboi et al (2009) ¹²⁸	Level II Fair	1 RCT N=117	Patients of age 20 to 80 years, with lung cancer or malignant lymphoma, receiving chemotherapy with at least two cycles scheduled after the first study drug administration, Hb 80-110 g/L, an Eastern Cooperative Oncology Group performance status (PS) ≤2, life expectancy ≥3 months as well as adequate renal and liver function.	Conducted at 11 centres in Japan	EPO vs. placebo Oral iron administered if serum iron saturation <15% or MCV <80 µm ³	Patients requiring transfusion	7/61	7/56	NR	No significant difference P=0.865
Pronzato et al (2010) ¹²⁷	Level II Fair	1 RCT N=223	Adult female patients with breast cancer, Hb ≤120 g/L, receiving myelotoxic chemotherapy for a planned minimum of 12 weeks	Conducted at multiple sites in Italy, Spain, Portugal, Belgium, The Netherlands and the United Kingdom.	EPO-α vs. best standard care	Patients requiring transfusion	8/107	18/109	NR	No significant difference P=0.059

								Re	sults	
Study	Level of evidence <i>Quality</i>	No. of trials (sample size)	Patient population / Surgical procedure	Setting	Intervention	Outcome	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P value (12)
TRANSFUSION VC	DLUME	•				•				•
LEVEL I STUDIES										
Tonelli et al (2009) ¹²³	Level I Good	15 RCTs N=NR	Adults with cancer-related anaemia	Multiple international centres	ESA vs. No ESA	Transfusion volume (units transfused per patient)	NR	NR	WMD -0.8 units (-0.99, -0.61)	Favours ESA treatment I ² =12%
LEVEL II STUDIES										
Christodoulou et al (2009) ¹²⁵	Level II Poor	1 RCT N=337	Adult patients with solid tumours, Hb ≤120 g/L, concurrent chemotherapy (not high-dose), performance status ≤2 (WHO), life expectancy at least 3 months.	Conducted at multiple centres in Greece	EPO-a vs. No treatment All patients received daily 200mg elemental iron.	Transfusion volume (units transfused per patient)	0.24 (SD=NR) N=16	0.61 (SD=NR) N=36	Difference: -0.37 ^b	Favours ESA treatment P=0.003

Cl, confidence interval; DAR, darbepoetin; EPO, erythropoietin; ESA, erythropoiesis-stimulating agents; g, grams; Hb, haemoglobin; L, litre; NR, not reported; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation, WHO, World Health Organisation

^a Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I2<25%; (ii) mild heterogeneity if I2<25%; moderate heterogeneity if I2 between 25%-50%; substantial heterogeneity if I2>50%.

^b Difference calculated post hoc.

o. I. o.:	ESA		No ES		W. 1 1 .	Risk Ratio	Risk Ratio
Study or Subgroup		Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
1.4.1 Included in Tonell							
Aapro 2008	33	231	63	232	4.3%	0.53 [0.36, 0.77]	
Abels 1993a	21	63	21	55	3.4%	0.87 [0.54, 1.42]	
Abels 1993b	32	79	36	74	4.5%	0.83 [0.58, 1.19]	
Abels 1993c	34	64	42	61	5.1%	0.77 [0.58, 1.03]	
Amgen 2007	52	298	116	298	5.1%	0.45 [0.34, 0.60]	
Bamias 2003	11	72	24	72	2.5%	0.46 [0.24, 0.86]	
Boogaerts 2003	43	133	67	129	5.0%	0.62 [0.46, 0.84]	
Cascinu 1994	10	50	28	49	2.7%	0.35 [0.19, 0.64]	
Cazzola 1995a	7	31	2	8	0.8%	0.90 [0.23, 3.54]	
Cazzola 1995b	5	29	2	7	0.7%	0.60 [0.15, 2.49]	· · · ·
Cazzola 1995c	6	31	2	7	0.8%	0.68 [0.17, 2.68]	
Cazzola 1995d	4	26	2	7	0.7%	0.54 [0.12, 2.36]	
Chang 2005	15	175	40	175	3.0%	0.38 [0.22, 0.65]	
Christodoulakis 2005a	34	69	18	34	4.1%	0.93 [0.63, 1.38]	
Christodoulakis 2005b	25	67	18	34	3.7%	0.70 [0.45, 1.10]	+
Gordon 2008	18	162	6	56	1.6%	1.04 [0.43, 2.48]	
Iconomou 2003	9	57	14	55	2.0%	0.62 [0.29, 1.31]	
Kettelhack 1998	16	48	15	54	2.8%	1.20 [0.67, 2.16]	
Kosmadakis 2003	9	31	19	32	2.6%	0.49 [0.26, 0.91]	
O'Shaughnessy 2005	0	47	4	47	0.2%	0.11 [0.01, 2.01]	←
Oberhoff 1998	26	101	36	88	4.0%	0.63 [0.42, 0.95]	<b>_</b> _
Qvist 1999	13	38	23	43	3.2%	0.64 [0.38, 1.08]	
Savonije 2005	77	211	66	102	5.6%	0.56 [0.45, 0.71]	
Strauss 2008	9	34	12	40	2.1%	0.88 [0.42, 1.84]	
Taylor 2005	58	193	91	193	5.3%	0.64 [0.49, 0.83]	- <b>-</b> -
Ten Bokkel 1998a	2	45	7	17	0.7%	0.11 [0.02, 0.47]	<b>+</b>
Ten Bokkel 1998b	6	42	6	16	1.4%	0.38 [0.14, 1.01]	
Thomas 2002	7	62	31	65	2.0%	0.24 [0.11, 0.50]	
Thomas 2008	34	57	29	52	4.8%	1.07 [0.77, 1.48]	
Witzig 2005	42	166	65	164	4.8%	0.64 [0.46, 0.88]	
Österborg 2002	49	170	47	173	4.6%	1.06 [0.76, 1.49]	
Subtotal (95% CI)	43	2882	47	2439	93.8%	0.64 [0.56, 0.73]	
Total events	707		952				•
Heterogeneity: Tau ² = 0.0		67.00		<u> </u>	01) · 12 - 5	50/	
Test for overall effect: Z =				- = 0.00	JUT), I ⁻ = J.	576	
1.4.2 Studies published	after To	nelli 20	09				
Christodoulou 2009	16	167	36	170	3.0%	0.45 [0.26, 0.78]	
Pronzato 2010	8	107	18	109	1.9%	0.45 [0.21, 1.00]	
Tsuboi 2009	7	61	7	56	1.3%	0.92 [0.34, 2.45]	
Subtotal (95% CI)		335		335	6.2%	0.51 [0.34, 0.77]	$\bullet$
Total events	31		61				
Heterogeneity: Tau² = 0.0 Test for overall effect: Z =				• 0.44);	l² = 0%		
Total (95% CI)		3217		2774	100.0%	0.64 [0.56, 0.72]	•
Total events	738		1013				
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Test for subgroup differen	06; Chi² = = 7.00 (P	< 0.000	df = 33 (F 01)		,.		0.1 0.2 0.5 1 2 5 1 Favours ESA Favours No ESA

Figure 3.3 Meta-analysis of ESAs vs no ESAs in cancer: RBC transfusion incidence

Letters following publication dates indicate separate data sets within a single publication. Numbers following publication dates indicate separate publications published within a single year.

#### Thromboembolic events

The incidence of thromboembolic events was reported in 12 RCTs (N=1738) indentified by Bohlius et al (2006).¹²⁴ A meta-analysis of these studies found a trend towards increased risk of thromboembolic events with ESA treatment (RR 1.58; 95% CI: 0.94, 2.66), although this result was not significant. Tonelli et al (2009)¹²³ included 8 RCTs (N=2138) that reported thromboembolic events that were not included in Bohlius et al (2006).¹²⁴ The results from these studies were meta-analysed, and showed a significant increase in the risk of thromboembolic events with ESA treatment (RR 1.86; 95% CI 1.32, 2.64).

Hernandez et al (2009)¹²⁹ and Pronzato et al (2010)¹²⁷ reported the rate of embolism/thrombosis as a separate outcome. Both studies found higher rates of events in subjects treated with ESAs but did not report a risk estimate (see Table 3.66). Hoskin et al (2009)¹²⁶ and Tsuboi et al (2009)¹²⁸ reported the rate of all thromboembolic events as an outcome. Both studies reported low numbers of patients affected but did not provide a risk estimate.

The data from the additional studies from Tonelli et al  $(2009)^{123}$  and from Hoskin et al  $(2009)^{126}$  and Tsuboi et al  $(2009)^{128}$  was used to update the meta-analysis from Bohlius et al  $(2006)^{124}$  (see Figure 3.4). After the inclusion of the additional studies the analysis showed a significantly greater risk of thromboembolic events in anaemic cancer patients treated with ESAs (RR 1.73; 95%CI: 1.29, 2.31).

# Table 3.66 Results for ESAs vs no ESAs in cancer: thromboembolic events

								Re	esults	
Study	Level of evidence <i>Quality</i>	No. of trials (sample size)	Patient population / Surgical procedure	Setting	Intervention	Outcome	Intervention n/N	Comparator n/N	Risk estimate (95% CI)	Significance P-value Heterogeneity P value (I²)
ALL THROMBOEM	IBOLIC EVENTS (	(STROKE/MI/DVT/PE)	)		1	I				
LEVEL I STUDIES										
Bohlius et al (2006) ¹²⁴	Level I Good	12 RCTs N=1738	Cancer patients affected by, or at risk from, treatment-related anaemia	Multiple international centres	EPO vs. No EPO	All thromboembolic events	43/1019	14/719	Fixed effects RR 1.58 (0.94, 2.66)	Fixed effects No significant difference P=0.08 I ² =0.0%
LEVEL II STUDIES										
Additional studies from Tonelli et al (2009) ¹²³	Level II	8 RCTs N=2138	Adults with cancer-related anaemia	Multiple international centres	ESA vs. No ESA	All thromboembolic events	93/1153	46/985	Fixed effects RR 1.86 (1.32, 2.64) Random effects RR 1.80 (1.27, 2.56)	Fixed effects Favours no treatment P=0.0004 I ² =0% Random effects Favours no treatment P=0.001 I ² =0%
Hoskin et al (2009) ¹²⁶	Level II Poor	1 RCT N=282	Adult patients with squamous cell head and neck cancer, Hb <150 g/L, scheduled for radical radiotherapy.	Conducted at 21 sites in the United Kingdom	EPO-a vs. No treatment All patients received daily 200mg oral iron	All thromboembolic events	2/133	0/149	NR	P=NR

								Re	esults	
Study	Level of evidence <i>Quality</i>	No. of trials (sample size)	Patient population / Surgical procedure	Setting	Intervention	Outcome	Intervention n/N	Comparator n/N	Risk estimate (95% CI)	Significance P-value Heterogeneity P value (l²)
Tsuboi et al (2009) ¹²⁸	Level II <i>Fai</i> r	1 RCT N=117	Patients of age 20 to 80 years, with lung cancer or malignant lymphoma, receiving chemotherapy with at least two cycles scheduled after the first study drug administration, Hb 80-110 g/L, an Eastern Cooperative Oncology Group performance status (PS) ≤2, life expectancy ≥3 months as well as adequate renal and liver function.	Conducted at 11 centres in Japan	EPO vs. placebo Oral iron administered if serum iron saturation <15% or MCV <80 µm ³	All thromboembolic events	1/62	0/57	NR	P=NR
EMBOLISM AND T		TERIAL AND VENOU	s)							
Hernandez et al (2009) ¹²⁹	Level II Fair	1 RCT N=386	Adult patients with non- myeloid malignancy, Hb <110 g/L, scheduled for ≥12 weeks of chemotherapy.	Conducted at 81 sites in Australia, New Zealand and North America	DAR vs. placebo Iron therapy recommended if : serum iron <500 µg/L, serum ferritin <10 ng/ mL, transferring saturation <20%	Embolism/throm bosis (arterial and venous) events	16/194	11/192	NR	P=NR
Pronzato et al (2010) ¹²⁷	Level II Fair	1 RCT N=223	Adult female patients with breast cancer, Hb ≤120 g/L, receiving myelotoxic chemotherapy for a planned minimum of 12 weeks	Conducted at multiple sites in Italy, Spain, Portugal, Belgium, The Netherlands and the United Kingdom.	EPO-α vs. best standard care	Venous thrombosis	8/109 (7.3%)	7/111 (6.3%)	NR	P=NR

: CI, confidence interval; DAR, darbepoetin; DVT, deep vein thrombosis; EPO, erythropoietin; ESA, erythropoiesis-stimulating agents; g, grams; Hb, haemoglobin; L, litre; MCV, mean corpuscular volume; MI, myocardial infarction; NR, not reported; PE, pulmonary embolism; RCT, randomised controlled trial; RR, relative risk ^a Heterogeneity defined as follows: (i) no significant heterogeneity if P*het*>0.1 and I²<25%; (ii) mild heterogeneity if I²<25%; moderate heterogeneity if I² between 25%-50%; substantial heterogeneity if I²>50%.]

	ESA		No ES			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 Bohlius 2006							
Cascinu 1994	0	50	0	50		Not estimable	
Case 1993	4	81	4	76	4.6%	0.94 [0.24, 3.62]	
Henry 1995	6	67	2	65	3.4%	2.91 [0.61, 13.90]	
talian 1998	1	44	0	43	0.8%	2.93 [0.12, 70.08]	
Littlewood 2001	17	251	8	124	12.8%	1.05 [0.47, 2.37]	
Ten Bokkel 1998a	2	45	0	17	0.9%	1.96 [0.10, 38.79]	
Ten Bokkel 1998b	4	42	0	16	1.0%	3.56 [0.20, 62.58]	
Thatcher 1999a	0	42	0	22		Not estimable	
Thatcher 1999b	2	44	0	22	0.9%	2.56 [0.13, 51.05]	
Thompson 2000	1	45	0	21	0.8%	1.43 [0.06, 33.82]	
Throuvalas 2000	1	28	0	26	0.8%	2.79 [0.12, 65.66]	
Welch 1995	1	15	0	15	0.9%	3.00 [0.13, 68.26]	
Österborg 1996a	2	47	0	25	0.9%	2.71 [0.14, 54.32]	
Österborg 1996b	1	48	0	24	0.8%	1.53 [0.06, 36.23]	
Österborg 2002	1	170	0	173	0.8%	3.05 [0.13, 74.41]	
Subtotal (95% CI)		1019		719	29.8%	1.50 [0.88, 2.55]	•
Total events	43		14				
Heterogeneity: Tau ² =	0.00; Chi ²	= 3.29	df = 12 (	P = 0.9	9); l ² = 0%	/ 0	
Test for overall effect: 2	Z = 1.49 (I	⊃ = 0.14	4)		,.		
1.1.2 Additional studi	es from T	onelli	2009				
Aapro 2008	29	231	13	231	21.4%	2.23 [1.19, 4.18]	
Chang 2005	19	176	14	178	19.5%	1.37 [0.71, 2.65]	- <b>-</b>
Savonije 2005	7	211	1	104	1.9%	3.45 [0.43, 27.68]	
Thomas 2008	11	57	4	52	7.2%	2.51 [0.85, 7.39]	+
Vansteenkiste 2002	7	156	5	158	6.6%	1.42 [0.46, 4.37]	
Wilkinson 2006	10	121	1	60	2.0%	4.96 [0.65, 37.84]	+
Witzig 2005	8	168	5	165	7.0%	1.57 [0.52, 4.70]	<b></b>
Wright 2007	2	33	3	37	2.8%	0.75 [0.13, 4.20]	
Subtotal (95% CI)		1153		985	68.5%	1.80 [1.27, 2.56]	•
Total events	93		46				
Heterogeneity: Tau ² = 0		= 4.06.	df = 7 (P	P = 0.77	): $ ^2 = 0\%$		
Test for overall effect: 2	-		`	01	,,. 070		
	0.20 (i	- 0.00					
1.1.3 Studies publised	d after To	nelli 20	009				
Hoskin 2009	2	133	0	149	0.9%	5.60 [0.27, 115.54]	
Tsuboi 2009	- 1	62	0	57	0.8%	2.76 [0.11, 66.46]	
Subtotal (95% CI)		195	5	206	1.8%	4.00 [0.45, 35.85]	
Total events	3		0			•	-
Heterogeneity: Tau ² = 0		= 0 10		P = 0.75	) [.]   ² = 0%		
Test for overall effect: 2			,	- 0.10	,, - 070		
	1.∠-† (I	- 0.2	-)				
Total (95% CI)		2367		1910	100.0%	1.73 [1.29, 2.31]	♦
Total events	139		60				
Heterogeneity: Tau ² =	0.00; Chi ²	= 8.33,	df = 22 (	P = 1.0	0); l² = 0%	0	0.01 0.1 1 10 1

# Figure 3.4 Meta-analysis of ESAs vs no ESAs in cancer: all thromboembolic events

Letters following publication dates indicate separate data sets within a single publication. Numbers following publication dates indicate separate publications published within a single year.

### Functional/performance status

Functional/performance status, measured using FACT instruments, was reported in 13 studies identified by Tonelli et al (2009).¹²³ Meta-analysis of these studies showed a favourable score for patients treated with ESAs in the FACT-Anaemia (general) score (WMD 4.11; 95% CI: 2.00, 6.22), the FACT-Anaemia (subscale) score (WMD 3.90; 95% CI: 1.63, 6.16) and the FACT-Fatigue (subscale) score (WMD 3.00; 95% CI: 1.36, 4.64), but not for the FACT-Anaemia (total) score (WMD 14.66; 95% CI:–1.09, 30.41).

Hoskin et al  $(2009)^{126}$  reported no difference in the scores for the FACT-Anaemia (total) score (p=0.915) or in its fatigue (p=0.966) and non-fatigue (p=0.299) component scores. The authors also found no difference in the FACT-fatigue (subscale) score (p=0.928). In contrast, Pronzato et al  $(2010)^{127}$  reported a favourable difference in the scores of ESA-treated patients for the FACT-Anaemia (total) score (p=0.002) and for the fatigue (p=0.003) and non-fatigue (p=0.008) component scores. Tsuboi et al  $(2009)^{128}$  found a favourable effect of ESA treatment on the FACT-Fatigue (subscale) for patients whose baseline score was >36 (p=0.016), but not for patients with a baseline score  $\leq$ 36 (p=0.225) or for all patients (p=0.082). Hoskin et al  $(2009)^{126}$  also reported results For the FACT-General scores and FACT-head and neck scores, however none of these showed a difference between ESA treatment and no ESA treatment (see Table 3.67).

The meta-analysis from Tonelli et al (2009) was updated with the results from Hoskin et al (2009)¹²⁶ and Tsuboi et al (2009)¹²⁸ (see Figure 3.5). The results from Pronzato et al (2010)¹²⁷ could not be added to the meta-analysis as they were expressed as % change, and actual changes in score were not provided. The addition of the two studies gave new results for change in FACT-Anaemia (total) score (WMD 11.41; 95% CI: -1.46, 24.29), which was not significant, and for the change in FACT-Fatigue (subscale) score (WMD 2.90; 95% CI: 1.45, 4.36), which showed a significant effect for ESA treatment. The analysis was repeated using a standardised mean difference analysis. This analysis showed that the total change in score across the four categories analysed showed a significantly favourable effect of treatment with ESAs in anaemic cancer patients (SMD 0.32; 95% CI: 0.21, 0.42).

Table 3.67         Results for ESAs vs no ESAs in cancer: functional and performance status
---------------------------------------------------------------------------------------------

								Res	sults	
Study	Level of evidence <i>Quality</i>	No. of trials (sample size)	Patient population / Surgical procedure	Setting	Intervention	Outcome	Intervention mean change from baseline (SD)	Comparator mean change from baseline (SD)	Risk estimate (95% CI)	Significance P-value Heterogeneity P value (12)
FACT-Anaemia	(total) score al	nd subscale score	25				•		•	1
Level I Studies Tonelli et al (2009) ¹²³	Level I Good	8 RCTs	Adults with cancer-related anaemia	Multiple international centres	ESA vs. No ESA	Change in FACT- Anaemia (total) score ^a N=526	NR	NR	WMD 14.66 (-1.09 to 30.41)	No significant difference P=NR
						Change in FACT- Anaemia (general) score N=709	NR	NR	WMD 4.11 (2.00 to 6.22)	Favours ESA treatment P=NR
						Change in FACT- Anaemia (subscale) score N=1420	NR	NR	WMD 3.90 (1.63 to 6.16)	Favours ESA treatment P=NR
LEVEL II STUDIES		1							1	
Hoskin et al (2009) ¹²⁶	Level II Poor	1 RCT N=282	Adult patients with squamous cell head and neck cancer, Hb <150 g/L, scheduled for radical	Conducted at 21 sites in the United Kingdom	EPO-α vs. No treatment All patients received	Change in FACT- Anaemia (total) score ^a	-3.3 (26.41) N=151	-5.2 (27.43) N=149	NR	No significant difference P=0.915
			radiotherapy.		daily 200mg oral iron	Change in total fatigue score	-2.6 (10.67) N=151	-2.6 (12.45) N=149	NR	No significant difference P=0.966
						Change in total non-fatigue score	-0.5 (3.68) N=151	-1.0 (4.00) N=149	NR	No significant difference P=0.299
Pronzato et al (2010) ¹²⁷	Level II Fair	1 RCT N=223	Adult female patients with breast cancer, Hb ≤120 g/L, receiving myelotoxic chemotherapy for a planned	Conducted at multiple sites in Italy, Spain, Portugal, Belgium,	EPO-α vs. best standard care	Change in FACT- Anaemia (total) score ^a	14.2% N=70	-0.5% N=71	NR	Favours ESA treatment P=0.002
			minimum of 12 weeks	The Netherlands and the United Kingdom.		Fatigue subscale	17.5% N=70	-0.9% N=71	NR	Favours ESA treatment P=0.003

								Res	sults	
Study	Level of evidence <i>Quality</i>	No. of trials (sample size)		Setting	Intervention	Outcome	Intervention mean change from baseline (SD)	Comparator mean change from baseline (SD)	Risk estimate (95% CI)	Significance P-value Heterogeneity P value (12)
						Non-fatigue subscale	8.8% N=70	0.2% N=71	NR	Favours ESA treatment P=0.008
FACT-Fatigue	ubscale score:	s								
LEVEL I STUDIES										
Tonelli et al (2009) ¹²³	Level I Good	10 RCTs N=3169	Adults with cancer-related anaemia	Multiple international centres	ESA vs. No ESA	Change in FACT- Fatigue (subscale) score ^b	NR	NR	WMD 3.00 (1.36 to 4.64)	Favours ESA treatment P=NR
LEVEL II STUDIES										
Hoskin et al (2009) ¹²⁶	Level II Poor	1 RCT N=282	Adult patients with squamous cell head and neck cancer, Hb <150 g/L, scheduled for radical radiotherapy.	Conducted at 21 sites in the United Kingdom	EPO- <b>a</b> vs. No treatment All patients received daily 200mg oral iron	Change in FACT- Fatigue (subscale) score ^b	-3.1 (22.88) N=151	-4.4 (24.81) N=149		<i>No significant difference</i> P=0.982
Tsuboi et al (2009) ¹²⁸	Level II Fair	1 RCT N=117	Patients of age 20 to 80 years, with lung cancer or malignant lymphoma, receiving chemotherapy with	Conducted at 11 centres in Japan	EPO vs. placebo Oral iron administered if serum iron saturation	Change in FACT- Fatigue (subscale) score ^b All subjects	-0.5 (9.4) N=61	-3.6 (9.0) N=53	NR	No significant difference P=0.082
			at least two cycles scheduled after the first study drug administration, Hb 80-110 g/L, an Eastern Cooperative Oncology Group performance status (PS) ≤2, life expectancy ≥3		<15% or MCV <80 µm ³	Change in FACT- Fatigue (subscale) score ^b Subjects with baseline score ≤36	2.1 (11.7) N=29	-1.3 (9.6) N=28	NR	No significant difference P=0.225
			months as well as adequate renal and liver function.			Change in FACT- Fatigue (subscale) score ^a Subjects with baseline score >36	-2.9 (5.9) N=32	-7.9 (9.4) N=25	NR	Favours ESA treatment P=0.016
Other FACT sc	ales	·	·		·		·		·	
LEVEL II STUDIES										
Hoskin et al (2009) ¹²⁶	Level II Poor	1 RCT N=282	Adult patients with squamous cell head and neck cancer, Hb <150 g/L,	Conducted at 21 sites in the United Kingdom	EPO-α vs. No treatment All patients received	Change in FACT- General total score	-1.2 (13.19) N=151	-2.4 (13.78) N=149	NR	<i>No significant difference</i> P=0.509

								Res	ults	
Study	Level of evidence <i>Quality</i>	No. of trials (sample size)	Patient population / Surgical procedure	Setting	Intervention	Outcome	Intervention mean change from baseline (SD)	Comparator mean change from baseline (SD)	Risk estimate (95% CI)	Significance P-value Heterogeneity P value (12)
			scheduled for radical radiotherapy.		daily 200mg oral iron	Change in physical well-being score	-1.1 (5.32) N=151	-1.5 (5.55) N=149	NR	<i>No significant difference</i> P=0.500
						Change in social/family well- being score	0.1 (3.93) N=151	-0.6 (3.64) N=149	NR	No significant difference P=0.097
						Change in emotional well- being score	1.3 (3.90) N=151	1.3 (3.87) N=149	NR	No significant difference P=0.994
						Change in functional well- being score	-1.2 (5.93) N=151	-1.7 (5.79) N=149	NR	No significant difference P=0.471
						Change in total FACT-head&neck score	-4.6 (19.69) N=151	-6.4 (18.82) N=149	NR	No significant difference P=0.475
						Change in FACT- head&neck (subscale) score	-2.5 (7.66) N=151	-3.4 (7.17) N=149	NR	No significant difference P=0.318

 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

# Figure 3.5 Mean difference meta-analysis of ESAs vs no ESAs in cancer: functional and performance status

		ESA			lo ESA			Mean Difference	Mean Difference
Study or Subgroup	Mean		Total		SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.3.1 Change in FACT-	Anaemi	ia (total	) score						
Hoskin 2009	-3.3	26.41	151	-5.2	27.43	149	25.3%	1.90 [-4.19, 7.99]	
Mystakidou 2005	43.3	18.4	50	13.4	14.2	50	25.2%	29.90 [23.46, 36.34]	
Savonije 2005	3.98	26.8	155	-3.69	24.4	65	24.7%	7.67 [0.39, 14.95]	<b>-</b>
Österborg 2002	14.8	28	155	8.7	28.9	101	24.8%	6.10 [-1.06, 13.26]	
Subtotal (95% CI)			511			365	100.0%	11.41 [-1.46, 24.29]	
Heterogeneity: Tau² = 1 Test for overall effect: Z				= 3 (P <	< 0.0000	)1); l² =	93%		
1.3.2 Change in FACT-	Anaemi	ia (gene	eral) sc	ore					
Littlewood 2001	2.5	16	194	-3.6	16.7	88	25.9%	6.10 [1.95, 10.25]	— <b>—</b>
Savonije 2005	0.9	10.9	154	-2.52	11	64	43.6%	3.42 [0.22, 6.62]	∎
Österborg 2002	6.5	13.8	106	3.1	14.4	103	30.5%	3.40 [-0.43, 7.23]	+
Subtotal (95% CI)			454			255	100.0%	4.11 [2.00, 6.22]	
Heterogeneity: Tau² = 0 Test for overall effect: Z				(P = 0.5	55); l² =	0%			
1.3.3 Change in FACT-	Fatigue	(subsc	ale) sc	ore					
Amgen 2007	1.5	11.8	298	0.7	10.27	298	11.2%	0.80 [-0.98, 2.58]	+
Boogaerts 2003	5.39	12.3	90	0.41	8.2	109	8.6%	4.98 [2.01, 7.95]	
Chang 2005	1.55	11.6	168	-3.55	10.7	170	9.9%	5.10 [2.72, 7.48]	—
Charu 2007	6	12.4	203	2.2	7.94	42	8.7%	3.80 [0.85, 6.75]	—
Gordon 2008	4.8	11.1	150	5	11.3	50	7.4%	-0.20 [-3.80, 3.40]	
Hoskin 2009	-3.1	22.88	151	-4.4	24.81	149	4.7%	1.30 [-4.10, 6.70]	
Iconomou 2003	4.6	12.5	57	-1	12.8	55	5.6%	5.60 [0.91, 10.29]	——
Littlewood 2001	3	13.5	200	-2.2	12.5	90	8.2%	5.20 [2.01, 8.39]	
Savonije 2005	3.48	12.7	156	-1.67	11.6	65	7.6%	5.15 [1.70, 8.60]	
Smith 2008	-0.02	11.8	343	0.52	10.4	362	11.5%	-0.54 [-2.19, 1.11]	
Tsuboi 2009	-0.5	9.4	61	-3.6	9	53	7.8%	3.10 [-0.28, 6.48]	+
Österborg 2002 Subtotal (95% CI)	5.2	11.1	133 <b>2010</b>	3	12.1	130 <b>1573</b>	8.9% 100.0%	2.20 [-0.61, 5.01] 2.90 [1.45, 4.36]	•
Heterogeneity: Tau ² = 4	.08: Chi [;]	² = 33.5	2. df = '	11 (P =	0.0004)	: l ² = 67	7%		
Test for overall effect: Z						,	. ,0		
1.3.4 Change in FACT-	Anaemi	ia (subs	cale) s	core					
Boogaerts 2003	0.9	3.89	89	-0.11	3.41	109	20.9%	1.01 [-0.02, 2.04]	
Chang 2005	2.16	14.7	168	-4.43	13.5	170	15.8%	6.59 [3.58, 9.60]	
Littlewood 2001	4	10.5	200	-2.6	10.9	90	16.7%	6.60 [3.92, 9.28]	
O'Shaughnessy 2005	-3	11.9	40	-9.4	13.8	42	9.4%	6.40 [0.83, 11.97]	
Savonije 2005	3.93	15.6	151	-1.91	14.7	64	12.0%	5.84 [1.46, 10.22]	
Wright 2007	6.5	14	14	2.6	14.3	20	4.4%	3.90 [-5.75, 13.55]	
Österborg 2002 Subtotal (95% CI)	2	4.3	133 <b>795</b>	1.7	5.2	130	20.7% 100.0%	0.30 [-0.85, 1.45] <b>3.90 [1.63, 6.16]</b>	+
Heterogeneity: Tau ² = 6	.11 [.] Chi	² = 36 7		S (P < ∩	.00001)				-
Test for overall effect: Z						,0	. , 0		
			,						
									-10 -5 0 5 1 ¹
									-10 -5 0 5 1

Test for subgroup differences:  $Chi^2 = 2.53$ , df = 3 (P = 0.47), l² = 0%

Letters following publication dates indicate separate data sets within a single publication. Numbers following publication dates indicate separate publications published within a single year.

# Figure 3.6 Standardised mean difference meta-analysis of ESAs vs no ESAs in cancer: functional and performance status

		ESA			lo ESA	_		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean		Total		SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
1.6.1 Change in FACT-	Anaemi	ia (total	) score	9					
Hoskin 2009	-3.3	26.41	151	-5.2	27.43	149	4.4%	0.07 [-0.16, 0.30]	_ <del>_</del>
Mystakidou 2005	43.3	18.4	50	13.4	14.2	50	2.6%	1.81 [1.34, 2.27]	
Savonije 2005	3.98	26.8	155	-3.69	24.4	65	3.8%	0.29 [0.00, 0.58]	
Österborg 2002	14.8	28	155	8.7	28.9	101	4.2%	0.21 [-0.04, 0.47]	<u> </u>
Subtotal (95% CI)			511			365	14.9%	0.56 [0.01, 1.11]	
Heterogeneity: Tau ² = 0 Test for overall effect: Z				3 (P < 0	.00001)	; l² = 93	3%		
1.6.2 Change in FACT-	Anaemi	ia (gene	eral) sc	ore					
Littlewood 2001	2.5	16	194	-3.6	16.7	88	4.1%	0.38 [0.12, 0.63]	—
Savonije 2005	0.9	10.9	154	-2.52	11	64	3.8%	0.31 [0.02, 0.60]	
Österborg 2002	6.5	13.8	106	3.1	14.4	103	4.0%	0.24 [-0.03, 0.51]	+
Subtotal (95% CI)			454			255	11.9%	0.31 [0.16, 0.47]	
Heterogeneity: Tau ² = 0. Test for overall effect: Z				(P = 0.7	78); l² =	0%			
	·		,	oro					
1.6.3 Change in FACT-	-	•			40.07	000	4.00/	0.07[0.00.0.00]	
Amgen 2007	1.5	11.8	298		10.27	298	4.8%	0.07 [-0.09, 0.23]	Τ
Boogaerts 2003	5.39	12.3	90	0.41	8.2	109	3.9%	0.48 [0.20, 0.77]	
Chang 2005	1.55	11.6	168	-3.55	10.7	170	4.4%	0.46 [0.24, 0.67]	
Charu 2007	6	12.4	203	2.2	7.94	42	3.5%	0.32 [-0.01, 0.66]	
Gordon 2008	4.8	11.1	150	5	11.3	50	3.6%	-0.02 [-0.34, 0.30]	
Hoskin 2009	-3.1	22.88	151	-4.4	24.81	149	4.4%	0.05 [-0.17, 0.28]	
Iconomou 2003	4.6	12.5	57	-1	12.8	55	3.2%	0.44 [0.06, 0.81]	
Littlewood 2001	3	13.5	200	-2.2	12.5	90	4.2%	0.39 [0.14, 0.64]	· · · · · · · · · · · · · · · · · · ·
Savonije 2005	3.48	12.7	156	-1.67	11.6	65	3.8%	0.41 [0.12, 0.71]	
Smith 2008	-0.02	11.8	343	0.52	10.4	362	4.9%	-0.05 [-0.20, 0.10]	_ <u>_</u>
Tsuboi 2009	-0.5	9.4	61	-3.6	9	53	3.2%	0.33 [-0.04, 0.70]	
Österborg 2002 Subtotal (95% CI)	5.2	11.1	133 <b>2010</b>	3	12.1	130 1 <b>573</b>	4.2% <b>48.2%</b>	0.19 [-0.05, 0.43] <b>0.24 [0.12, 0.36]</b>	•
Heterogeneity: Tau ² = 0 Test for overall effect: Z				11 (P =	0.0006)	; l² = 66	6%		
1.6.4 Change in FACT-	Anaemi	ia (subs	scale) s	core					
Boogaerts 2003	0.9	3.89	89	-0.11	3.41	109	3.9%	0.28 [-0.00, 0.56]	<b>├─</b> •──
Chang 2005	2.16	14.7	168	-4.43	13.5	170	4.4%	0.47 [0.25, 0.68]	
Littlewood 2001	4	10.5	200	-2.6	10.9	90	4.1%	0.62 [0.37, 0.87]	
O'Shaughnessy 2005	-3	11.9	40	-9.4	13.8	42	2.8%	0.49 [0.05, 0.93]	
Savonije 2005	3.93	15.6	151	-1.91	14.7	64	3.8%	0.38 [0.08, 0.67]	<del></del>
Wright 2007	6.5	14	14	2.6	14.3	20	1.6%	0.27 [-0.42, 0.95]	
Österborg 2002	2	4.3	133	1.7	5.2	130	4.2%	0.06 [-0.18, 0.30]	_ <b>-</b>
Subtotal (95% CI)	-		795			625	24.9%	0.37 [0.21, 0.53]	
Heterogeneity: Tau ² = 0. Test for overall effect: Z				6 (P = 0	.07); l² :	= 48%			
Total (95% CI)			3770			2818	100.0%	0.32 [0.21, 0.42]	
Heterogeneity: Tau ² = 0	05: Chi	2 = 98 /		25 (P -	0 0000			. /	└──
Test for overall effect: Z					0.0000	i), i° – i	070		-1 -0.5 0 0.5
I COLIDI UVEIAII EIIECLI Z	- 0.99 (	,i ≤ 0.0	0001)						Favours no ESA Favours ESA

Letters following publication dates indicate separate data sets within a single publication. Numbers following publication dates indicate separate publications published within a single year.

#### Socioeconomic data

Three studies were identified that presented socioeconomic data for the use of ESAs in cancer patients. The results from these studies are summarised in Table 3.68. The study by Roungrong et al (2008)¹³² was carried out in Thailand and examined the cost-effectiveness of the use of EPO in cancer patients with chemotherapy induced anaemia compared to the use of RBC transfusion. The authors reported that the incremental cost-effectiveness ratio for EPO compared to transfusion was 3.7 and 2.7 million Baht per QALY for patients with a Hb concentration of <80 g/L or 80-90 g/L, respectively. For patients with a Hb concentration of 90-100 g/L the cost-effectiveness of EPO was reduced. Borg et al (2008)¹³⁰ used a Markov model to assess the cost-effectiveness of EPO compared to RBC transfusion in patients with chemotherapy-induced anaemia. The authors found that the cost per QALY for EPO compared to transfusion was €24700 when using an Hb target of 100 g/L. Approximately two thirds of the EPO cost was offset by reductions in transfusion costs. When using a higher Hb target of 130 g/L the cost per QALY increased to €39800, supporting a lower target Hb concentration of 120 g/L. The Cremieux et al (1999)¹³¹ study performed economic modelling using data from three US clinical trials involving cancer patients. The study found that EPO was cost effective compared to standard care, with the same level of effectiveness resulting from \$US1 spent on standard care achieved with only \$US0.81 of EPO care.

Study	Patient population / Surgical procedure	Setting	Intervention	Model used	Outcome		Hb target/level (g/L)	Cost
Studies reporting costs	s per QALY							
Borg et al (2008)130	Cancer patients with chemotherapy	Sweden	EPO vs. RBC	Markov model	Relative cost per QAL	Y	Hb target 100	€24700
	related anaemia		transfusion				Hb target 120	€39800
Roungrong et al	Cancer patients with chemotherapy	Thailand	EPO vs. RBC	Markov model	Incremental cost-effect	ctiveness ratio	Hb level <80	3.8 million Baht
(2008) ¹³²	induced anaemia		transfusion		(Baht/QALY)		Hb level 80-90	2.7 million Baht
							Hb level 90- 100	Reduced cost- effectiveness
Other studies								
Cremieux et al	Anaemic cancer patients undergoing	US	EPO vs. RBC	Cost-effectiveness model	Relative cost	Standard care	NR	US\$1
(1999) ¹³¹ chemotherapy		transfusion		effectiveness	EPO	NR	US\$0.81	

# Table 3.68 Results for ESAs vs RBC transfusion in cancer: socioeconomic studies

Abbreviations:; EPO, erythropoietin; g, grams; L, litre; RBC, red blood cell; US, United States of America.

# 3.3.3 IV iron for anaemic patients with cancer

### Methods

There were five Level II studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

## Level I evidence

No Level I evidence evaluating the use of iron therapy in anaemic patients with cancer was identified.

## Level II evidence

The literature search identified Five RCTs¹³³⁻¹³⁷ that evaluated the use of IV iron therapy in anaemic patients with cancer. All of the studies compared IV iron with either oral iron or no iron therapy. Participants received adjuvant darbepoetin in three of the studies^{133,134,136}, and adjuvant erythropoietin in one of the studies.¹³⁷ The main characteristics of the trials are summarised in Table 3.69.

Level II evide	ence			
Study	Study type Study quality	Population N	Comparison	Outcomes
Auerbach et al (2010) ¹³³	RCT Good	Non-myeloid cancer patients with anaemia (Hb ≤100 g/L), and ≥8 additional weeks of planned chemotherapy N=243	DAR (300 µg or 500 µg every 3 weeks) and IV iron (400 µg every 3 weeks) for 15 weeks vs DAR with oral or no iron	Mortality Blood transfusion Thromboembolic events
Bastit et al (2008) ¹³⁴	RCT Fair	Non-myeloid cancer patients with anaemia (Hb <110 g/L) N=398	200 mg IV iron and 500 µg DAR every 3 weeks for 16 weeks vs DAR with oral or no iron	Mortality Blood transfusion Thromboembolic events Functional/performance status
Dangsuwan et al (2010) ¹³⁵	RCT Fair	Gynaecologic cancer patients with anaemia (Hb <100 g/L) who underwent primary surgery and were receiving platinum based chemotherapy. N=44	200 mg IV iron vs 600 mg/day oral iron	Blood transfusion Functional/performance status
Hedenus et al (2007) ¹³⁷	RCT Poor	Adults with a diagnosis of clinically stable lymphoproliferative malignancy (indolent non-Hodgkin's lymphoma, chronic lymphocytic leukaemia or multiple myeloma) not requiring chemotherapy or blood transfusions, and an Hb concentration of 90 to 110 g/L N=67	Subcutaneous EPO 30 000 IU once weekly for 16 weeks plus IV iron (100 mg once weekly from weeks 0 to 6 followed by 100 mg every second week from weeks 8 to 14)	Mortality

Table 3.69	Characteristics and quality of Level II evidence
------------	--------------------------------------------------

Study	Study type Study quality	Population N	Comparison	Outcomes
Pedrazzoli et al (2008) ¹³⁶	RCT Fair	Breast, colorectal, lung, or gynaecologic cancer patients with anaemia (Hb $\leq$ 110 g/L) and scheduled to receive12 additional weeks of chemotherapy. N=149	DAR (150 g/week) for 12 weeks plus IV iron (125 mg/week) for the first 6 weeks vs DAR alone	Mortality Blood transfusion Thromboembolic events

DAR, darbepoetin; EPO, erythropoietin; Hb, haemoglobin; IU, International Units; IV, intravenous; RCT, randomised controlled trial

### Results

### Mortality

Four of the RCTs^{133,134,136,137} that evaluated the use of IV iron in cancer patients reported mortality as an outcome. Table 3.70 provides a summary of these results.

All of the studies found no significant difference in mortality between patients treated with IV iron compared with patients who received oral or no iron therapy. When the results from the four RCTs were meta-analysed (Figure 3.10) there was still no significant difference in mortality between cancer patients treated with IV iron and patients who received oral iron or no iron therapy (RR 0.93; 95% CI: 0.49, 1.77). The studies were not powered to detect a significant difference in mortality.

Table 3.70 Results for IV iron in cancer (mortality)

Study	Patient population Intervention vs		Length of	Outcome	Results					
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )		
LEVEL II STUDIES										
Auerbach et al (2010) ¹³³ Good	Non-myeloid cancer patients with anaemia	DAR plus IV iron vs DAR with oral or no iron	15 weeks	Mortality, n/N (%) (N=238)	8/117 (7)	13/121 (11)	RR 0.64 (0.27, 1.48)ª	No significant difference P=0.29 ^a		
Bastit et al (2008) ¹³⁴ Fair	Non-myeloid cancer patients with anaemia	DAR plus IV iron vs DAR with oral or no iron	16 weeks	Mortality, n/N (%) (N=396)	21/203 (10)	15/193 (8)	RR 1.33 (0.71, 2.51)ª	No significant difference P=0.38 ^a		
Hedenus et al (2007) ¹³⁷ Poor	Anaemic patients with lymphoproliferative malignancies	EPO plus IV iron vs EPO alone	16 weeks	Mortality, n/N (%) (N=67)	0/33 (0.0)	4/34 (11.8)	RR 0.11 (0.01, 2.04) ^a	No significant difference P=0.14ª		
Pedrazzoli et al (2008) ¹³⁶ Fair	Cancer patients with anaemia	DAR plus IV iron vs DAR alone	12 weeks	Mortality, n/N (%) (N=149)	4/73 (5.5)	3/76 (3.9)	RR 1.39 (0.32, 5.99) ^a	No significant difference P=0.66 ^a		

CI, confidence interval; EPO, erythropoietin; DAR, darbepoetin; IV, intravenous; RR, relative risk ^a Calculated for the purpose of this systematic review using Review manager.

### Figure 3.7 Meta-analysis of IV iron in cancer (mortality)

	IV irc	IV iron no IV iron				Risk Ratio	Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl			
Auerbach et al (2010)	8	117	13	121	34.0%	0.64 [0.27, 1.48]				
Bastit et al (2008)	21	203	15	193	45.7%	1.33 [0.71, 2.51]				
Hedanus 2007	0	33	4	34	4.7%	0.11 [0.01, 2.04]				
Pedrazzoli et al (2008)	4	73	3	76	15.6%	1.39 [0.32, 5.99]				
Total (95% CI)		426		424	100.0%	0.93 [0.49, 1.77]	•			
Total events	33		35							
Heterogeneity: Tau ² = 0.	13; Chi² =	4.32, d	f = 3 (P =	0.23);	l² = 31%					
Test for overall effect: Z	= 0.22 (P :	= 0.82)					0.01 0.1 1 10 10 Favours IV iron Favours no IV i			

#### **Blood transfusion**

Table 3.71 provides a summary of the RBC transfusion outcomes reported in the RCTs that evaluated the use of IV iron in anaemic patients with cancer. Bastit et al  $(2008)^{134}$  and Dangsuwan et al  $(2010)^{135}$  found that patients treated with IV iron had a significantly lower incidence of RBC transfusion and a significantly lower median RBC transfusion volume compared with patients who did not receive IV iron. Pedrazzoli et al  $(2008)^{136}$  found no significant difference in transfusion incidence between DAR and IV iron compared with DAR alone. The treatment arms in Auerbach et al  $(2010)^{133}$  had similar incidences of RBC transfusion (P=NR).

Study	Patient population	Intervention vs	Length of	Outcome			Results	
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )
LEVEL II STUDIES								
Auerbach et al (2010) ¹³³ Good	Non-myeloid cancer patients with anaemia	DAR plus IV iron vs DAR alone	15 weeks	Kaplan-Meier percentage mean (95% CI) RBC transfusion incidence (N=238)	28 (20, 37)	30 (23, 39)	NR	NR
Bastit et al (2008) ¹³⁴ Fair	Non-myeloid cancer patients with anaemia	DAR plus IV iron vs DAR with oral or no iron	16 weeks	Kaplan-Meier proportion of patients receiving a RBC transfusion, % (N=396)	16	25	NR	Favours IV iron P=0.038
Dangsuwan et al (2010) ¹³⁵ Fair	Gynaecologic cancer patients with anaemia	IV vs oral iron	Consecutive cycle of chemotherapy	Incidence of RBC transfusion in consecutive cycle of chemotherapy, n/N (%) (N=44)	5/22 (22.7)	14/22 (63.6)	NR	Favours IV iron P<0.05
				Median (range) volume of RBCs transfused, units (N=44)	0 (0 to 2)	1 (0 to 2)	NR	Favours IV iron P=0.01
Pedrazzoli et al (2008) ¹³⁶ Fair	Cancer patients with anaemia	DAR plus IV iron vs DAR alone	12 weeks	Incidence of RBC transfusion, n/N (%) (N=149)	2/73 (2.7)	5/76 (6.6)	RR 0.42 (0.08, 2.08) ^a	P=0.29a

CHF, chronic heart failure; CI, confidence interval; IV, intravenous; NR, not reported; RR, relative risk a Calculated for the purpose of this systematic review using Review manager.

#### Thromboembolic events

Table 3.72 summarises the incidence of thromboembolic events in studies evaluating IV iron use cancer patients with anaemia. None of the studies found a significant difference in the incidence of myocardial infarction, stroke, or overall thromboembolic events between patients treated with IV iron plus darbepoetin compared with darbepoetin with oral iron or no iron therapy. When the results from the RCTs were meta-analysed there was still no significant difference between IV iron and treatment without IV iron in the incidence of thromboembolic events (RR 0.95; 95% CI: 0.54, 1.65; Figure 3.8) or myocardial infarction (RR 0.41; 95% CI 0.10, 1.64; Figure 3.9).

#### Figure 3.8 Meta-analysis of IV iron in cancer (thromboembolic events)

	IV iro	n	no IV i	ron		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Auerbach et al (2010)	8	117	10	121	38.6%	0.83 [0.34, 2.02]	
Bastit et al (2008)	12	203	12	193	51.4%	0.95 [0.44, 2.06]	
Pedrazzoli et al (2008)	3	73	2	76	10.0%	1.56 [0.27, 9.08]	
Total (95% CI)		393		390	100.0%	0.95 [0.54, 1.65]	•
Total events	23		24				
Heterogeneity: Tau ² = 0.	.00; Chi² =	0.40, d	f = 2 (P =	0.82);	l² = 0%		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
Test for overall effect: Z	= 0.19 (P =	= 0.85)					Favours IV iron Favours no I V iron

#### Figure 3.9 Meta-analysis of IV iron in cancer (myocardial infarction)

	IV irc	on	no IV i	ron		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Auerbach et al (2010)	2	117	2	121	36.7%	1.03 [0.15, 7.22]	<del> </del>
Bastit et al (2008)	3	203	12	193	63.3%	0.24 [0.07, 0.83]	
Total (95% CI)		320		314	100.0%	0.41 [0.10, 1.64]	
Total events	5		14				
Heterogeneity: Tau ² = 0	.39; Chi² =	= 1.56, (	df = 1 (P :	= 0.21)	; l² = 36%		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
Test for overall effect: Z	= 1.26 (P	= 0.21)	)				Favours IV iron Favours no IV iron

Study	Patient population Intervention vs		· J· ·	Outcome	Results					
Quality comparator follow-up		No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )				
LEVEL II STUDIES										
Auerbach et al (2010) ¹³³ Good	Non-myeloid cancer patients with anaemia	DAR plus IV iron vs DAR alone	15 weeks	Thromboembolic events, n/N (%) (N=238)	8/117 (7)	10/121 (8)	RR 0.83 (0.34, 2.02) ^a	No significant difference P=0.68ª		
				MI/artery disorders, n/N (%) (N=238)	2/117 (2)	2/121 (2)	RR 1.03 (0.15, 7.22) ^a	No significant difference P=0.97 ^a		
				Stroke, n/N (%) (N=238)	1/117 (1)	0/121 (0)	RR 3.10 (0.13, 75.38) ^a	No significant difference P=0.49 ^a		
Bastit et al (2008) ¹³⁴ Fair	Non-myeloid cancer patients with anaemia	DAR plus IV iron vs DAR with oral or no iron		Thromboembolic events, n/N (%) (N=396)	12/203 (6)	12/193 (6)	RR 0.95 (0.44, 2.06) ^a	No significant difference P=0.90 ^a		
			MI, ischemic and coronary artery disease, n/N (%) (N=396)	3/203 (1)	1/193 (1)	RR 2.85 (0.30, 27.19) ^a	No significant difference P=0.36 ^a			
				Stroke, n/N (%) (N=396)	0/203 (0)	0/193 (0)	NA	NA		
Pedrazzoli et al (2008) ¹³⁶ Fair	Cancer patients with anaemia	DAR plus IV iron vs DAR alone	12 weeks	Thromboembolic events, n/N (%) (N=149)	3/73 (4.1)	2/76 (2.6)	RR 1.56 (0.27, 9.08) ^a	No significant difference P=0.62 ^a		

## Table 3.72 Results for IV iron in cancer (thromboembolic events)

CI, confidence interval; DAR, darbepoetin; IV, intravenous; MI, myocardial infarction; NA, not applicable; RR, relative risk ^a Calculated for the purpose of this systematic review using Review manager.

#### Functional/performance status

Two of the studies^{134,135} evaluating the use of IV iron in anaemic patients with cancer reported change in Functional Assessment of Cancer Therapy (FACT) score as an outcome. Neither study found a significant difference between patients treated with IV iron and those who received oral or no iron therapy (Table 3.73).

Study				Outcome	Results					
Quality			No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% Cl)	Significance P-value Heterogeneity P-value (l ² )			
LEVEL II STUDIES										
Bastit et al (2008) ¹³⁴ Fair	Non-myeloid cancer patients with anaemia	DAR plus IV iron vs DAR with oral or no iron	16 weeks	Mean (SD) FACT-F score at baseline (N=396)	30.85 (11.16)	32.98 (11.24)	NR	NR		
				Mean (95% CI) adjusted change in FACT-Fatigue score from baseline at follow-up (N=396)	2.40 (0.84, 3.95)	2.17 (0.65, 3.69)	NR	No significant difference P>0.05		
				Kaplan-Meier proportion (95% CI) of patients with a clinically meaningful increase in FACT-Fatigue score (≥3 points), % (N=396	76 (67, 84)	67 (56, 78)	NR	No significant difference P>0.05		
Dangsuwan et al (2010) ¹³⁵ Fair	Gynaecologic cancer patients with anaemia	IV vs oral iron	Consecutive cycle of chemotherapy	Median (range) FACT- anaemia score at baseline (N=44)	118.2 (83.5 to 153.0)	123.8 (97.0 to 165.6)	NR	No significant difference P>0.05		
			Median (range) FACT- anaemia score after treatment (N=44)	123.7 (87.0 to 151.0)	125.8 (98.1 to 165.0)	NR	No significant difference P>0.05			
				Median (range) change in FACT-anaemia score from baseline (N=44)	1.7 (-9.2 to 16.8)	0.5 (-19.0 to 18.5)	NR	No significant difference P>0.05		

CI, confidence interval; DAR, darbepoetin; FACT, Functional Assessment of Cancer Therapy; IV, intravenous; NR, not reported; SD, standard deviation

nce statements – chronic heart failure (erythropoiesis-stimulating agents)	Evidence	Consistency	Clinical impact	Generalisability	Applicability
In anaemic patients with CHF, the effect of ESAs on mortality is uncertain. (See evidence matrix EM3.J in Volume 2 of the technical report)	111	X	X	1	111
In anaemic patients with CHF, the effect of ESAs on transfusion requirements is uncertain. (See evidence matrix EM3.K in Volume 2 of the technical report)	Х	NA	X	X	$\sqrt{\sqrt{1}}$
In anaemic patients with CHF, the effect of ESAs on the incidence of thromboembolic events is uncertain. (See evidence matrix EM3.L in Volume 2 of the technical report)	~~~	~~	NA	V	$\sqrt{\sqrt{1}}$
In anaemic patients with CHF, ESAs may improve functional or performance status compared with no ESAs. (See evidence matrix EM3.M in Volume 2 of the technical report)	~~~	V	V	V	$\sqrt{\sqrt{1}}$
nce statements – chronic heart failure (iron therapy)	Evidence	Consistency	Clinical impact	Generalisability	Applicability
In CHF patients with iron deficiency, the effect of IV iron on mortality is uncertain. (See evidence matrix EM3.N in Volume 2 of the technical report)	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	NA	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$
In CHF patients (NYHA functional classes II or III) with iron deficiency (absolute and functional), IV iron improves functional or performance status, independent of Hb concentration.	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{}$
	failure (erythropoiesis-stimulating agents)In anaemic patients with CHF, the effect of ESAs on mortality is uncertain. (See evidence matrix EM3.J in Volume 2 of the technical report)In anaemic patients with CHF, the effect of ESAs on transfusion requirements is uncertain. (See evidence matrix EM3.K in Volume 2 of the technical report)In anaemic patients with CHF, the effect of ESAs on the incidence of thromboembolic events is uncertain. (See evidence matrix EM3.L in Volume 2 of the technical report)In anaemic patients with CHF, ESAs may improve functional or performance status compared with no ESAs. (See evidence matrix EM3.M in Volume 2 of the technical report)In CHF patients with iron deficiency, the effect of IV iron on mortality is uncertain. (See evidence matrix EM3.N in Volume 2 of the technical report)In CHF patients with iron deficiency, the effect of IV iron on mortality is uncertain. (See evidence matrix EM3.N in Volume 2 of the technical report)In CHF patients (NYHA functional classes II or III) with iron deficiency (absolute and functional), IV	failure (erythropoiesis-stimulating agents)ggglIn anaemic patients with CHF, the effect of ESAs on mortality is uncertain. (See evidence matrix EM3.J in Volume 2 of the technical report)√√In anaemic patients with CHF, the effect of ESAs on transfusion requirements is uncertain. (See evidence matrix EM3.K in Volume 2 of the technical report)XIn anaemic patients with CHF, the effect of ESAs on transfusion requirements is uncertain. (See evidence matrix EM3.K in Volume 2 of the technical report)XIn anaemic patients with CHF, the effect of ESAs on the incidence of thromboembolic events is uncertain. (See evidence matrix EM3.L in Volume 2 of the technical report)√√In anaemic patients with CHF, ESAs may improve functional or performance status compared with no ESAs. (See evidence matrix EM3.M in Volume 2 of the technical report)√√In CHF patients with iron deficiency, the effect of IV iron on mortality is uncertain. (See evidence matrix EM3.N in Volume 2 of the technical report)√√In CHF patients (NYHA functional classes II or III) with iron deficiency (absolute and functional), IV√√	failure (erythropoiesis-stimulating agents)age stigeIn anaemic patients with CHF, the effect of ESAs on mortality is uncertain. (See evidence matrix EM3.J in Volume 2 of the technical report) $\sqrt{N}$ XIn anaemic patients with CHF, the effect of ESAs on transfusion requirements is uncertain. (See evidence matrix EM3.K in Volume 2 of the technical report)XNAIn anaemic patients with CHF, the effect of ESAs on transfusion requirements is uncertain. (See evidence matrix EM3.K in Volume 2 of the technical report) $\sqrt{N}$ $\sqrt{N}$ In anaemic patients with CHF, the effect of ESAs on the incidence of thromboembolic events is uncertain. (See evidence matrix EM3.L in Volume 2 of the technical report) $\sqrt{N}$ $\sqrt{N}$ In anaemic patients with CHF, ESAs may improve functional or performance status compared with no ESAs. (See evidence matrix EM3.M in Volume 2 of the technical report) $\sqrt{N}$ $\sqrt{N}$ In CHF patients with iron deficiency, the effect of IV iron on mortality is uncertain. (See evidence matrix EM3.N in Volume 2 of the technical report) $\sqrt{N}$ $\sqrt{N}$ In CHF patients with iron deficiency, the effect of IV iron on mortality is uncertain. (See evidence matrix EM3.N in Volume 2 of the technical report) $\sqrt{N}$ $\sqrt{N}$	failure (erythropoiesis-stimulating agents)B SS SS S SIn anaemic patients with CHF, the effect of ESAs on mortality is uncertain. (See evidence matrix EM3.J in Volume 2 of the technical report)V/VXXIn anaemic patients with CHF, the effect of ESAs on transfusion requirements is uncertain. (See evidence matrix EM3.K in Volume 2 of the technical report)XNAXIn anaemic patients with CHF, the effect of ESAs on transfusion requirements is uncertain. (See evidence matrix EM3.K in Volume 2 of the technical report)V/VV/VNAIn anaemic patients with CHF, the effect of ESAs on the incidence of thromboembolic events is uncertain. (See evidence matrix EM3.L in Volume 2 of the technical report)V/VVNAIn anaemic patients with CHF, ESAs may improve functional or performance status compared with no ESAs. (See evidence matrix EM3.M in Volume 2 of the technical report)V/VVVIn CHF patients with iron deficiency, the effect of IV iron on mortality is uncertain. (See evidence matrix EM3.N in Volume 2 of the technical report)V/VV/VNAIn CHF patients with iron deficiency, the effect of IV iron on mortality is uncertain. (See evidence matrix EM3.N in Volume 2 of the technical report)V/VV/VNAIn CHF patients (NYHA functional classes II or III) with iron deficiency (absolute and functional), IVV/VV/VV/V	failure (erythropoiesis-stimulating agents)abaiiiIn anaemic patients with CHF, the effect of ESAs on mortality is uncertain. (See evidence matrix EM3.J in Volume 2 of the technical report) $\sqrt{1/\sqrt{1}}$ XXX $\sqrt{1/\sqrt{1}}$ In anaemic patients with CHF, the effect of ESAs on transfusion requirements is uncertain. (See evidence matrix EM3.K in Volume 2 of the technical report)NAXXXIn anaemic patients with CHF, the effect of ESAs on transfusion requirements is uncertain. (See evidence matrix EM3.L in Volume 2 of the technical report) $\sqrt{1/\sqrt{1}}$ NAXXIn anaemic patients with CHF, ESAs on the incidence of thromboembolic events is uncertain. (See evidence matrix EM3.L in Volume 2 of the technical report) $\sqrt{1/\sqrt{1}}$ $\sqrt{1/\sqrt{1}}$ $\sqrt{1}$ $\sqrt{1}$ In anaemic patients with CHF, ESAs multical report) $\sqrt{1/\sqrt{1}}$ $\sqrt{1/\sqrt{1}}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ In anaemic patients with CHF, ESAs may improve functional or performance status compared with no ESAs. (See evidence matrix EM3.M in Volume 2 of the technical report) $\sqrt{1/\sqrt{1}}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ In CHF patients with iron deficiency, the effect of IV iron on mortality is uncertain. (See evidence matrix EM3.N in Volume 2 of the technical report) $\sqrt{1/\sqrt{1}}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ In CHF patients (NYHA functional classes II or III) with iron deficiency (absolute and functional), IV $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$

# 3.3.4 Non-transfusion interventions for patients with chronic heart failure

Recon	nmendation – chronic heart failure
R3	In patients with CHF, identification and treatment of iron deficiency (absolute and
Grade B	functional) is recommended to improve functional or performance status.
	This is consistent with the 2011 update to the <i>Guidelines for the Prevention, Detection and</i> Management of Chronic Heart Failure in Australia, 2006. ¹³⁸
	Note: The studies reviewed only included patients treated with IV iron, and of NYHA functional classes II or III.
	: heart failure; ESA, erythropoiesis-stimulating agent; Hb, haemoglobin; IV, intravenous; NYHA, New York Heart R. recommendation

### 3.3.5 ESAs vs standard care for anaemic patients with chronic heart failure

#### Methods

There were six Level I studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

#### Level I evidence

There were six systematic reviews of RCTs that evaluated the use of ESAs in patients with anaemia of chronic heart failure (CHF). The main characteristics of these reviews are summarised in Table 3.74.

Five of the systematic reviews (Desai et al [2010],¹³⁹ Jin et al [2010],¹⁴⁰ Lawler et al [2010],¹⁴¹ Ngo et al [2010],¹⁴² Tehrani et al [2009]¹⁴³) compared the use of any ESA with treatment without ESAs, the other review (Van der Meer et al [2009]¹⁴⁴) compared EPO with treatment without EPO. Desai et al (2010)¹³⁹ included a subpopulation (N=1347) of CHF patients from the Pfeffer et al (2009)¹⁴⁵ trial, which randomised 4044 patients with type 2 diabetes mellitus, CKD, and anaemia (Hb≤11.0 g/dL) to treatment with DAR or placebo.

Level I evidence				
Study	Study type Study quality	Population N	Comparison	Outcomes
Desai et al (2010) ¹³⁹	Systematic review Good	Anaemic adults with CHF N=2039	ESA vs no ESA	Mortality Adverse events (heart failure)
Jin et al (2010) ¹⁴⁰	Systematic review Good	Anaemic adults with CHF N=678	ESA vs no ESA	Mortality Functional/performance status

Table 3.74 Characteristics and quality of Level I evidence

Level I evidence	e			
Study	Study type Study quality	Population N	Comparison	Outcomes
Lawler et al (2010) ¹⁴¹	Systematic review Fair	Anaemic adults with CHF N=747	ESA vs no ESA	Mortality Thromboembolic events Functional/performance status Hospitalisation for HF
Ngo et al (2010) ¹⁴²	Systematic review Good	Anaemic adults with CHF N=794	ESAs vs no ESAs	Mortality Thromboembolic events Functional/performance status
Tehrani et al (2009) ¹⁴³	Systematic review Fair	Anaemic adults with CHF N=663	ESAs vs no ESAs	Exercise duration NYHA functional classification Exercise tolerance
Van der Meer et al (2009) ¹⁴⁴	Systematic review Fair	Anaemic adults with CHF N=650	EPO vs no EPO	Mortality Hospitalisation for HF Thromboembolic events

CHF, chronic heart failure; DAR, darbepoetin; EPO, erythropoietin; ESA, erythropoiesis stimulating agents; Hb, haemoglobin; HF, heart failure; NYHA, New York Heart Association; QoL, quality of life; RBC, red blood cell

### Level II evidence

A literature search was conducted to identify Level II evidence published after the literature search conducted in the Desai et al (2010)¹³⁹ systematic review^a. No Level II evidence was identified.

### Results

#### Mortality

The systematic reviews by Desai et al  $(2010)^{139}$  and Ngo et al  $(2010)^{142}$  both evaluate the impact of ESAs on mortality (Table 3.75). Ngo et al (2010) found that ESAs significantly reduce mortality (5.9% vs 10.4%; 95% CI 0.61; 95% CI 0.37, 0.99); Desai et al (2010) found no significant difference between treatment arms (21.9% vs 23.2%; RR 1.03; 95% CI 0.89, 1.21). Desai et al (2010)¹³⁹ included a subpopulation (N=1347) of CHF patients from the Pfeffer et al (2009)¹⁴⁵ trial, which randomised 4044 patients with type 2 diabetes mellitus, CKD, and anaemia (Hb≤11.0 g/dL) to treatment with DAR or placebo. Furthermore, two studies not discussed in Desai et al (2010) (Palazzuoli et al [2006] and the unpublished results from Kourea et al [2008] were included in the Ngo et al (2010) meta-analysis for mortality. Silverberg et al (2010) was included in the Ngo et al (2010) meta-analysis, but was excluded from Desai et al (2010) due to concerns regarding the lack of blinding, lack of placebo control, and potential confounding by concomitant administration of IV iron to ESA-administered patients. Desai et al (2010) identified one RCTthat was published after the literature search conducted for Ngo et al (2010).

^a The literature search in Desai et al (2010) included papers published from 1966 to September 2009.

Table 3.75Results for ESAs vs no ESAs in CHF (mortality)

Study	Patient population	Intervention vs	Length of	Outcome			Results	
Quality		comparator	follow-up No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )	
LEVEL I STUDIES								
Desai et al (2010) ¹³⁹ Good	Anaemic adults with CHF	ESA vs no ESA	3-24 months	Mortality, n/N (%) 9 trials (N=2039)	224/1023 (21.9)	236/1016 (23.2)	RR 1.03 (0.89, 1.21)	No significant difference P=0.68 No significant heterogeneityª Phet=0.21 (I ² =NR)
Ngo et al (2010) ¹⁴² Good	Anaemic adults with CHF	ESA vs no ESA	2-12 months	Mortality, n/N (%) 10 studies (N=764)	25/426 (5.9)	35/338 (10.4)	RR 0.61 (0.37, 0.99)	Favours ESA P=0.045 No significant heterogeneity ^a Phet=0.67 (I ² =0.0%)

CHF, chronic heart failure; CI, confidence interval; DAR, darbepoetin; EPO, erythropoietin; ESA, erythropoiesis-stimulating agent; NR, not reported; OR, odds ratio; RR, relative risk ^a Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I²<25%; moderate heterogeneity if I² between 25%-50%; substantial heterogeneity if I²>50%.

#### **Blood transfusion**

Klapholz et al  $(2009)^{146}$  present a pooled analysis of the unpublished incidence rates of RBC transfusion (Table 3.76). However, Klapholz et al (2009. did not report the results of the individual studies, only the pooled outcomes. The incidence of RBC transfusion was similar for patients treated with DAR compared with those who did not receive DAR (6.4% vs 9.5%; P=NR).

# Table 3.76 Results for ESAs vs no ESAs in CHF (blood transfusion)

Study	Patient population	Intervention vs		Outcome No. trials (no. patients)	Results			
Quality		comparator	follow-up		Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )
POOLED ANALYSIS OF L	EVEL II STUDIES							
Klapholz et al (2009) ¹⁴⁶ <i>Poor</i>	Anaemic adults with CHF	DAR vs no DAR	NR	RBC transfusion incidence, n/N (%) 3 trials (N=514)	18/283 (6.4)	22/231 (9.5)	NR	NR

CI, confidence interval; CHF, chronic heart failure; DAR, darbepoetin; NR, not reported; RBC, red blood cell; ^a Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I²<25%; moderate heterogeneity if I² between 25%-50%; substantial heterogeneity if I²>50%.

#### Thromboembolic events

The Ngo et al  $(2010)^{142}$  systematic review reported the incidence of thromboembolic events and CHF-related hospitalisations for patients treated with ESAs compared with patients not treated with ESAs (Table 3.77). There was no significant difference between ESA and no ESA for the incidence of stroke (1.8% vs 1.3%; RR 1.57; 95% CI 0.52, 4.70), myocardial infarction (2.2% vs 3.7%; RR 0.69; 95% CI 0.31, 1.55), or other thromboembolic events (1.0% vs 1.8%; RR 0.65; 95% CI 0.22, 1.88).

Study	Patient population	Intervention vs	Length of	Outcome			Results	
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )
LEVEL I STUDIES								
Ngo et al (2010) ¹⁴² Good	Anaemic adults with CHF	ESA vs no ESA	2-12 months	Stroke, n/N (%) 8 studies (N=700)	7/389 (1.8)	4/311 (1.3)	RR 1.57 (0.52, 4.70)	No significant difference P=0.42 No significant heterogeneity ^a Phet=0.86 (I ² =0.0%)
				MI, n/N (%) 9 studies (N=732)	9/410 (2.2)	12/322 (3.7)	RR 0.69 (0.31, 1.55)	No significant difference P=0.37 No significant heterogeneity ^a Phet=0.94 (I ² =0.0%)
				Other thromboembolic events, n/N (%) 9 studies (N=741)	4/410 (1.0)	6/331 (1.8)	RR 0.65 (0.22, 1.88)	No significant difference P=0.42 No significant heterogeneity ^e Phet=0.59 (I ² =0.0%)

# Table 3.77 Results for ESAs vs no ESAs in CHF (thromboembolic events)

CI, confidence interval; CHF, chronic heart failure; ESA, erythropoiesis stimulating agent; HF, heart failure; MI, myocardial infarction; RR, relative risk ^a Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I²<25%; moderate heterogeneity if I² between 25%-50%; substantial heterogeneity if I²>50%.

#### Functional/performance status

Ngo et al (2010)¹⁴² found that ESAs, compared with control, significantly improve Six-Minute Walk Test (6MWT) distance (MD 69.33 m; 95% CI 16.99, 121.67) and NYHA functional class (MD -0.73; 95% CI -1.11, -0.36) (Table 3.78).

Study	Patient population	Intervention vs	Length of	Outcome	Results			
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (l²)
LEVEL I STUDIES								
Ngo et al (2010) ¹⁴² Good	Anaemic adults with CHF	ESA vs no ESA	2-12 months	6MWT distance, m 4 studies (N=261)	NR	NR	MD 69.33 (16.99, 121.67)	Favours ESA P=0.0094 Substantial heterogeneity ^a Phet=0.02 (l ² =70%)
				NYHA functional class improvement 8 studies (N=657)	NR	NR	MD -0.73 (-1.11, - 0.36)	Favours ESA P=0.00013 Substantial heterogeneity ^a Phet<0.001 (l ² =95%)

### Table 3.78 Results for ESAs vs no ESAs in CHF (functional/performance status)

6MWT, six-minute walk test; CI, confidence interval; CHF, chronic heart failure; DAR, darbepoetin; ESA, erythropoiesis stimulating agent; MD, mean difference; NR, not reported; NYHA, New York Heart Association; RR, relative risk;

^a Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I²<25%; moderate heterogeneity if I² between 25%-50%; substantial heterogeneity if I²>50%.

# 3.3.6 IV iron for chronic heart failure patients with iron deficiency

### Methods

There were two Level II studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

#### Level I evidence

No Level I evidence evaluating the use of iron therapy in patients with CHF was identified.

#### Level II evidence

Two RCTs (Anker et al [2009]¹⁴⁷ and Okonko et al [2008]¹⁴⁸) evaluating the use of iron therapy in patients with CHF were identified. Both RCTs compared IV iron with treatment without IV iron in CFH patients with of New York Heart Association (NYHA) class II or III. The main characteristics of these trials are summarised in **Table 3.79**.

Level II evid	ence			
Study	Study type Study quality	Population N	Comparison	Outcomes
Anker et al (2009) ¹⁴⁷	RCT Good	Ambulatory patients who had CHF of NYHA class II or III, a left ventricular ejection fraction of 40% or less (for patients in NYHA class II) or 45% or less (for patients in NYHA class III), a Hb concentration at the screening visit between 95 and 135 g/L, and iron deficiency (ferritin <100 µg/L or between 100 µg/l and 299 µg/l when TSAT <20%). N=459	200 mg IV iron ^a vs placebo for 24 weeks.	Mortality Thromboembolic events Functional/performance status
Okonko et al (2008) ¹⁴⁸	RCT Poor	Patients with CHF (NYHA class II or III), exercise limitation (pVO $_2$ /kg $\leq$ 18 mL/kg/min), ferritin <100 µg/l or between 100 µg/l and 300 µg/l with TSAT <20%, and LVEF $\leq$ 45%. N=35	16 weeks of IV iron (200 mg weekly until ferritin >500 ng/ mL, 200 mg monthly thereafter) vs standard care	Mortality Functional/performance status

Table 0.70	Chanastanistics and multiple of Louis II sublance.
Table 3.79	Characteristics and quality of Level II evidence

CHF, chronic heart failure; Hb, haemoglobin; IV, intravenous; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; RCT, randomised controlled trial; TSAT, transferring saturation

^a Weekly during the correction phase and then every 4 weeks during the maintenance phase, which started at week 8 or week 12, depending on the required iron-repletion dose.

### Results

### Mortality

Both RCTs that evaluated the use of IV iron therapy in CHF patients^{147,148} reported mortality as an outcome (Table 3.80). Neither study found a significant difference in mortality between treatment arms. When the results from the two RCTs were meta-analysed (Figure 3.10) there

was still no significant difference in mortality between anaemic patients with CHF treated with IV iron and CHF patients who did not receive IV iron (RR 0.73; 95% CI: 0.22, 2.41). The studies were not powered to detect a significant difference in mortality.

# Table 3.80 Results for IV iron in CHF (mortality)

Study	Patient population	Intervention vs	Length of	Outcome			Results	
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )
LEVEL II STUDIES								
Anker et al (2009) ¹⁴⁷ Good	CHF patients with iron deficiency	IV iron vs placebo	24 weeks	Mortality, n/N (%) (N=459)	5/305 (1.6)	4/154 (2.6)	NR	No significant difference P=0.47
				Mortality due to cardiovascular causes, n/N (%) (N=459)	4/305 (1.3)	4/154 (2.6)	NR	No significant difference P=0.31
Okonko et al (2008) ¹⁴⁸	CHF patients with iron deficiency	IV iron vs standard care	16 weeks	Mortality, n/N (%)	1/24 (4.2)	0/11 (0.0)	RR 1.44 (0.06, 32.80) ^a	No significant difference P=0.82
Poor				Mortality (patients with anaemia at baseline) ^b , n/N (%) (N=18)	1/12 (8.3)	0/6 (0.0)	RR 1.62 (0.08, 34.66) ^a	No significant difference P=0.76 ^b

CHF, chronic heart failure; CI, confidence interval; IV, intravenous; NR, not reported; RR, relative risk ^a Calculated for the purpose of this systematic review using Review manager. ^b Hb <125 g/L.

#### Figure 3.10 Meta-analysis of IV iron in CHF (mortality)

	IV iro	n	No IV i	ron		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Anker et al (2009)	5	305	4	154	84.8%	0.63 [0.17, 2.32]	
Okonko et al (2008)	1	12	0	6	15.2%	1.62 [0.08, 34.66]	
Total (95% CI)		317		160	100.0%	0.73 [0.22, 2.41]	
Total events	6		4				
Heterogeneity: Tau ² =	0.00; Chi ²	= 0.31	, df = 1 (P	9 = 0.58	b); l ² = 0%	ł	
Test for overall effect:	Z = 0.52 (I	P = 0.6	0)				0.02 0.1 1 10 50 Favours IV iron Favours no IV iron

#### **Blood transfusion**

Neither of the studies reported the incidence or volume of blood transfusion.

#### Thromboembolic events.

Table 3.81 summarises the incidence of thromboembolic events in studies that evaluate IV iron use CHF patients with iron deficiency. Anker et al (2009)¹⁴⁷ found that CHF patients treated with IV iron had a significantly lower incidence of cardiac disorder and severe cardiac disorder compared with placebo-treated patients (P<0.01). There was no significant difference between IV iron and placebo in the rates of hospitalisation for any cardiovascular cause, vascular disorders, or severe vascular disorders. Okonko et al (2008)¹⁴⁸ did not reported thromboembolic events as an outcome.

Study	Patient population	Intervention vs	Length of	Outcome			Results	
Quality	<i>Quality</i> comparator follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )		
LEVEL II STUDIES								
Anker et al (2009) ¹⁴⁷ Good	CHF patients with iron deficiency	IV iron vs placebo	24 weeks	Hospitalisation for any cardiovascular cause, n/N (%) (N=459)	16/305 (5.2)	18/154 (11.7)	NR	<i>No significant difference</i> P=0.30
				Cardiac disorder ^a , n/N (%) (N=459)	46/305 (15.1)	49/154 (31.8)	NR	<i>Favours IV iron</i> P<0.01
				Cardiac disorder ^a (SAEs), n/N (%) (N=459)	12/305 (3.9)	23/154 (14.9)	NR	Favours IV iron P<0.01
				Vascular disorder ^b , n/N (%) (N=459)	24/305 (7.9)	13/154 (8.4)	NR	No significant difference P>0.05
				Vascular disorder ^b (SAEs), n/N (%) (N=459)	3/305 (1.0)	1/154 (0.6)	NR	No significant difference P>0.05

#### Table 3.81 Results for IV iron in CHF (thromboembolic events)

CHF, chronic heart failure; CI, confidence interval; IV, intravenous; MedDRA, Medical Dictionary for Regulatory Activities; NEC, not elsewhere classified; NR, not reported; SAEs, serious adverse events ^a As defined by MedDRA. Includes: cardiac arrhythmias; cardiac disorder signs and symptoms; cardiac neoplasms; cardiac valve disorders; congenital cardiac disorders; coronary artery disorders; endocardial disorders; heart failures; myocardial disorders; pericardial disorders.

^b As defined by MedDRA. Includes: aneurysms and artery dissections; arteriosclerosis, stenosis, vascular insufficiency and necrosis; decreased and non-specific blood pressure disorders and shock; embolism and thrombosis; lymphatic vessel disorders; vascular disorders NEC; vascular haemorrhagic disorders; vascular hypertensive disorders; vascular inflammations; vascular injuries; venous varices.

#### Functional/performance status

Table 3.82 presents the functional/performance status results reported in the RCTs that assessed the use of IV iron in CHF patients with iron deficiency. Anker et al (2009)¹⁴⁷ found that a significantly greater proportion of patients treated with IV iron had an improvement in the Self-Reported Patient Global Assessment (73.7% vs 52.9%; OR 2.49; 95% CI 1.66, 3.74) and NYHA functional class (OR 2.40; 95% CI 1.55, 3.71) at follow-up compared with the placebo-treated patients. Subgroup analyses found no significant interaction between improvement in either Patient Global Assessment or NYHA and baseline Hb concentration, baseline ferrite concentration, baseline estimated GFR, age, gender, NYHA class, baseline median left ventricular ejection fraction (LVEF), heart failure type, presence of diabetes, or median BMI.

IV iron-treated patients in Anker et al (2009) also had a significantly greater improvement from baseline in the 6 Minute Walk Test (6MWT) distance, EQ-5D score, and Kansas City Cardiomyopathy Questionnaire score, compared with placebo-treated patients (P<0.001).

CHF patients treated with IV iron in Okonko et al (2008)¹⁴⁸ demonstrated a significantly greater improvement in NYHA functional class from baseline compared with patients treated with placebo (P=0.048). There was no significant difference between treatment arms for improvement in exercise duration.

Table 3.82	Results for IV iron in CHF (functional/performance status)
------------	------------------------------------------------------------

Study	Patient population	Intervention vs	Length of follow-up	Outcome No. trials (no. patients)	Results				
Quality Level II studies		comparator			Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (l ² )	
Anker et al (2009) ¹⁴⁷ Good	CHF patients with iron deficiency	n deltciency improvement in Self: Reported Patient Global Assessment at follow-up, n/N (%) (N=459)  Patients with an improvement in NYHA improveme		<i>Favours IV iron</i> P<0.0001					
				Assessment at follow-up, n/N (%)	Subgroup analyses found no significant interaction between improvement in Patient Global Assessment and baseline Hb concentration (≤120 or >120 g/L), baseline ferrite concentration (≤39 or >39 µg/L), baseline estimated GFR (<60 or ≥60 mL/min/1.73 m ² of body-surface area), age (≤69.7 or >69.7 years), gender, NYHA class, baseline median LVEF (≤33% or >33%), heart failure type (non-ischemic or ischemic), presence of diabetes, median BMI (≤27.37 or >27.37).				
				improvement in NYHA functional class at follow- up, n/N (%)	NR	NR		Favours IV iron P<0.001	
					class and baseline >39 µg/L), baseline (≤69.7 or >69.7 ye	Hb concentration (≤1 e estimated GFR (<60 ars), gender, NYHA cl	20 or >120 g/L), baseline or ≥60 mL/min/1.73 m² ass, baseline median LV	e ferrite concentration (≤39 or of body-surface area), age /EF (≤33% or >33%), heart	
					at baseline, m	274 (6)	269 (9)	NR	NR
				6MWT distance from baseline at follow-up, m	NR	NR	Mean (SD) study- treatment effect: 35 (8)	Favours IV iron P<0.001	
				baseline	54 (1)	54 (1)	NR	NR	
				5D score from baseline at follow-up	NR	NR	Mean (SD) study- treatment effect: 7 (2)	Favours IV iron P<0.001	
				Cardiomyopathy Questionnaire score at	52 (1)	53 (1)	NR	NR	

Study	Patient population	Intervention vs	Length of	Outcome	Results					
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )		
				Mean (SD) change in Kansas City Cardiomyopathy Questionnaire score from baseline at follow-up (N=431)	NR	NR	Mean (SD) study- treatment effect: 7 (2)	Favours IV iron P<0.001		
Okonko et al (2008) ¹⁴⁸ Poor	(2008) ¹⁴⁸ iron d care		16 weeks	Baseline mean (SD) absolute peak Vo ₂ , mL/min (N=35)	1053 (321)	1201 (330)	NR	NR		
			absolute peak       Vo_2, mL/min         (N=35)       Baseline mean (SD)         Baseline mean (SD)       880 (259)         absolute peak Vo_2       (anaemic         patients) ^b , mL/min       (N=18)         Mean (SD) change in       158 (182)       -46 (116)	absolute peak Vo ₂ , mL/min	75 (156)	-21 (210)	Treatment effect 96 (-12, 205)	No significant difference P=0.08		
				absolute peak Vo ₂ (anaemic patients) ^b , mL/min	880 (259)	1224 (314)	NR	NR		
				Treatment effect 204 (31 to 378)	Favours IV iron P=0.02					
				Baseline mean (SD) peak Vo2/kg, mL/kg/min (N=35)	13.9 (2.7)	14.2 (3)	NR	NR		
				Mean (SD) change in absolute peak Vo ₂ /kg, mL/kg/min (N=35)	1.5 (2.7)	-0.7 (1.4)	Treatment effect 2.2 (0.5, 4.0)	Favours IV iron P=0.01		
				Baseline mean (SD) peak Vo ₂ /kg (anaemic patients) ^b , mL/kg/min (N=18)	12.9 (2.8)	14.7 (3.6)	NR	NR		

Study	Patient population	Intervention vs	Length of	Outcome	Results					
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (l ² )		
				Mean (SD) change in absolute peak Vo ₂ /kg (anaemic patients) ^b , mL/kg/min (N=18)	2.8 (3.2)	-1.1 (0.9)	Treatment effect 3.9 (1.1, 6.8)	Favours IV iron P=0.009		
				Baseline mean (SD) NYHA functional class (N=35)	2.5 (0.5)	2.4 (0.5)	NR	NR		
				Mean (SD) change in NYHA functional class from baseline (N=35)	-0.4 (0.6)	0.2 (0.4)	Treatment effect -0.6 (-0.9, -0.2)	Favours IV iron P=0.007		
		Baseline mean ( functional class ( patients) ^b (N=18)		2.4 (0.5)	2.5 (0.5)	NR	NR			
				Mean (SD) change in NYHA functional class from baseline (anaemic patients) ^b (N=18)	-0.3 (0.5)	0.2 (0.4)	Treatment effect -0.5 (-1.0, 0)	Favours IV iron P=0.048		
				Mean (SD) change in patient global assessment score (N=35)	1.5 (1.2)	-0.2 (1.6)	Treatment effect 1.7 (0.7, 2.6)	Favours IV iron P=0.002		
				Baseline mean (SD) MLHFQ score (N=35)	41 (22)	46 (18)	NR	NR		
				Mean (SD) change in MLHFQ	-10 (18)	3 (19)	Treatment effect - 13 (-26, 1)	No significant difference P=0.07		
			Baseline mean (SD) exercise duration ^c , s (N=35)	476 (185)	501 (179)	NR	NR			
				Mean (SD) change in exercise duration from baseline ^c , s (N=35)	45 (84)	-15 (109)	Treatment effect 60 (-6, 126)	No significant difference P=0.08		

Study <i>Quality</i>	Patient population	Intervention vs	Length of	Outcome			Results	
		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )
				Baseline mean (SD) exercise duration ^c (anaemic patients) ^b , s (N=18)	441 (188)	506 (71)	NR	NR
				Mean (SD) change in exercise duration from baseline ^c (anaemic patients) ^b , s	63 (97)	20 (114)	Treatment effect 43 (-66, 153)	No significant difference P=0.41
				(N=18)				

6MWT, six-minute walk test; BMI, body mass index; CHF, chronic heart failure; CI, confidence interval; GFR, glomerular filtration rate; IV, intravenous; LVEF, left ventricular ejection fraction; MLHFQ, Minnesota Living with Heart Failure Questionnaire; NR, not reported; NYHA, New York Heart Association; OR, odds ratio; SD, standard deviation; Vo₂, oxygen consumption

^a Calculated for the purpose of this systematic review using Review manager.

^b Hb <120 g/L.

^c Exercise testing was performed on a treadmill using a modified Naughton or modified Bruce protocol depending on the physician's judgement.

Evide	nce statements – chronic kidney disease (erythropoiesis-stimulating agents)	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES3.19	In anaemic patients with CKD, the effect of ESA therapy to a Hb target of 100–110 g/L on mortality is uncertain compared with no ESA therapy. (See evidence matrix EM3.P in Volume 2 of the technical report)	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{2}}$	NA	$\sqrt{}$	$\sqrt{\sqrt{2}}$
ES3.20	In anaemic patients with non dialysis-dependent CKD, type 2 diabetes and a history of malignant condition at baseline, ESAs increase the incidence of mortality attributable to cancer. (See evidence matrix EM3.P in Volume 2 of the technical report)	$\sqrt{}$	NA	$\sqrt{\sqrt{N}}$	$\sqrt{\sqrt{N}}$	$\sqrt{\sqrt{2}}$
ES3.21	In anaemic patients with CKD, ESA therapy to a Hb target of 100–110 g/L reduces RBC transfusion incidence compared with no ESA therapy. (See evidence matrix EM3.Q in Volume 2 of the technical report)	$\sqrt{}$	$\sqrt{}$	~~~	$\sqrt{}$	$\sqrt{\sqrt{2}}$
ES3.22	In anaemic patients with CKD, targeting a Hb concentration above 130 g/L with ESA therapy increases the incidence of stroke and other thromboembolic events. The effect of targeting lower Hb concentrations is uncertain. (See evidence matrix EM3.R in Volume 2 of the technical report)	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	1	11	$\sqrt{\sqrt{2}}$
ES3.23	In anaemic patients with CKD, ESA therapy to a Hb target of 100–110 g/L does not appear to affect the incidence of MI. (See evidence matrix EM3.R in Volume 2 of the technical report)	$\sqrt{\sqrt{1}}$	$\sqrt{}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	~~~
ES3.24	In nondiabetic dialysis patients, compared to no treatment, ESA therapy targeted to a Hb ≥95 g/L may reduce fatigue and improve physical functioning. (See evidence matrix EM3.S in Volume 2 of the technical report)	$\sqrt{}$	V	V	$\sqrt{}$	~~~
ES3.25	In anaemic patients with non dialysis-dependent CKD, ESA therapy to a Hb target of 100–110 g/L may reduce fatigue, but has little impact on physical functioning. (See evidence matrix EM3.S in Volume 2 of the technical report)	$\sqrt{}$	V	V	$\sqrt{}$	111

# 3.3.7 Non-transfusion interventions for patients with chronic kidney disease

Evide	nce statements – chronic kidney disease (iron therapy)	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES3.26	In anaemic patients with CKD receiving ESAs, the effect of IV iron on mortality is uncertain. (See evidence matrix EM3.T in Volume 2 of the technical report)	N	$\sqrt{\sqrt{1}}$	NA	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$
ES3.27	In anaemic patients with CKD on dialysis and receiving ESAs, IV iron may reduce the need for an anaemia intervention. ^a (See evidence matrix EM3.U in Volume 2 of the technical report)	X	NA	N		$\sqrt{\sqrt{1}}$
ES3.28	In anaemic patients with non dialysis-dependent CKD, the effect of IV iron on RBC transfusion requirement is uncertain. (See evidence matrix EM3.U in Volume 2 of the technical report)	X	NA	X	$\sqrt{\sqrt{1}}$	~~
ES3.29	In anaemic patients with non dialysis-dependent CKD, IV iron therapy may improve functional or performance status compared to oral iron therapy. (See evidence matrix EM3.V in Volume 2 of the technical report)	$\sqrt{}$	$\sqrt{\sqrt{1}}$	X	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$
intravenou	pric kidney disease; ES, evidence statement; ESA, erythropo us; MI, myocardial infarction; RBC, red blood cell $\sqrt{=B}$ ; $\sqrt{=C}$ ; X=D; NA, not applicable	iesis-stimul	ating agent	; Hb, haem	oglobin; IV,	I

^a Anaemia intervention defined as either: an increase in ESA dose, non-protocol IV iron or RBC transfusion, resulting in non-completion of study.

Recom	mendations – chronic kidney disease
R4 Grade B	In anaemic patients with CKD, ESA therapy to a low to intermediate Hb target may be used to avoid RBC transfusion, after consideration of risks and benefits for the individual patient (Grade B). Note: The CARI guidelines recommend 100-115 g/L.
R5 Grade C	In anaemic patients with CKD, ESA therapy to a low to intermediate Hb target may be used to relieve fatigue, after consideration of risks and benefits for the individual patient (Grade C). Note: The CARI guidelines recommend 100-115 g/L.
R6 Grade B	In anaemic patients with CKD, ESA therapy to a Hb target of over 130 g/L is not recommended because of increased morbidity.
R7 Grade B	In anaemic patients with non dialysis-dependent CKD, type 2 diabetes and a history of malignancy, the <i>routine</i> use of ESAs is not recommended because of the increased risk of cancer-related mortality.
Practice	e points – chronic kidney disease
PP13	ESA use is less effective in patients who have absolute or functional iron deficiency.
PP14	For comprehensive information about ESA and iron therapy in patients with CKD, refer to CARI iron guidelines. ¹⁴⁹
	or Australasians with Renal Impairment; CKD, chronic kidney disease; ESA, erythropoiesis-stimulating agent; pin; IV, intravenous; MI, myocardial infarction; PP, practice point; R, recommendation; RBC, red blood cell

### 3.3.8 ESAs vs no ESAs for anaemic patients with chronic kidney disease

#### Methods

There were four Level I studies and three subsequently published Level II studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

#### Level I evidence

There were four systematic reviews of randomised controlled trials (RCTs) that evaluated the use of erythropoiesis stimulating agents (ESAs) in patients with anaemia of chronic kidney disease (CKD).¹⁵⁰⁻¹⁵³ The main characteristics of these reviews are summarised in Table 3.83.

Three of the systematic reviews compared the use of any ESA with treatment without ESAs and the other systematic review compared erythropoietin (EPO) with standard care. Cody et al (2005)¹⁵² and Gandra et al (2010)¹⁵⁰ evaluated ESAs in pre-dialysis CKD patients. Johansen et al (2010)¹⁵³ evaluated ESAs in end-stage renal disease patients who were on dialysis. Tonelli et al (2008)¹⁵¹ included studies which assessed both on- and pre-dialysis CKD and only included studies which used low-to-intermediate Hb targets.^a

Level I evide	Level I evidence										
Study	Study type Study quality	Population N	Comparison	Outcomes							
Gandra et al (2010) ¹⁵⁰	Systematic review Fair	Anaemic adults with pre-dialysis CKD N=159	ESA vs no ESA	Functional/performan ce status							
Johansen et al (2010) ¹⁵³	Systematic review <i>Fai</i> r	Anaemic adults with on-dialysis ESRD N=767	ESA vs no ESA	Functional/performan ce status							
Tonelli et al (2008) ¹⁵¹	Systematic review Good	Anaemic adults with CKD (on- dialysis or pre-dialysis) N=1553 (ESA vs no ESA)	ESA (low-to-intermediate Hb target) vs no ESA	Mortality Thromboembolic events RBC transfusion Functional/ performance status Cost effectiveness							
Cody et al (2005) ¹⁵²	Systematic review Good	Anaemic adults with pre-dialysis CKD N=461	EPO vs standard care	Mortality RBC transfusion Functional/performan ce status							

Table 3.83 Characteristics and quality of Level I evidence

CKD, chronic kidney disease; CV, cardiovascular; DAR, darbepoetin; EPO, erythropoietin; ESA, erythropoiesis stimulating agents; ESRD, end-stage renal disease; Hb, haemoglobin; QoL, quality of life; RBC, red blood cell

Only reviews that compared ESAs with no ESA treatment were eligible for inclusion. Therefore, Strippoli et al (2006),¹⁵⁴ which compared Hb targets rather than comparing treatment with no treatment, was excluded. Similarly, when discussing the results from Tonelli et al (2008),¹⁵¹ only the studies defined by the review as comparing "ESA vs no ESA", rather than comparing "high vs intermediate/low target Hb protocols", were eligible for inclusion.

### Level II evidence

A literature search was conducted to identify Level II evidence published after the literature search conducted in the Tonelli et al (2008)¹⁵¹ systematic review.^b Three studies were identified and the main characteristics of these studies are summarised in Table 3.84. Two of

^a Tonelli et al (2008) also reported studies that compared high vs intermediate/low target Hb protocols; however, these studies are outside of the scope for this guideline review.

^b The literature search in Tonelli et al (2008) included papers published from 1966 to 2006.

the RCTs^{155,156} compared EPO with standard care and the other RCT¹⁴⁵ compared darbepoetin (DAR) with placebo. One study¹⁴⁵ was in anaemic adults with type 2 diabetes and CKD who had not yet commenced dialysis; the other two studies^{155,156} were in adults with anaemia of CKD who had not yet commenced dialysis.

Pfeffer et al (2009)¹⁴⁵ was a multicentre study conducted at 623 sites in 24 countries, including Australia. The other two RCTs were conducted in Italy¹⁵⁵ and the UK. ¹⁵⁶

Level II evide	ence				
Study	Study type Study quality	Population N	Intervention	Comparator	Outcomes
Pfeffer et al (2009) ¹⁴⁵	RCT Good	Anaemic adults with type 2 diabetes and pre-dialysis CKD N=4047	SC DAR ^a (Hb maintained at 13.0 g/dL)	Placebo (unless Hb <9.0 g/dL, at which point EPO could be administered to maintain their Hb concentration ≥9.0 g/dL)	Mortality RBC transfusion Thromboembolic events Functional/performance status
Cianciaruso et al (2008) ¹⁵⁵	RCT Good	Anaemic adults with pre-dialysis CKD N=94	SC EPO once weekly (Hb concentration between 12 to 14 g/dL ± 0.5 g/dL and not exceeding 14 g/dL) Oral or IV iron supplementation	No EPO (unless Hb ≤9.0 g/dL, at which point EPO could be administered to maintain their Hb concentration between 9.0 and 10.5 g/dL) Oral or IV iron supplementation	AEs Functional/performance status
Macdougall et al (2007) ¹⁵⁶	RCT Fair	Anaemic adults with pre-dialysis CKD N=197	SC EPO twice weekly (Hb maintained at 11.0 ± 1.0 g/dL)	No EPO (unless Hb $\leq$ 9.0 g/dL, at which point EPO could be administered to maintain their Hb concentration at 11.0 $\pm$ 1.0 g/dL)	Mortality Functional/performance status

Table 3.84 Characteristics and quality of Level II evidence

CKD, chronic kidney disease; DAR, darbepoetin; EPO, erythropoietin; Hb, haemoglobin; RBC, red blood cells; SC, subcutaneous

#### Results

#### Mortality

Mortality was reported in the Tonelli et al (2008)¹⁵¹ and Cody et al (2005)¹⁵² systematic reviews. Two RCTs^{145,156} published after the Tonelli et al (2008)¹⁵¹ literature search also reported mortality as an outcome. Table 3.85 provides a summary of these results.

Tonelli et al (2008)¹⁵¹ identified seven RCTs (N=1048) that compared the incidence of mortality between subjects treated with and without ESAs for anaemia of CKD. There was no significant difference between treatment arms for pre-dialysis patients (2 trials; relative risk [RR] 0.35; 95% CI: 0.05, 2.30), peritoneal dialysis patients (1 trial; RR 1.90; 95% CI: 0.18, 20.49), haemodialysis patients (4 trials; RR 0.71; 95% CI: 0.39, 1.31), or all CKD patients (7 trials; RR 0.71; 95% CI: 0.40, 1.24). There was, however, a significantly lower incidence of cardiovascular mortality in CKD patients treated with ESAs compared with those who were

not treated with ESAs (3 trials; RR 0.15; 95% CI: 0.03, 0.69). Of the 12 cases of cardiovascular mortality in the comparator arms of the RCTs, 9 occurred in 1 study¹⁵⁷ of 181 haemodialysis patients with a follow-up of 1 year. The other two studies that reported cardiovascular mortality had lengths of follow-up of 36 weeks (Kuriyama et al 1997) and  $\leq$ 26 weeks (Bahlmann et al 1991).

Cody et al (2005)¹⁵² identified three RCTs (N=168) that compared EPO with treatment without EPO on mortality in CKD patients who had not yet commenced dialysis. There was no significant difference in mortality between treatment arms (RR 0.60; 95% CI: 0.13, 2.88).

The RCT conducted by Macdougall et al  $(2007)^{156}$  found no significant difference between EPO and no EPO in mortality (1.6% vs 3.8%; RR 0.41; 95% Cl; 0.05, 3.46) and median length of time to dialysis or death (36.3 months vs 27.3 months; P=0.351) in pre-dialysis CKD patients. Pfeffer et al  $(2009)^{145}$  found that in pre-dialysis CKD patients with type 2 diabetes there was no significant difference in mortality (20.5% vs 19.5%; hazard ratio [HR] 1.05; 95% Cl: 0.92, 1.21) or deaths attributable to cancer (1.9% vs 1.2%; P=0.08) between patients treated with DAR and those who received placebo. Among the patients with a history of malignant condition at baseline, however, those treated with DAR had a significantly greater incidence of death attributable to cancer (7.4% vs 0.6%; P=0.0002).

A meta-analysis was conducted in order to update Tonelli et al (2008)¹⁵¹ with the results from Macdougall et al (2007)¹⁵⁶ and Pfeffer et al (2009)¹⁴⁵ (see Figure 3.11). After the addition of the two RCTs, there was still no significant difference in the mortality rates of CKD patients treated with and without ESAs (9 trials; RR 1.03; 95% CI: 0.91, 1.16).

 Table 3.85
 Results for ESAs vs no ESAs in CKD (mortality)

Study	Patient population	Intervention vs	Length of	Outcome			Results	
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% Cl)	Significance P-value Heterogeneity P-value (I ² )
Level I studies Cody et al (2005) ¹⁵² Good	Anaemic adults with pre- dialysis CKD	EPO vs no EPO	8-48 weeks	Mortality, n/N (%) 3 studies (N=168)	3/94 (3.2)	3/74 (4.1)	RR 0.60 (0.13, 2.88)	No significant difference P=0.52 No significant heterogeneityª Phet=0.60 (l²=0.0)
Tonelli et al (2008)151Anaemic adults with (on-dialysis or pre- dialysis)Gooddialysis		ESA vs no ESA	12 weeks to 1 year	All-cause mortality ^b , n/N (%) 7 studies (N=1048)	19/575 (3.3)	26/473 (5.5)	RR 0.71 (0.40, 1.24)	No significant difference P=0.23 No significant heterogeneity ^a Phet=0.80 (l ² =0)
				All-cause mortality (pre- dialysis patients), n/N (%) 2 studies (N=156)	1/85 (1.2)	3/71 (4.2)	RR 0.35 (0.05, 2.30)	No significant difference P=0.27 No significant heterogeneity ^a Phet=0.93 (l ² =0)
				All-cause mortality (peritoneal dialysis patients), n/N (%) 1 study (N=152)	2/78 (2.6)	1/74 (1.4)	RR 1.90 (0.18, 20.49)	No significant difference P=0.60
				All-cause mortality (haemodialysis patients), n/N (%) 4 studies (N=740)	16/412 (3.9)	22/328 (6.7)	RR 0.71 (0.39, 1.31)	No significant difference P=0.28 No significant heterogeneity ^a Phet=0.60 (l ² =0)
				Cardiovascular mortality ^c , n/N (%) 3 studies (N=564)	1/286 (0.3)	12/278 (4.3) ^d	RR 0.15 (0.03, 0.69)	Favours ESA P=0.01 No significant heterogeneity ^a Phet=0.84 (l ² =0)
				Cardiovascular mortality (pre-dialysis CKD patients), n/N (%) 1 study (N=73)	0/42 (0.0)	2/31 (6.5)	RR 0.15 (0.01, 2.99)	No significant difference P=0.21

Study	Patient population	Intervention vs	Length of	Outcome	Results					
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )		
				Cardiovascular mortality (haemodialysis patients), n/N (%) 2 studies (N=491)	1/244 (0.4)	10/247 (4.0)	RR 0.16 (0.03, 0.88)	Favours ESA P=0.03 No significant heterogeneity ^a Phet=0.55 (l ² =0)		
LEVEL II STUDIES										
Macdougall et al (2007) ¹⁵⁶ Anaemic adults with pre- dialysis CKD <i>Fair</i>		EPO vs no EPO	3 years ^e	Mortality, n/N (%) (N=196)	1/64 (1.6)	5/132 (3.8) ^f	RR 0.41 (0.05, 3.46) ^g	No significant difference P=0.419		
				Median length of time to dialysis or death, months (N=196)	36.3	27.3	NR	No significant difference P=0.351 ^h		
(2009) ¹⁴⁵ 2 diabetes and pre-		emic adults with type DAR vs placebo betes and pre- sis CKD	4 years	Mortality, n/N (%) (N=4038)	412/2012 (20.5)	395/2026 (19.5)	HR 1.05 (0.92, 1.21)	No significant difference P=0.48		
Good				Deaths attributable to cancer, n/N (%) (N=4038)	39/2012 (1.9)	25/2026 (1.2)	NR	No significant difference P=0.08 ^h		
				Deaths among patients with a history of a malignant condition at baseline, n/N (%) (N=348)	60/188 (31.9)	37/160 (23.1)	NR	No significant difference P=0.13 ^h		
				Deaths attributable to cancer among patients with a history of malignant condition at baseline, n/N (%)	14/188 (7.4)	1/160 (0.6)	NR	Favours placebo P=0.0002 ^h		
				(N=348)						
				Death from cardiovascular causes, n/N (%)	259/2012 (12.9)	250/2026 (12.3)	HR 1.05 (0.88, 1.25)	<i>No significant difference</i> P=0.61		
				(N=4038)						

CI, confidence interval; CKD, chronic kidney disease; EPO, erythropoietin; ESA, erythropoiesis-stimulating agents; DAR, darbepoetin; HR, hazard ratio; NR, not reported; RR, relative risk ^a Heterogeneity defined as follows: (i) no significant heterogeneity if P*het*>0.1 and I²<25%; (ii) mild heterogeneity if I²<25%; moderate heterogeneity if I² between 25%-50%; substantial heterogeneity if I²>50%.

^b In the one trial (N=362) that accrued at least one year of follow-up, the pooled RR was significantly lower (RR [95% CI] 0.11 [0.01, 0.87]) with ESA.

c In the one trial (N=362) that accrued at least one year of follow-up, the pooled RR was significantly lower (RR [95% CI] 0.11 [0.01, 0.87]) with ESA.

^d Nine of the mortality cases occurred in Klinkmann 1993¹⁵⁷ (N=181).

^e Or until renal replacement/death.

^fExcludes one patient who received dialysis before death.

^g Calculated for the purpose of this systematic review using Review manager.

^h Log rank test.

	ESA		no ES			Risk Ratio	Risk Ratio
Study or Subgroup		Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
2.1.1 Haemodialysis (							
Bahlmann 1991	2	63	2	66	0.4%	1.05 [0.15, 7.21]	
Bennett 1991	0	90	1	41	0.1%	0.15 [0.01, 3.70]	
CESG 1990	0	78	1	40	0.1%	0.17 [0.01, 4.15]	•
Klinkmann 1993 Subtotal (95% CI)	14	181 <b>412</b>	18	181 <b>328</b>	3.3% <b>3.9%</b>	0.78 [0.40, 1.52] <b>0.71 [0.39, 1.31]</b>	•
Total events	16		22				
Heterogeneity: Tau ² = 0 Test for overall effect: 2				9 = 0.60	); l² = 0%		
2.1.2 Peritoneal dialys	sis CKD						
Nissenson 1995 Subtotal (95% CI)	2	78 <b>78</b>	1	74 74	0.3% <b>0.3%</b>	1.90 [0.18, 20.49] <b>1.90 [0.18, 20.49]</b>	
Total events	2		1				
Heterogeneity: Not app Test for overall effect: 2		P = 0.6	0)				
2.1.3 Pre-dialysis CKI	)						
Kuriyama 1997	1	42	2	31	0.3%	0.37 [0.04, 3.89]	
Macdougall 2007	1	64	5	132	0.3%	0.41 [0.05, 3.46]	
Roth 1994 Subtotal (95% CI)	0	43 1 <b>49</b>	1	40 <b>203</b>	0.1% <b>0.7%</b>	0.31 [0.01, 7.41] 0.37 [0.09, 1.54]	
Total events	2		8	200	011 /0		-
Heterogeneity: Tau ² = ( Test for overall effect: 2	0.00; Chi ²		df = 2 (P	9 = 0.99	); l ² = 0%		
2.1.4 Pre-dialysis CKI	D with typ	pe 2 dia	betes				
Pfeffer 2009	412	2012	395	2026	95.1%	1.05 [0.93, 1.19]	
Subtotal (95% CI)		2012		2026	95.1%	1.05 [0.93, 1.19]	•
Total events	412		395				
Heterogeneity: Not app Test for overall effect: 2		P = 0.4	4)				
Total (95% CI)		2651		2631	100.0%	1.03 [0.91, 1.16]	
Total events	432		426				
Heterogeneity: $Tau^2 = 0$ Test for overall effect: 2	0.00; Chi ²		df = 8 (P	9 = 0.69	); l² = 0%		0.01 0.1 1 10 100 Favours ESAs Favours control

#### Figure 3.11 Meta-analysis of ESAs vs no ESAs in CKD (mortality)

#### **Blood transfusion**

Red blood cell (RBC) transfusion incidence was reported in the Tonelli et al  $(2008)^{151}$  and Cody et al  $(2005)^{152}$  systematic reviews. One RCT published after the Tonelli et al  $(2008)^{151}$  literature search also reported RBC transfusion as an outcome (Pfeffer et al  $[2009]^{145}$ ). No studies reported the volume of blood transfused. Table 3.86 provides a summary of these results.

Cody et al  $(2005)^{152}$  found that the incidence of RBC transfusions was significantly lower in pre-dialysis CKD patients who received EPO compared with those who did not (3 trials; RR 0.32; 95% CI: 0.12, 0.83).

The results from Cody et al (2005)¹⁵² were not consistent with the results from Tonelli et al (2008),¹⁵¹ which found that ESAs, compared with treatment without ESAs, did not significantly reduce the incidence of RBC transfusion in pre-dialysis CKD patients (1 trial; RR 0.41; 95% CI: 0.14, 1.24) but did significantly reduce the incidence of RBC transfusion for CKD

patients on haemodialysis (2 trials; RR 0.09; 95% CI: 0.03, 0.32). Two of the three RCTs reported in Cody et al  $(2005)^{152}$  were excluded from Tonelli et al  $(2008)^{151}$  because they had a sample size of less than 30. Similarly, two of the three RCTs reported in Tonelli et al  $(2008)^{151}$  were excluded from the Cody et al  $(2005)^{152}$  review because they were conducted in patients undergoing haemodialysis.

The RCT conducted by Pfeffer et al  $(2009)^{145}$  found that DAR compared with placebo significantly reduced the incidence of RBC transfusion (14.8% vs 24.5%; HR 0.56; 95% CI: 0.49, 0.65).

Study	Patient population	Intervention vs	Length of	Outcome			Results	
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )
Level I STUDIES Cody et al (2005) ¹⁵² Good	Anaemic adults with pre-dialysis CKD	EPO vs no EPO	8-48 weeks	RBC transfusion incidence, n/N (%) 3 studies (N=111)	4/61 (6.6)	13/50 (26.0)	RR 0.32 (0.12, 0.83)	Favours EPO P=0.020 No significant heterogeneityª Phet=0.60 (I ² =0.0%)
Tonelli et al (2008) ¹⁵¹ Good	Anaemic adults with CKD (on-dialysis or pre-dialysis)	ESA vs no ESA	≤26-48 weeks	RBC transfusion incidence (pre-dialysis CKD), n/N (%) 1 study (N=83)	4/43 (9.3)	9/40 (22.5)	RR 0.41 (0.14, 1.24)	<i>No significant difference</i> P=0.11
				RBC transfusion incidence (haemodialysis), n/N (%) 2 studies (N=217)	7/131 (5.3)	51/86 (59.3)	RR 0.09 (0.03, 0.32)	Favours ESA P=0.0001 Substantial heterogeneity ^a Phet=0.13 (I ² =56.2%)
LEVEL II STUDIES								
Pfeffer et al (2009) ¹⁴⁵ Good	Anaemic adults with type 2 diabetes and pre-dialysis CKD	DAR vs placebo	4 years	RBC transfusion incidence, n/N (%) (N=4038)	297/2012 (14.8)	496/2026 (24.5)	HR 0.56 (0.49, 0.65)	Favours DAR P<0.001

Table 3.86	Results for ESAs vs no ESAs in CKD (blood transfusion)
------------	--------------------------------------------------------

CI, confidence interval; CKD, chronic kidney disease; DAR, darbepoetin; EPO, erythropoietin; ESA, erythropoiesis stimulating agent; HR, hazard ratio; RBC, red blood cell; RR, relative risk ^a Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I²<25%; moderate heterogeneity if I² between 25%-50%; substantial heterogeneity if I²>50%.

#### Thromboembolic events

The incidence of thromboembolic events was reported in the Tonelli et al (2008)¹⁵¹ systematic review. One RCT (Pfeffer et al [2009]¹⁴⁵) published after the Tonelli et al (2008)¹⁵¹ literature search also reported the incidence of thromboembolic events. Table 3.87 provides a summary of these results.

Tonelli et al (2008)¹⁵¹ found no significant difference between CKD patients treated with or without ESAs in the incidence of myocardial infarction (2 trials; RR 0.56; 95% CI: 0.12, 2.62), stroke (1 trial; RR 0.35; 95% CI: 0.01, 8.41), and vascular access thrombosis (1 trial; RR 5.64, 95% CI: 0.75, 42.16).

In Pfeffer et al (2009),¹⁴⁵ anaemic patients with type 2 diabetes and pre-dialysis CKD randomised to DAR had a significantly greater incidence of stroke (5.0% vs 2.6%; HR 1.92; 95% CI: 1.38, 2.68), venous thromboembolic events (2.0% vs 1.1%; P=0.02), and arterial thromboembolic events (8.9% vs 7.1%; P=0.04) compared with patients who received placebo. There was no significant difference between the DAR and placebo treatment arms in the incidence of myocardial infarction (6.2% vs 6.4%; HR 0.96; 95% CI 0.75, 1.22).

Meta-analyses were conducted to update Tonelli et al (2008)¹⁵¹ with the results from Pfeffer et al (2009).¹⁴⁵ Overall, no significant difference between ESAs and no ESAs was found for the incidence of MI (5.6% vs 5.9%; RR 0.96; 95% CI 0.75, 1.21; Figure 3.12), stroke (4.9% vs 2.6%; RR 1.76; 95% CI 0.84, 3.68; Figure 3.13), or other thromboembolic events (11.0% vs 8.1%; RR 1.91; 95% CI 0.55, 6.64; Figure 3.14).

Study Quality	Patient population	Intervention vs comparator	Length of follow-up	Outcome No. trials (no. patients)	Results				
					Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )	
LEVEL I STUDIES Tonelli et al (2008) ¹⁵¹ Good	Anaemic adults with CKD (on-dialysis or pre-dialysis)	lialysis or	48 weeks to 1 year	MI, n/N (%) 2 studies (N=445)	2/224 (0.9)	4/221 (1.8)	RR 0.56 (0.12, 2.62)	No significant difference P=0.46 No significant heterogeneityª Phet=0.68 (l ² =0)	
			≤26 weeks	Stroke, n/N (%) 1 study (N=129)	0/63 (0.0)	1/66 (1.5)	RR 0.35 (0.01, 8.41)	<i>No significant difference</i> P=0.52	
			26 weeks	Vascular access thrombosis 1 study (N=118)	11/78 (14.1)	1/40 (2.5)	RR 5.64 (0.75, 42.16)	No significant difference P>0.05	
LEVEL II STUDIES									
Pfeffer et al (2009) ¹⁴⁵ Good	Anaemic adults with type 2 diabetes and pre-dialysis CKD	ype 2 diabetes and	4 years	MI, n/N (%) (N=4038)	124/2012 (6.2)	129/2026 (6.4)	HR 0.96 (0.75, 1.22)	No significant difference P=0.73	
				Stroke, n/N (%) (N=4038)	101/22012 (5.0)	53/2026 (2.6)	HR 1.92 (1.38, 2.68)	Favours placebo P<0.001	
				Venous thromboembolic events, n/N (%) (N=4038)	41/2012 (2.0)	23/2026 (1.1)	NR	<i>Favours placebo</i> P=0.02	
				Arterial thromboembolic events ^b , n/N (%) (N=4038)	178/2012 (8.9)	144/2026 (7.1)	NR	<i>Favours placebo</i> P=0.04	

#### Table 3.87 Results for ESAs vs no ESAs in CKD (thromboembolic events)

CI, confidence interval; CKD, chronic kidney disease; DAR, darbepoetin; ESA; erythropoiesis stimulating agent; HR, hazard ratio; MI, myocardial infarction; NR, not reported; RR, relative risk ^a Heterogeneity defined as follows: (i) no significant heterogeneity if P*het*>0.1 and I²<25%; (ii) mild heterogeneity if I²<25%; moderate heterogeneity if I² between 25%-50%; substantial heterogeneity if I²>50%.| ^b Some of which were adjudicated as cardiovascular events

# Figure 3.12 Meta-analysis of ESAs vs no ESAs in CKD (MI)

	ESA	s	no ES	As		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
2.2.1 Haemodialysis	CKD						
Klinkmann 1993	2	181	3	181	1.8%	0.67 [0.11, 3.94]	
Subtotal (95% CI)		181		181	1.8%	0.67 [0.11, 3.94]	
Total events	2		3				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.45 (I	P = 0.6	5)				
2.2.2 Pre-dialysis CK	D						
Roth 1994	0	43	1	40	0.6%	0.31 [0.01, 7.41]	
Subtotal (95% CI)		43		40	0.6%	0.31 [0.01, 7.41]	
Total events	0		1				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.72 (I	P = 0.47	7)				
2.2.3 Pre-dialysis CK	D with typ	oe 2 dia	betes				
Pfeffer 2009	124	2012	129	2026	97.7%	0.97 [0.76, 1.23]	
Subtotal (95% CI)		2012		2026	97.7%	0.97 [0.76, 1.23]	•
Total events	124		129				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.27 (I	P = 0.79	9)				
Total (95% CI)		2236		2247	100.0%	0.96 [0.75, 1.21]	•
Total events	126		133				
Heterogeneity: Tau ² =	0.00; Chi ²	= 0.65,	df = 2 (F	<b>9</b> = 0.72	); l² = 0%		
Test for overall effect:	Z = 0.38 (I	P = 0.7	1)				Favours ESAs Favours no ES
Test for subgroup diffe	rences: N	ot appli	cable				

# Figure 3.13 Meta-analysis of ESAs vs no ESAs in CKD (stroke)

	ESAs	no	no ESAs Risk Ratio		Risk Ratio	Risk Ratio
Study or Subgroup	Events T	Total Eve	nts Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
2.3.1 Haemodialysis	CKD					
Bahlmann 1991	0	63	1 66	5.1%	0.35 [0.01, 8.41]	
Subtotal (95% CI)		63	66	5.1%	0.35 [0.01, 8.41]	
Total events	0		1			
Heterogeneity: Not ap	plicable					
Test for overall effect:	Z = 0.65 (P =	= 0.52)				
2.3.2 Pre-dialysis CK Pfeffer 2009 Subtotal (95% CI)	101 2		53 2026 <b>2026</b>	94.9% <b>94.9%</b>	1.92 [1.38, 2.66] <b>1.92 [1.38, 2.66]</b>	•
Total events	101		53			
Heterogeneity: Not ap	plicable					
Test for overall effect:	Z = 3.91 (P	< 0.0001)				
Total (95% CI)	2	2075	2092	100.0%	1.76 [0.84, 3.68]	•
Total events	101		54			
Heterogeneity: Tau ² =	0.12; Chi ² =	1.09, df =	1 (P = 0.30	); l² = 8%		
Test for overall effect:	Z = 1.50 (P =	= 0.13)				0.01 0.1 1 10 10 Favours ESAs Favours no ES

#### ESAs no ESAs **Risk Ratio Risk Ratio** Events Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% Cl Study or Subgroup 2.4.1 Haemodialysis CKD **CESG 1990** 78 1 40 25.5% 5.64 [0.75, 42.16] 11 Subtotal (95% CI) 78 25.5% 5.64 [0.75, 42.16] 40 Total events 11 1 Heterogeneity: Not applicable Test for overall effect: Z = 1.69 (P = 0.09) 2.4.2 Pre-dialysis CKD with type II diabetes 219 2012 Pfeffer 2009 1.32 [1.09, 1.60] 167 2026 74.5% Subtotal (95% CI) 2012 2026 74.5% 1.32 [1.09, 1.60] Total events 219 167 Heterogeneity: Not applicable Test for overall effect: Z = 2.84 (P = 0.004) Total (95% CI) 2090 2066 100.0% 1.91 [0.55, 6.64] Total events 230 168 Heterogeneity: Tau² = 0.53; Chi² = 2.00, df = 1 (P = 0.16); l² = 50% 0.01 0.1 10 100 Test for overall effect: Z = 1.02 (P = 0.31) Favours ESAs Favours no ESAs Test for subgroup differences: Not applicable

#### Figure 3.14 Meta-analysis of ESAs vs no ESAs in CKD (other thromboembolic events)

#### Functional/performance status

Functional/performance status was reported in the Tonelli et al (2008)¹⁵¹ systematic review. All three RCTs published after the Tonelli et al (2008)¹⁵¹ literature search also reported functional/performance status as an outcome (Cianciaruso et al [2008]¹⁵⁵; Macdougall et al [2007]¹⁵⁶; Pfeffer et al [2009]¹⁴⁵). Table 3.88 provides a summary of these results.

Tonelli et al (2008)¹⁵¹ reported the results of one trial (Churchill et al[1990]¹⁵⁸), which found that haemodialysis patients treated with EPO experienced a significantly greater improvement in quality of life (Kidney Disease Questionnaire [KDQ]–fatigue) compared with control (MD 1.10; 95% CI: 0.76, 1.44). Keown et al (2010)¹⁵⁹ reported a reanalysis of the data from the CESG trial reported in Tonelli et al (2008).¹⁵¹ The reanalysis confirmed using a repeated measures approach on an intention to treat (ITT) population that there was a statistically significant improvement in the KDQ symptom of fatigue when dialysis patients were treated with EPO compared with control.

Four RCTs^{145,155,156} published after the Tonelli et al (2008)¹⁵¹ literature search reported functional/performance status as an outcome. Cianciaruso et al (2008)¹⁵⁵ found no significant difference in pre-dialysis patients between EPO and control in the proportion of individuals who had a decline in New York Heart Association (NYHA) status (5.4% vs 2.4%; P=0.609) or in Canadian Cardiovascular Society (CCS) status (0.0% vs 4.9%; P=0.495). Macdougall et al (2007)¹⁵⁶ found no significant difference between EPO and control in the six-minute walk test (6MWT; P=0.954) in pre-dialysis CKD patients. In Pfeffer et al (2009)¹⁴⁵, pre-dialysis CKD patients with type 2 diabetes treated with DAR had a significantly greater improvement in Functional Assessment of Cancer Therapy (FACT)-Fatigue score from baseline compared with placebo (P<0.001); and there was significantly more patients in the DAR group with an increase of three or more points on the FACT-Fatigue score (54.7% vs 49.5%; P=0.002). Pfeffer et al (2009)¹⁴⁵ found no significant difference between treatment arms in mean changes to SF-36 (Short Form Health Survey) energy (P=0.20) and physical functioning scores (P=0.51).

Study	Patient population	Intervention vs comparator	Length of follow-up	Outcome No. trials (no. patients)	Results				
Quality					Intervention	Comparator	Risk estimate (95% Cl)	Significance P-value Heterogeneity P-value (I ² )	
LEVEL I STUDIES									
Tonelli et al (2008) ¹⁵¹ Good	Anaemic adults with CKD (on-dialysis or pre-dialysis)	ESA vs no ESA	26 weeks	Change in KDQ-fatigue (0 low to 100 high) 1 study (N=98)	NR	NR	WMD 1.10 (0.76, 1.44)	Favours ESA P<0.001	
LEVEL II STUDIES									
Cianciaruso et al	Anaemic adults with pre-dialysis CKD		1 year	Decline in NYHA status at follow-up, n/N (%) (N=78)	2/37 (5.4)	1/41 (2.4)	NR	No significant difference P=0.609	
				Decline in CCS status at follow-up, n/N (%) (N=78)	0/37 (0.0)	2/41 (4.9)	NR	No significant difference P=0.495	
Macdougall et al (2007) ¹⁵⁶ Fair	Anaemic adults with pre-dialysis CKD	EPO vs no EPO	3 years ^d	Mean (SD) 6MWT distance (at the last recorded exercise test), m (N=196)	419.3 (124.4)	420.5 (129.0)	NR	No significant difference P=0.954	
				Mean (SD) worst result for 6MWT, m (N=196)	395.8 (110.5)	408.4 (127.8)	NR	No significant difference P=0.526	
Pfeffer et al (2009) ¹⁴⁵ Good	Anaemic adults with type 2 diabetes and pre-dialysis CKD	DAR vs placebo	25 weeks	Mean (SD) baseline FACT- Fatigue score (N=3531)	30.2 (NR)	30.4 (NR)	NR	NR	
				Mean (SD) change in FACT-Fatigue score from baseline at follow-up (N=3531)	4.2 (10.5)	2.8 (10.3)	NR	Favours DAR P<0.001	
				Patients with an increase of 3 or more points ^e on the FACT-Fatigue score, n/N (%) (N=3531)	963/1762 (54.7)	875/1769 (49.5)	NR	Favours DAR P=0.002	

# Table 3.88 Results for ESAs vs no ESAs in CKD (functional/performance status)

Study <i>Quality</i>	Patient population	Intervention vs	Length of follow-up	Outcome No. trials (no. patients)	Results				
		comparator follow-up			Intervention	Comparator	Risk estimate (95% Cl)	Significance P-value Heterogeneity P-value (I ² )	
			NR	Mean (SD) change in SF- 36 (energy; 0 low to 100 high) (N=2295)	2.6 (9.9)	2.1 (9.7)	NR	No significant difference P=0.20	
			Mean (SD) change in SF- 36 (physical functioning; 0 low to 100 high) (N=2295)	1.3 (9.2)	1.1 (8.8)	NR	No significant difference P=0.51		

CCS, Canadian Cardiovascular Society; 6MWT, six-minute walk test; CI, confidence interval; CKD, chronic kidney disease; DAR, darbepoetin; EPO, erythropoietin; ESA, erythropoiesis stimulating agent; FACT, Functional Assessment of Cancer Therapy; HRQL, health related quality of life; KDQ, Kidney Disease Questionnaire; NR, not reported; NYHA, New York Heart Association; SD, standard deviation; SF, Short Form Health Survey; SF-36, Short Form (36) Health Survey; SIP, Sickness Impact Profile; WMD, weighted mean difference

^a Quality of life was assessed by asking participants to: (i) "rate your energy level during the past week"; (ii) "judge your ability to do work during the previous week"; (iii) "rate your overall quality of life during the past week".

^b A standardised exercise test was performed using a bicycle ergometer.

^c Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I²<25%; moderate heterogeneity if I² between 25%-50%; substantial heterogeneity if I²>50%. ^d Or until renal replacement/death.

^e Considered to be clinically meaningful.

# 3.3.9 IV iron for anaemic patients with chronic kidney disease

## Methods

There was one Level I study and five Level II studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

## Level I evidence

There was one systematic review of randomised controlled trials (RCTs) that evaluated the use of iron therapy (parenteral and/or oral) in anaemic patients with chronic kidney disease. The characteristics of the review by Rozen-Zvi et al (2008)¹⁶⁰ are summarised in Table 3.89.

Rozen-Zvi et al (2008)¹⁶⁰ compared the use of IV versus oral iron supplementation in anaemic patients with chronic kidney disease (CKD; stages III to V). The review included studies assessing iron therapy in pre- and on-dialysis patients, treated with or without ESA treatment.

Rozen-Zvi et al (2008)¹⁶⁰ reported insufficient detail to provide the basis for a systematic review update. Therefore the individual trials from Rozen-Zvi et al (2008)¹⁶⁰ were retrieved. Three of the studies identified by Rozen-Zvi et al (2008)¹⁶⁰ met eligibility criteria for these guidelines (Stoves et al [2001],¹⁶¹ Van Wyck et al [2005],¹⁶² Agarwal et al [2006]¹⁶³).

Level I evidence									
Study	Study type Study quality	Population N	Comparison	Outcomes					
Rozen-Zvi et al (2008) ¹⁶⁰	Systematic Review Fair	Anaemic and non-anaemic adults with CKD (on-dialysis or pre- dialysis), with or without ESA treatment N=1197	IV vs Oral	Mortality RBC transfusion Functional/performance status					

## Table 3.89 Characteristics and quality of Level I evidence

CKD, chronic kidney disease; ESA, erythropoiesis stimulating agents; IV, intravenous; RBC, red blood cell

## Level II evidence

A literature search was conducted to identify Level II evidence comparing IV vs oral iron published after the Rozen-Zvi et al (2008)¹⁶⁰ systematic review^a. One study was identified (Provenzano et al [2009]¹⁶⁴).

Additionally, a literature search was conducted to identify Level II evidence (published from January 1985 to July 2010) comparing any form of iron therapy to treatment without iron therapy. The search identified one study (Singh et al [2006]¹⁶⁵).

The main characteristics of the five eligible RCTs, including the three eligible RCTs identified by Rozen-Zvi et al (2008)¹⁶⁰ are summarised in Table 3.90. Stoves et al (2001)¹⁶¹ was a single centre study conducted in the UK. The other RCTs were multicentre studies conducted in the

^a The literature search in Rozen-Zvi et al (2008) included papers published from January 1966 to January 2008

USA (Agarwal et al [2006],¹⁶³ Provenzano et al [2009],¹⁶⁴ Van Wyck et al [2005]¹⁶²) and international sites (Singh et al [2006]¹⁶⁵).

Level II evidence									
Study	Study type Study quality	Population N	Intervention	Comparator	Outcomes				
IV vs oral iror	1								
Agarwal et al (2006) ¹⁶³	RCT <i>Fair</i>	Anaemic, iron- deficient adults with pre-dialysis CKD, no ESA treatment	IV Iron sucrose, 250mg over 1hr, weekly	Oral Ferrous sulphate, 325mg, t.d.s.	Functional/ performance status				
		N=89							
Provenzano et al (2009) ¹⁶⁴	RCT <i>Fair</i>	Anaemic, iron- deficient adults with on-dialysis CKD, with ESA treatment	IV Two ferumoxytol injections during dialysis treatments (every 5± 3 days) +	Oral Elemental iron, 200mg, daily + EPO	Mortality				
		N=230	EPO	EPU					
Stoves et al (2001) ¹⁶¹	RCT <i>Poor</i>	Anaemic adults with pre-dialysis PRI, with ESA treatment N=45	IV Iron sucrose, 300mg over 2 hrs, monthly + EPO, twice weekly (Hb concentration between 120 to 140 g/L)	Oral Ferrous sulphate, 200mg, t.d.s. + EPO, twice weekly (Hb concentration between 120 to 140 g/L)	Mortality				
Van Wyck et al (2005) ¹⁶²	RCT Poor	Anaemic, iron- deficient adults with pre-dialysis CKD, with ESA or no ESA treatment N=188	IV Iron sucrose, 1000mg over 14 days as: a) 500mg infusion over 3.5-4 hrs from days 1-and 14 b) 200mg undiluted injection over 2-5min for 5 days between day 0 -14. + ESA or no ESA	Oral Ferrous sulphate, 325mg, t.d.s. + ESA or no ESA	RBC transfusion Functional/ performance status				

Table 3.90	Characteristics and quality of Level II evidence
------------	--------------------------------------------------

Level II evide	ence				
Study	Study type Study quality	Population N	Intervention	Comparator	Outcomes
IV iron vs no	iron therapy				
Singh et al (2006) ¹⁶⁵	RCT Poor	Anaemic adults with on-dialysis CKD (peritoneal), with ESA treatment N=126	IV 1g of iron sucrose divided into 3 doses over 28 days. (300mg over 1.5 hrs on days 1 and 15, 400mg over 2.5hrs on day 29.) + ESA	No iron supplementation + ESA	RBC transfusion

CKD, chronic kidney disease; ESA, erythropoiesis stimulating agents; EPO, erythropoietin; Hb, haemoglobin; IV, intravenous; PRI, progressive renal insufficiency; RBC, red blood cell RCT, randomised controlled trials; t.d.s, three times a day

## Results

## Mortality

Two RCTs^{161,164} reported mortality as an outcome (Table 3.91). Provenzano et al (2009)¹⁶⁴ reported no significant difference between IV and oral iron (0.9% vs 2.6%; RR 0.35; 95% CI; 0.04, 3.27). Stoves et al (2001)¹⁶¹ reported a single death in the IV arm and found no significant difference in mortality between IV and oral treatments (4.5% vs 0%; RR 3.13; 95% CI; 0.13, 72.99).

A meta-analysis was conducted with the results from Provenzano et al (2009)¹⁶⁴ and Stoves et al (2001),¹⁶¹ see Figure 3.15. The meta-analysis showed no significant difference in the mortality rates of CKD patients treated with IV compared with oral iron therapy (2 trials; RR 0.78; 95% CI: 0.10, 6.28).

# Figure 3.15 Meta-analysis of IV vs oral iron in anaemic patients with chronic kidney disease (mortality)

	IV		Oral	l		Risk Ratio		Risk Ra	atio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H	, Rando	m, 95% Cl	
Provenzano 2009	1	110	3	114	63.0%	0.35 [0.04, 3.27]				
Stoves 2001	1	22	0	23	37.0%	3.13 [0.13, 72.99]	-			
Total (95% CI)		132		137	100.0%	0.78 [0.10, 6.28]	-			
Total events	2		3							
Heterogeneity: Tau ² = 0.48; Chi ² = 1.25, df = 1 (P = 0.26); l ² = 20%							0.01 0.1	+ 1	10	100
Test for overall effect:	Z = 0.23 (I	P = 0.82	2)				Favo	ours IV F	-avours ora	al

Study	Patient population	Intervention vs	Length of follow-up	Outcome No. trials (no. patients)			Results	
Quality		comparator			Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )
LEVEL II STUDIES								
Provenzano et al (2009) ¹⁶⁴ Fair	Anaemic, iron-deficient adults with on-dialysis CKD, with ESA treatment	IV iron vs oral iron	5 weeks	Mortality, n/N (%) (N=214)	1/110 (0.9)	3/114 (2.6)	RR 0.35 (0.04, 3.27) ^a	No significant difference P=0.35
Stoves et al (2001) ¹⁶¹ Poor	Anaemic adults with pre- dialysis CKD, with ESA treatment	IV iron vs oral iron	6 months	Mortality, n/N (%) (N=45)	1/22 (4.5)	0/23 (0.0)	RR 3.13 (0.13, 72.99)ª	No significant difference P=0.48

 Table 3.91
 Results for IV iron in anaemic patients with chronic kidney disease (mortality)

CI, confidence interval; CKD, chronic kidney disease; IV, intravenous; NR, not reported; RR, relative risk; ESA, erythropoiesis stimulating agents ^a Calculated for the purpose of this systematic review using Review manager.

## **Blood transfusion**

Although none of the included studies reported transfusion incidence, two of the included RCTs^{162,165} reported the proportion of patients requiring an anaemia intervention. Anaemia intervention was defined as either: an increase in ESA dose, initiation of non-protocol IV iron or initiation of RBC transfusion. Table 3.92 provides a summary of these results.

The RCT conducted by Van Wyck et al (2005)¹⁶² found no significant difference between IV and oral iron therapy (8.8% vs 8.8%; RR 1.00; 95% CI; 0.39, 2.55). While Singh et al (2006)¹⁶⁵ found IV therapy significantly reduced the incidence of anaemia intervention compared to no iron supplementation, and hence RBC transfusion (1.3% vs 10.9%; RR 0.12; 95% CI: 0.10, 1.02).

A meta-analysis was conducted with the results from Singh et al (2006)¹⁶⁵ and Van Wyck et al (2005)¹⁶² (see Figure 3.16). The meta-analysis showed that there was still no significant difference in the mortality rates of CKD patients treated with IV or oral iron therapy (2 trials; RR 0.43; 95% CI: 0.06, 3.36).

# Figure 3.16 Meta-analysis of IV iron in anaemic patients with chronic kidney disease (patients requiring an anaemia intervention)

	IV		Contr	ol		<b>Risk Ratio</b>		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Rand	om, 95% C	I
Singh 2006	1	75	5	46	39.7%	0.12 [0.01, 1.02]				
Van Wyck 2005	8	91	8	91	60.3%	1.00 [0.39, 2.55]		-		
Total (95% CI)		166		137	100.0%	0.43 [0.06, 3.36]				
Total events	9		13							
Heterogeneity: Tau ² =	)	0.01	0.1	 1 10	100					
Test for overall effect:	Z = 0.80 (	P = 0.42	2)				0.01	Favours IV		

Study	Patient population	ion Intervention vs	Length of Outcome follow-up No. trials (no. patients)	Outcome	Results			
Quality		comparator		Intervention	Comparator	Risk estimate (95% Cl)	Significance P-value Heterogeneity P-value (l ² )	
LEVEL II STUDIES								
Singh et al (2006) ¹⁶⁵ Poor	Anaemic adults with on-dialysis CKD, with ESA treatment	IV iron vs no iron supplementation	12 weeks	Anaemia intervention ^a incidence, n/N (%) (N=121)	1/75 (1.3)	5/46 (10.9)	RR 0.12 (0.10, 1.02) ^b	Favours IV P=0.05 ^b
Van Wyck et al (2005) ¹⁶² Poor	Anaemic, iron- deficient adults with pre-dialysis CKD, with ESA or no ESA treatment	IV iron vs oral iron	8 weeks	Anaemia intervention ^a incidence, n/N (%) (N=182)	8/91 (8.8)	8/91 (8.8)	RR 1.00 (0.39, 2.55) ^b	No significant difference P=1.00 ^b

Table 3.92 Results for IV iron in anaemic patients with chronic kidney disease (blood transfusion)

CI, confidence interval; CKD, chronic kidney disease; ESA, erythropoiesis stimulating agents; RBC, red blood cell; RR, relative risk ^a Anaemia intervention defined as either: an increase in ESA dose, non-protocol IV iron or RBC transfusion, resulting in non-completion of study.

^b Calculated for the purpose of this systematic review using Review manager.

#### Thromboembolic events

None of the included studies reported the incidence of thromboembolic events.

#### Functional/performance status

Two of the included RCTs^{163,162} reported functional/performance status (Table 3.93). Agarwal et al (2006)¹⁶³ found that patients treated with IV iron therapy experienced significantly greater improvements in quality of life (Kidney Disease Quality of Life Questionnaire [KDQOL]) compared to patients treated with oral iron therapy. These improvements were restricted to two measures of KDQOL: Symptoms of Kidney Disease (3.0 % vs -2.7 %, P=0.025) and Effect of Kidney Disease (2.7 % vs -2.3 %, P=0.048). No significant differences between the treatment groups were reported in the other measures (SF-12 physical health composite, SF-12 mental health composite and Burden of KD). Van Wyck et al (2005)¹⁶² found no significant differences in the SF-36 scores between the IV and oral treatment arms.

Study	Patient population		Length of	Outcome			Results	
Quality	uality comparator follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )		
LEVEL II STUDIES		_						
Agarwal et al	Anaemic, iron-	IV iron vs oral iron	4-6 weeks	Mean (SD) KDQOL change	from baseline to day	43 or termination, %		
(2006) ¹⁶³ Good	2006) ¹⁶³ deficient adults with       Good     pre-dialysis CKD, no       ESA treatment		SF-12 physical health composite (N=75)	4.8 (8.6) ^a	0.7 (8.6)	NR	<i>No significant difference</i> P=0.080	
				SF-12 mental health composite (N=75)	3.3 (9.8)	-0.8 (15.1)	NR	<i>No significant difference</i> P=0.114
				Burden of KD (N=75)	6.4 (19.6)	-3.6 (25.9)	NR	<i>No significant difference</i> P=0.056
				Symptoms of KD (N=75)	3.0 (11.6)	-2.7 (17.5)	NR	Favours IV P=0.025
				Effects of KD (N=75)	2.7 (14.5)	-2.3 (13.13)	NR	Favours IV P=0.048
Van Wyck et al (2005) ¹⁶² <i>Poor</i>	Anaemic, iron- deficient adults with pre-dialysis CKD, with ESA or no ESA treatment	IV iron vs oral iron	8 weeks	Mean (SD) SF-36 ^b change from baseline to day 56, m (N=182)	NR	NR	NR	No significant difference

Table 3.93	Results for IV iron in anaem	ic patients with chronic k	idney disease (fun	ctional/performance status)
------------	------------------------------	----------------------------	--------------------	-----------------------------

Chronic Kidney Disease, CKD; KDQOL, Kidney Disease Quality of Life; NR, not reported; KD, Kidney Disease; IV, intravenous; SD, standard deviation; SF, Short Form Health Survey; SF-12, Short Form (12) Health Survey; SF-36, Short Form (36) Health Survey NS, no significant difference

^a Significant with-in group change, p <0.01. ^b SF-36 included health concept categories of: physical functioning, role-physical, bodily pain, general health, vitality, social functioning, role-emotional and mental health.

Evide	nce statements – community- dwelling elderly	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES3.30	In community-dwelling elderly patients with anaemia who are ambulatory, the effect of ESAs on mortality is uncertain. (See evidence matrix EM3.W in Volume 2 of the technical report)	N	NA	NA	$\checkmark$	$\sqrt{\sqrt{1}}$
ES3.31	In community-dwelling elderly patients with anaemia who are ambulatory, the effect of ESAs on thromboembolic events is uncertain. (See evidence matrix EM3.X in Volume 2 of the technical report)	V	NA	NA	V	$\sqrt{\sqrt{1}}$
ES3.32	In community-dwelling elderly patients with anaemia who are ambulatory, the effect of ESAs on functional or performance status is uncertain. (See evidence matrix EM3.Y in Volume 2 of the technical report)	V	NA	X	V	$\sqrt{\sqrt{1}}$
	nce statement; ESA, erythropoiesis-stimulating agent $\sqrt{=B}$ ; $\sqrt{=C}$ ; X=D; NA, not applicable	1	I	1	1	

# 3.3.10 Non-transfusion interventions for elderly patients with anaemia

## ESAs vs no ESAs for elderly patients with anaemia

## Methods

There was one Level II study identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

## Level I evidence

The literature search identified no systematic review of RCTs that evaluated the use of ESAs in elderly patients with anaemia.

## Level II evidence

The literature search identified one RCT that evaluated the use of ESAs in elderly patients with anaemia (Agnihotri et al [2007]¹⁶⁶). The main characteristics of this study are summarised in Table 3.94. Agnihotri et al (2007) was a 32-week, randomised, double-blind, placebo-controlled crossover trial. Ambulatory, community-dwelling adults aged 65 years and older with Hb of 11.5 g/dL or less for more than 3 months were randomised to onceweekly injection of placebo or EPO for 15 weeks (Phase I) and were then crossed over to the other treatment for the remainder of the trial (Phase II).

Level II evide	ence				
Study	Study type Study quality	Population N	Intervention	Comparator	Outcomes
Agnihotri et al (2007) ¹⁶⁶	Cross- over RCT <i>Fair</i>	Ambulatory, community- dwelling adults aged ≥65 years with Hb ≤11.5 g/dL for more than 3 months N=62	SC EPO once weekly (target Hb 13.0 to 13.9 g/dL) Patients received oral iron therapy if serum ferritin was <20 ng/ mL or transferring saturation was <15%	Matched placebo Patients received oral iron therapy if serum ferritin was <20 ng/ mL or transferring saturation was <15%	Mortality Thromboembolic events Functional/performance status

 Table 3.94
 Characteristics and quality of Level II evidence

EPO, erythropoietin; Hb, haemoglobin; RCT, randomised controlled trial; SC, subcutaneous

## Results

## Mortality

Agnihotri et al (2007)¹⁶⁶ found no significant difference in mortality between EPO and placebo in either phase of the cross-over trial (Table 3.95). In Phase I there was one death in the EPO treatment arm and one death in the placebo arm. There were no deaths in Phase II. None of the deaths were considered to be treatment related.

Table 3.95         Results for ESAs vs no ESAs in elderly patients with anaemia (mortality)	Table 3.95	Results for ESAs vs no	ESAs in elderly	patients with ana	emia (mortality)
---------------------------------------------------------------------------------------------	------------	------------------------	-----------------	-------------------	------------------

Study	Patient population	Intervention vs	Length of	Outcome			Results	
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (l ² )
LEVEL II STUDIES								
Agnihotri et al (2007) ¹⁶⁶ Fair	Elderly patients with anaemia	EPO vs placebo	16 weeks for each phase	Mortality, n/N (%)	Phase I 1/32 (3.1) ^a Phase II 0/24 (0.0)	<u>Phase I</u> 1/26 (3.8)ª <u>Phase II</u> 0/30 (0.0)	Phase I RR 0.81 (0.05, 12.37) ^b Phase II NA	Phase I No significant difference P=0.88 ^b Phase II NA

CI, confidence interval; EPO, erythropoietin; ESA, erythropoiesis-stimulating agents; NA, not applicable; RR, relative risk ^a Not considered to be treatment related.

^b Calculated for the purpose of this systematic review using Review Manager.

## **Blood transfusion**

Agnihotri et al (2007)¹⁶⁶ did not report either the incidence or volume of blood transfusion.

## Thromboembolic events

In Phase I of Agnihotri et al (2007)¹⁶⁶ there was one case of DVT and one case of stroke in the placebo treatment arm and no thromboembolic events in the EPO arm (Table 3.96). In Phase II there was one case of pulmonary embolism in the EPO arm and no thromboembolic events in the placebo arm. There were no significant differences in the incidences of DVT, pulmonary embolism, or stroke between EPO and placebo in either phase of the study.

Study	Patient population	Intervention vs	Length of	Outcome			Results	
Quality		comparator follow-up	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )
Level II STUDIES Agnihotri et al (2007) ¹⁶⁶ Fair	Elderly patients with anaemia	EPO vs placebo	16 weeks for each phase	DVT, n/N (%) Pulmonary embolism, n/N (%)	Phase I           0/32 (0.0)           Phase II           0/24 (0.0)           Phase I           0/32 (0.0)           Phase II           1/24 (4.2)	Phase I           1/26 (3.8)           Phase II           0/30 (0.0)           Phase I           0/26 (0.0)           Phase II           0/30 (0.0)	Phase I           RR 0.27 (0.01,           6.43) ^b Phase II           NA           Phase I           NA           Phase II           RR 3.72 (0.16,           87.42) ^b	Phase I         No significant difference         P=0.43 ^b Phase II         NA         Phase I         NA         Phase II         No significant difference         P=0.41 ^b
				Stroke, n/N (%)	Phase I 0/32 (0.0) Phase II 0/24 (0.0) ^a	<u>Phase I</u> 1/26 (3.8) <u>Phase II</u> 0/30 (0)	Phase I RR 0.27 (0.01, 6.43) ^b Phase II NA	Phase I         No significant difference         P=0.42 ^b Phase II         NA

Table 3.96 Results for ESAs vs no ESAs in elderly patients with anaemia (thromboembolic events)

CI, confidence interval; DVT, deep vein thrombosis; EPO, erythropoietin; ESA, erythropoiesis-stimulating agents; NA, not applicable; RR, relative risk ^a Was determined to be due to underlying pre-existing atrial fibrillation (last study Hb 11.0 g/dL).

^b Calculated for the purpose of this systematic review using Review Manager.

## Functional/performance status

In Agnihotri et al (2007),¹⁶⁶ treatment with EPO led to a significantly greater improvement compared with control in FACIT–anaemia (including both the fatigue and anaemia subscales) but not FACT score or the Timed Up and Go (TUG) test (Table 3.97).

 Table 3.97
 Results for ESAs vs no ESAs in elderly patients with anaemia (functional/performance status)

Study	Patient population	Intervention vs	Length of	Outcome			Results	
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (l²)
LEVEL II STUDIES								
Agnihotri et al (2007) ¹⁶⁶ <i>Fair</i>	Elderly patients with anaemia	EPO vs placebo	16 weeks for each phase	Mean (SE) FACIT– anaemia (fatigue subscale; 0 low to 52 high) at follow-up	Phase I 41.9 (1.0) <u>Phase II</u> 43.4 (2.3)	<u>Phase I</u> 36.4 (1.1) <u>Phase II</u> 33.8 (2.0)	NR	Phase I Favours EPO P<0.001 Phase II Favours EPO P=0.01
				Mean (SE) FACIT- anaemia (anaemia subscale; 0 low to 80 high) at follow-up	Phase I 62.3 (1.2) Phase II 64.3 (2.8)	<u>Phase I</u> 56.3 (1.4) <u>Phase II</u> 53.6 (2.4)	NR	Phase I Favours EPO P=0.002 Phase II Favours EPO P=0.02
				Mean (SE) FACIT– anaemia (total; 0 low to 188 high) at follow-up	<u>Phase I</u> 146.8 (2.6) <u>Phase II</u> 152.2 (5.3)	<u>Phase I</u> 137.9 (2.9) <u>Phase II</u> 132 (4.6)	NR	Phase IFavours EPOP=0.03Phase IIFavours EPOP=0.02
				FACT-general (0 low to 108 high) at follow-up	<u>Phase I</u> 85.1 (1.5) <u>Phase II</u> 87.9 (2.9)	<u>Phase I</u> 81.6 (1.6) <u>Phase II</u> 78.4 (2.4)	NR	Phase INo significant differenceP=0.13Phase IIFavours EPOP=0.04
				Mean (SE) TUG test (<20 sec normal), sec	Phase I 27.9 (2.8) Phase II 23.8 (1.7)	<u>Phase I</u> 27.9 (3.2) <u>Phase II</u> 24.5 (1.5)	NR	Phase I         No significant difference         P=0.99         Phase II         No significant difference         P=0.80

CI, confidence interval; EPO, erythropoietin; ESA, erythropoiesis-stimulating agents; FACIT, Functional Assessment of Chronic Illness Therapy; FACT, Functional Assessment of Cancer Therapy; NR, not reported; RR, relative risk; SE, standard error; TUG, Timed Up and Go

# 3.3.11 Non-transfusion interventions for patients with hepatitis C

# **Evidence statements – hepatitis C virus**

In patients with HCV who are receiving combination therapy and have developed anaemia, the effect of ESAs on mortality is uncertain. (C, NA, NA, B, B)

In patients with HCV who are receiving combination therapy and have developed anaemia, the effect of ESAs on transfusion requirements is unknown. (no evidence)

In patients with HCV who are receiving combination therapy and have developed anaemia, the effect of ESAs on thromboembolic events is uncertain. (C, NA, NA, B, B)

In patients with HCV who are receiving combination therapy and have developed anaemia, ESAs may improve quality of life compared with no ESAs. (C, C, D, B, B)

# ESAs vs standard care for anaemic patients with hepatitis C

## Methods

There were three Level II studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

The CRG considered that there was insufficient evidence on which to base evidence-based recommendations and practice points. Therefore this population will not be discussed in the Module 3 Guideline.

The evidence identified during the systematic review is shown below for completion.

## Level I evidence

No Level I evidence evaluating the use of ESAs in patients with hepatitis C was identified.

## Level II evidence

Two RCTs that assessed the use of ESAs in hepatitis C virus (HCV)-infected patients on combination therapy were identified (Afdhal et al [2004]¹⁶⁷; Dieterich et al [2003]¹⁶⁸). Both studies assessed the impact of EPO on quality of life. Afdhal et al (2004)¹⁶⁷ also assessed the impact of EPO on thromboembolic events and mortality. Table 3.98 provides a summary of the main characteristics of these RCTs.

ESAs help to maintain treatment (ribavirin) in patients with some genotypes. But this was not specifically addressed in the guideline development.

Level II evide	ence				
Study	Study type <i>Study</i> quality	Population N	Intervention	Comparator	Outcomes
Afdhal et al (2004) ¹⁶⁷	RCT Fair	HCV-infected patients on combination therapy who developed anaemia N=185	EPO once weekly	Placebo	QoL Thromboembolic events Mortality
Dieterich et al (2003) ¹⁶⁸	RCT Poor	HCV-infected patients on combination therapy who developed anaemia N=64	EPO once weekly	Standard care	QoL

 Table 3.98
 Characteristics and quality of Level II evidence

EPO, erythropoietin; HCV, hepatitis C virus; QoL, quality of life; RCT, randomised controlled trial

## Results

## Mortality

One RCT¹⁶⁷ that assessed ESAs in HCV-infected patients reported mortality as an outcome (Table 3.99). The study found no significant difference between EPO and placebo (1.1% vs 0.0%; RR 2.97; 95% CI 0.12, 71.93).

Table 3.99	Results for ESAs vs no ESAs in patients with HCV (mortality)	
------------	--------------------------------------------------------------	--

Study	Patient population	Intervention vs	vs Length of Outcome		Results			
Quality		comparator	follow-up	w-up No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (l ² )
LEVEL II STUDIES								
Afdhal et al (2004) ¹⁶⁷ Fair	HCV-infected patients on combination therapy who developed anaemia	EPO vs placebo	8 weeks ^a	Mortality, n/N (%) N=185	1/93 (1.1) ^b	0/92 (0.0)	RR 2.97 (0.12, 71.93)⁰	No significant difference P=0.50 ^c

CI, confidence interval; EPO, erythropoietin; ESA, erythropoiesis stimulating agents; HCV, hepatitis C virus; RR, relative risk ^a There was an 8-week double-blind phase followed by an 8-week open-label phase (where both arms received EPO). ^b Patient died with pneumonia, renal failure, and hepatic failure. ^c Calculated for the purpose of this systematic review using Review Manager.

## **Blood transfusion**

None of the identified studies reported the incidence or volume of blood transfusion.

# Thromboembolic events

One RCT¹⁶⁷ that assessed ESAs in HCV-infected patients reported the incidence of thromboembolic events (Table 3.100). The study found no significant difference between EPO and placebo in cerebrovascular disorder/cerebral thrombosis (1.1% vs 0.0%; RR 2.97; 95% Cl 0.12, 71.93).

# Table 3.100 Results for ESAs vs no ESAs in HCV (thromboembolic events)

Study	Patient population	Intervention vs	Length of	Outcome			Results	
Quality		comparator	follow-up	w-up No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )
LEVEL II STUDIES								
Afdhal et al (2004) ¹⁶⁷ Fair	HCV-infected patients on combination therapy who developed anaemia	EPO vs placebo	8 weeks ^a	Cerebrovascular disorder/cerebral thrombosis, n/N (%) (N=185)	1/93 (1.1)	0/92 (0.0)	RR 2.97 (0.12, 71.93)⁰	No significant difference P=0.50°

CI, confidence interval; EPO, erythropoietin; ESA, erythropoiesis stimulating agents; HCV, hepatitis C virus; RR, relative risk ^a There was an 8-week double-blind phase followed by an 8-week open-label phase (where both arms received EPO).

^b Patient died with pneumonia, renal failure, and hepatic failure.

^c Calculated for the purpose of this systematic review using Review Manager.

## Functional/performance status

Both Afdhal et al (2004)¹⁶⁷ and Dieterich et al (2003)¹⁶⁸ reported functional/performance status as an outcome (Table 3.101). EPO significantly improved SF-36 (physical functioning, physical and emotional role, bodily pain, vitality, social functioning, and mental health; not general health subscale) scores compared with control in Afdhal et al (2004)¹⁶⁷ but did not improve SF-12 (physical and mental components) in Dieterich et al (2003).¹⁶⁸

Table 3.101 Results for ESAs vs no ESAs in HCV (functional/performance status)

Study	Patient population	Intervention vs	Length of	Outcome			Results	
Quality			follow-up	follow-up No. trials (no. patients)		Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )
Level II STUDIES Afdhal et al (2004) ¹⁶⁷ Fair	HCV-infected patients on combination therapy who developed anaemia	EPO vs placebo	8 weeks ^a	Mean (SD) change in SF-36 (physical functioning; 0 low to 100 high) score from baseline at follow-up N=185	9.7 (NR)	4.3 (NR)	NR	Favours EPO P<0.05
			Mean (SD) change in SF-36 (role physical; 0 low to 100 high) score from baseline at follow- up N=185	10 (NR)	0.7 (NR)	NR	Favours EPO P<0.05	
		SF-36 (bodily pain; C to 100 high) score fro baseline at follow-up N=185 Mean (SD) change in SF-36 (general healt low to 100 high) scor from baseline at follo up	Mean (SD) change in SF-36 (bodily pain; 0 low to 100 high) score from baseline at follow-up N=185	8.4 (NR)	4.2 (NR)	NR	Favours EPO P<0.05	
			Mean (SD) change in SF-36 (general health; 0 low to 100 high) score from baseline at follow- up N=185	2.7 (NR)	1.1 (NR)	NR	No significant difference P>0.05	
				Mean (SD) change in SF-36 (vitality; 0 low to 100 high) score from baseline at follow-up N=185	15.2 (NR)	4.1 (NR)	NR	Favours EPO P<0.05
				Mean (SD) change in SF-36 (social functioning; 0 low to 100 high) score from baseline at follow- up N=185	12 (NR)	2.6 (NR)	NR	Favours EPO P<0.05

Study	Patient population	Intervention vs	Length of	Outcome			Results	
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )
				Mean (SD) change in SF-36 (role emotional; 0 low to 100 high) score from baseline at follow- up N=185	6.2 (NR)	-3.3 (NR)	NR	Favours EPO P<0.05
				Mean (SD) change in SF-36 (mental health; 0 low to 100 high) score from baseline at follow- up N=185	5.6 (NR)	0.1 (NR)	NR	Favours EPO P<0.05
Dieterich et al (2003) ¹⁶⁸ Poor	HCV-infected patients on combination therapy who developed anaemia	EPO vs standard care	16 weeks	Mean (SD) improvement in SF-12 (physical component; 0 low to 100 high) from baseline N=64	4.9 (9.1)	2.0 (10.8)	MD 2.9 (-2.1, 7.9)¢	No significant difference P=0.248 ^c
				Mean (SD) improvement in SF-12 (mental component; 0 low to 100 high) from baseline N=64	2.7 (10.1)	0.1 (7.7)	MD 2.6 (-2.0, 7.2)¢	No significant difference P=0.263 ^c

CI, confidence interval; EPO, erythropoietin; ESA, erythropoiesis stimulating agents; HCV, hepatitis C virus; MD, mean difference; NR, not reported; SD, standard deviation; SF-12, Short Form (12) Health Survey; SF-36, Short Form (36) Health Survey ^a There was an 8-week double-blind phase followed by an 8-week open-label phase (where both arms received EPO).

^b Patient died with pneumonia, renal failure, and hepatic failure.

^c Calculated for the purpose of this systematic review using Instat.

# 3.3.12 Non-transfusion interventions for patients with HIV or AIDS

# Evidence statements – HIV or AIDS

In anaemic patients with HIV, the effect of ESAs on mortality is uncertain. (C, NA, NA, C, C)

In HIV patients with anaemia, the effect of ESAs on transfusion requirements is uncertain. (C, NA, D, C, C)

In HIV patients with anaemia, the effect of ESAs on thromboembolic events is unknown. (no evidence)

In anaemic patients with HIV, the effect of ESAs on functional or performance status is uncertain. (D, NA, D, C, C)

# ESAs vs no ESAs for anaemic patients with HIV or AIDS

## Methods

There was one Level I study identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

The CRG considered that there was insufficient evidence on which to base evidence-based recommendations and practice points. Therefore this population will not be discussed in the Module 3 Guideline.

The evidence identified during the systematic review is shown below for completion.

## Level I evidence

The literature search identified one systematic review¹⁶⁹ that evaluated the use of ESAs in anaemic patients with HIV or AIDS (Table 3.102).

Level II evide	ence				
Study	Study type Study quality	Population N	Intervention	Comparator	Outcomes
Marti- Carvajal et al (2007) ¹⁶⁹	SR Good	Anaemic (Hb <12 g/dL in men and <11 g/dL in women) patients with HIV or AIDS N=129 ^a	EPO⊳	Any other intervention for anaemia or placebo	Mortality RBC transfusion incidence and volume Functional/performance status

## Table 3.102 Characteristics and quality of Level I evidence

AIDS, acquired immune deficiency syndrome; EPO, erythropoietin; Hb, haemoglobin; HIV, human immunodeficiency virus; RBC, red blood cell; SR, systematic review

^a This figure does not include the results from Grossman et al (2003)¹⁷⁰ or Rendo et al (2001)¹⁷¹. Grossman et al (2003) compared two different treatment frequencies of EPO. Rendo et al (2001)¹⁷¹ was a study in paediatric patients.
 ^b Marti-Carvajal et al (2007)¹⁶⁹ also evaluated other treatments for anaemia, including androgen replacement, vitamin B₁₂ therapy, and darbepoetin alfa.

## Level II evidence

The Marti-Carvajal et al (2007)¹⁶⁹ systematic review identified two RCTs¹⁷² that evaluated the use of ESAs vs no ESAs in anaemic adults with HIV or AIDs (Table 3.103).

Level II evid	ence				
Study	Study type <i>Study</i> quality	Population N	Intervention	Comparator	Outcomes
Fischl et al (1990) ¹⁷²	RCT Fair	Adults with a clinical diagnosis of AIDS treated with zidovudine. Baseline haematocrit of $\leq 0.30$ and either transfusion dependent or a $\geq 15\%$ decline in haematocrit since zidovudine initiation. N=63	IV EPO thrice weekly (target haematocrit 0.38 to 0.40)	Placebo	Mortality RBC transfusion incidence and volume
Sulkowski et al (2005) ¹⁷³	RCT Poor	Anaemic (<12 g/dL or a >2 g/dL decrease in Hb after pegylated interferon alfa plus ribavirin) patients with HIV/AIDS treated with zidovudine	IV EPO thrice weekly (target haematocrit 0.38 to 0.40)	Standard care	Functional status

Table 3.103 Ch	aracteristics and qu	ality of Level II evidence
----------------	----------------------	----------------------------

AIDS, acquired immune deficiency syndrome; EPO, erythropoietin; Hb, haemoglobin; HIV, human immunodeficiency virus; IV, intravenous; RBC, red blood cell; RCT, randomised controlled trial

#### Results

#### Mortality

Marti-Carvajal et al (2007)¹⁶⁹ identified one RCT¹⁷² assessing EPO against placebo that reported mortality as an outcome (Table 3.104). This RCT found no significant difference between treatment arms (0% vs 5.9%; RR 0.23; 95% CI 0.01, 4.67).

# Table 3.104 Results for ESAs vs no ESAs in anaemic patients with HIV or AIDS (mortality)

Study	Study Patient population Intervention vs Length of		Outcome	Results				
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value <i>Heterogeneity</i> P-value (I ² )
LEVEL II STUDIES								
Fischl et al (1990) ¹⁷² Fair	Anaemic patients with HIV or AIDS	EPO vs placebo	12 weeks	Mortality, n/N (%) 1 trial (N=63)	0/29 (0%)	2/34 (5.9%)	RR 0.23 (0.01, 4.67)	No significant difference P=0.34

CI, confidence interval; EPO, erythropoietin; ESA, erythropoiesis-stimulating agents; NA, not applicable; RR, relative risk ^a Not considered to be treatment related.

## **Blood transfusion**

Marti-Carvajal et al (2007)¹⁶⁹ identified one RCT¹⁷² that assessed EPO against placebo that reported allogeneic blood transfusion as an outcome (Table 3.105). For patients with endogenous EPO less than or equal to 500 IU/L, treatment with EPO significantly reduced the incidence and volume of blood transfused compared with control. There was no significant difference between EPO and control in the incidence and volume of blood transfused for the overall population.

Study	Patient population	Intervention vs	Length of	Outcome			Results	
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value <i>Heterogeneity</i> P-value (I ² )
LEVEL II STUDIES					_		_	
Fischl et al (1990) ¹⁷² Fair	Anaemic patients with HIV or AIDS	EPO vs placebo	12 weeks	Incidence of allogeneic blood transfusion, n/N (%) 1 trial (N=63)	11/29 (37.9)	21/34 (61.8)	NR	<i>No significant difference</i> P>0.05
				Incidence of allogeneic blood transfusion (patients with endogenous EPO ≤500 IU/L), n/N (%) 1 trial (N=63)	5/NR (NR)	17/NR (NR)	NR	Favours EPO P<0.05
				Mean (SD) volume of RBC or whole blood transfused, units 1 trial (N=63)	1.48 (NR)	2.58 (NR)	NR	No significant difference P>0.05
				Mean (SD) volume of RBC or whole blood transfused (patients with endogenous EPO ≤500 IU/L), units 1 trial (N=63)	0.84 (NR)	2.74 (NR)	NR	Favours EPO P<0.05

# Table 3.105 Results for ESAs vs no ESAs in anaemic patients with HIV or AIDS (blood transfusion)

AIDS, acquired immune deficiency syndrome; CI, confidence interval; EPO, erythropoietin; ESA, erythropoiesis-stimulating agents; HIV, human immunodeficiency virus; IU, international units; NR, not reported; RBC, red blood cells; RR, relative risk; SD, standard deviation ^a Not considered to be treatment related.

## Thromboembolic events

None of the identified studies reported the incidence of thromboembolic events.

## Functional/performance status

Marti-Carvajal et al (2007)¹⁶⁹ identified one RCT¹⁷³ assessing EPO against placebo that reported functional or performance status as an outcome (Table 3.106). This RCT reported a greater improvement for patients treated with EPO compared with placebo in both the physical component (mean [SD] 6.0 [1.8] vs 2.2 [1.2]; p=NR) and mental component (mean [SD] 2.3 [2.0] vs 0.1 [1.5]; p=NR) of the SF-12.

# Table 3.106 Results for ESAs vs no ESAs in anaemic patients with HIV or AIDS (functional/performance status)

Study	Patient population	Intervention vs	Length of	Outcome			Results	
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value <i>Heterogeneity</i> P-value (I ² )
LEVEL II STUDIES								
Sulkowski et al (2005) ¹⁷³ <i>Poor</i>	Anaemic patients with HIV or AIDS	EPO vs placebo	16 weeks	Mean (SD) change in SF-12 (physical component; 0 low to 100 high) score from baseline at follow-up 1 trial (N=66)	6.0 (1.8)	2.2 (1.2)	NR	NR
			Change in SF-12 (mental component; 0 low to 100 high) score from baseline at follow-up 1 trial (N=66)	2.3 (2.0)	0.1 (1.5)	NR	NR	

AIDS, acquired immune deficiency syndrome; CI, confidence interval; EPO, erythropoietin; ESA, erythropoiesis-stimulating agents; HIV, human immunodeficiency virus; NR, not reported; SF-12, Short Form (12) Health Survey

^a Not considered to be treatment related.

<ul> <li>ES3.33 In IBD patients with iron deficiency anaemia, the effect of IV iron versus oral iron on mortality is uncertain. (See evidence matrix EM3.AF in Volume 2 of the technical report)</li> <li>ES3.34 In IBD patients with iron deficiency anaemia, it is uncertain whether there is any difference between the effects of IV iron and oral iron on functional or performance status. (See evidence matrix EM3.AG in Volume 2 of the</li> </ul>	Evide	nce statements – inflammatory bowel disease	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES3.34 In IBD patients with iron deficiency anaemia, it is uncertain whether there is any difference between the effects of IV iron and oral iron on functional or performance status. NA $\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	ES3.33	effect of IV iron versus oral iron on mortality is uncertain. (See evidence matrix EM3.AF in Volume 2 of the	$\checkmark$	NA	NA	$\sqrt{}$	~~
technical report)	ES3.34	In IBD patients with iron deficiency anaemia, it is uncertain whether there is any difference between the effects of IV iron and oral iron on functional or performance status. (See evidence matrix EM3.AG in Volume 2 of the	$\checkmark$	NA	X	1	$\sqrt{\sqrt{1}}$

## 3.3.13 Non-transfusion interventions for patients with inflammatory bowel disease

Practio	ce point – inflammatory bowel disease
PP15	In patients with IBD, determine the cause of anaemia and treat reversible causes. IV iron may be required in patients who are intolerant of oral iron, or to avoid aggravation of intestinal inflammation.
IBD, inflamm	atory bowel disease; IV, intravenous; PP, practice point

# 3.3.14 IV iron for anaemic patients with inflammatory bowel disease

## Methods

There were two Level II studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

## Level I evidence

No Level I evidence evaluating the use of iron therapy in patients with inflammatory bowel disease (IBD) was identified.

## Level II evidence

Two RCTs^{174,175} evaluating the use of iron therapy in patients with IBD were identified. The main characteristics of these trials are summarised in Table 3.107.

Level II evid	ence			
Study	Study type Study quality	Population N	Comparison	Outcomes
Kulnigg et al (2008) ¹⁷⁴	RCT Fair	Patients with either Crohn's disease or ulcerative colitis and iron deficiency anaemia (defined by Hb ≤100 g/L and TSAT <20% or serum ferritin <100 µg/L) N=200	IV iron (maximum 1,000 mg per infusion) at 1-week intervals until the patient's calculated total iron deficit was reached. vs Oral iron (100 mg b.i.d.) for 12 weeks	Mortality Functional/performance status
Schroder et al (2005) ¹⁷⁵	RCT Poor	Patients with IBD and iron deficiency anaemia (Hb ≤1.05 g/L for females and Hb ≤1.10 g/L for males; TSAT ≤20% and/or serum ferritin concentrations ≤20 µg/L). N=46	IV iron (single 7 mg/kg body weight dose, followed by five 200 mg infusions for the following 5 weeks) vs oral iron (100 to 200 mg/day for 6 weeks).	Functional/performance status

Hb, haemoglobin; IBD, inflammatory bowel disease; IV, intravenous; RCT, randomised controlled trial; TSAT, transferrin saturation

^a Weekly during the correction phase and then every 4 weeks during the maintenance phase, which started at week 8 or week 12, depending on the required iron-repletion dose.

## Results

## Mortality

Table 3.108 presents the mortality results from the RCTs that compared IV with oral iron in IBD patients with iron deficiency anaemia. Kulnigg et al (2008)¹⁷⁴ found no significant difference in mortality between IV and oral iron (0.7% vs 0.0%; RR 1.39; 95% CI 0.06, 33.69), but the study was not powered to detect a difference in mortality. Schroder et al (2005)¹⁷⁵ did not report mortality.

# Table 3.108 Results for IV iron in IBD (mortality)

Study	Patient population	Intervention vs	Length of	Outcome	Results				
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )	
LEVEL II STUDIES									
Kulnigg et al (2008) ¹⁷⁴ Fair	Crohn's disease or ulcerative colitis with iron deficiency anaemia	IV iron vs oral iron	12 weeks	Mortality, n/N (%) (N=200)	1/137 (0.7)	0/63 (0.0)	RR 1.39 (0.06, 33.69)ª	No significant difference P=0.84ª	

CI, confidence interval; IBD, inflammatory bowel disease; IV, intravenous; RR, relative risk a Calculated for the purpose of this systematic review using Review manager.

## **Blood transfusion**

Neither of the studies reported the incidence or volume of blood transfusion.

#### Thromboembolic events

Neither of the studies reported the incidence of thromboembolic events.

#### Functional/performance status

Table 3.109 presents the functional/performance status results reported in the RCTs that compared IV iron with oral iron in IBD patients with iron deficiency anaemia. Patients treated with IV iron in Kulnigg et al (2008)¹⁷⁴ had a greater improvement in SF-36 from baseline at follow-up compared with patients treated with oral iron (median 14.1 vs 8.6; P=NR). In Schroder et al (2005)¹⁷⁵ there were similar improvements from baseline at follow-up for IV iron compared with oral iron for Crohn's Disease Activity Index (CDAI), Colitis Activity Index (CAI), and SF-36 (P=NR). Kulnigg et al (2008) and Schroder et al (2005) provided insufficient detail to determine whether the treatment effect on this outcome was statistically significant.

Study	Patient population	Intervention vs	Length of	Outcome			Results	
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )
Level II STUDIES Kulnigg et al (2008) ¹⁷⁴ Fair	Crohn's disease or ulcerative colitis with iron deficiency anaemia	IV iron vs oral iron	12 weeks	Median (range) SF-36 score at baseline (N=196)	93.5 (54 to 134)	91.2 (50 to 136)	NR	NR
	anaema			Median (range) SF-36 score at follow-up (N=196)	110.3 (48 to 143)	108.3 (45 to 137)	NR	NR
				Median change in SF-36 score from baseline at follow-up (N=196)	14.1	8.6	NR	NR
Schroder et al (2005) ¹⁷⁵ Poor	IBD with iron deficiency anaemia	IV iron vs oral iron	6 weeks	Median (range) CDAI at baseline (N=29)	217 (46 to 417)	281 (71 to 423)	NR	NR
				Median (range) CDAI at follow-up (N=29)	74 (23 to 279)	78 (0 to 353)	NR	NR
				Median (range) CAI at baseline (N=17)	11 (7 to 19)	8 (4 to 11)	NR	NR
				Median (range) CAI at follow-up (N=17)	5 (1 to 9)	3 (0 to 5)	NR	NR
				Median (range) SF-36 score at baseline (N=NR)	104.5 (95.0 to 113.5)	111.0 (105.0 to 116.5)	NR	NR
				Median (range) SF-36 score at follow-up (N=NR)	108.0 (100.0 to 116.5)	116.0 (108.0 to 120.0)	NR	NR

CAI, Colitis Activity Index; CDAI, Crohn's Disease Activity Index; CI, confidence interval; IBD, inflammatory bowel disease; IV, intravenous; NR, not reported; SF-36, Short Form (36)

Evide	nce statements – myelodysplastic syndrome	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES3.35	In anaemic patients with MDS, the effect of ESAs on mortality is uncertain. (See evidence matrix EM3.AH in Volume 2 of the technical report)	X	$\sqrt{\sqrt{1}}$	X	1	V
ES3.36	In anaemic patients with MDS receiving GM-CSF, ESAs may reduce transfusion incidence compared with no ESAs. (See evidence matrix EM3.AI in Volume 2 of the technical report)	X	NA	V	1	~~
ES3.37	In anaemic patients with MDS, the effect of ESAs on thromboembolic events is uncertain. (See evidence matrix EM3.AJ in Volume 2 of the technical report)	X	$\sqrt{\sqrt{2}}$	NA	1	V
ES3.38	In anaemic patients with MDS, the effect of ESAs on functional or performance status is uncertain. (See evidence matrix EM3.AK in Volume 2 of the technical report)	X	NA	NA	11	V

# 3.3.15 Non-transfusion interventions for patients with myelodysplastic syndrome

## 3.3.16 ESAs vs standard care for anaemic patients with myelodysplastic syndrome

## Methods

There were three Level II studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

## Level I evidence

No Level I evidence evaluating the use of ESAs in patients with myelodysplastic syndrome (MDS) was identified.

## Level II evidence

Three RCTs that assessed the use of ESAs in anaemic patients with MDS were identified¹⁷⁶⁻¹⁷⁸. Table 3.110 provides a summary of the main characteristics of these RCTs.

Level II evide	ence				
Study	Study type Study quality	Population N	Intervention	Comparator	Outcomes
Greenberg et al (2009) ¹⁷⁶	RCT Poor	Patients with MDS (RA, RARS, RAEB, or non-proliferative chronic myelomonocyte leukaemia according to the FAB group criteria) N=110	EPO daily (with or without G-CSF) for 4 months ^a	Placebo	Functional/performance status Mortality
Thompson et al (2000) ¹⁷⁷	RCT Poor	Patients with MDS (RA, RARS, or RAEB)	EPO plus GM-CSF	Placebo plus GM- CSF	Mortality RBC transfusion incidence and volume Thromboembolic events (stroke)
Ferrini et al (1998) ¹⁷⁸	RCT Poor	Patients with low-risk MDS (RA, RARS, or RAEB with bone marrow blast cells<10) N=87	EPO for 8 weeks	Placebo for 8 weeks	RBC transfusion incidence Thromboembolic events (stroke)

Table 3.110 Ch	naracteristics and quality of Level II evidence
----------------	-------------------------------------------------

DAR, darbepoetin; FAB, French-American-British; MDS, myelodysplastic syndrome; NYHA, New York Heart Association; RA, refractory anaemia; RAS, refractory anaemia with ringed sideroblasts; RAEB, refractory anaemia with excess of blasts; RCT, randomised controlled trial

 $^{\rm a}$  For non-responders, G-CSF (1  $\mu\text{g/kg/day})$  was added. Patients who did not respond after addition of G-CSF received increased EPO doses

### Results

### Mortality

Two of the RCTs^{176,177} that assessed the use of ESAs in MDS patients reported mortality as an outcome (Table 3.111). In Greenberg et al (2009),¹⁷⁶ there was no significant difference in mortality between EPO and standard care for the total study population (71.7% vs 84.2%; HR 0.77; 95% CI 0.48, 1.24); however, RARS (refractory anaemia with ring sideroblasts) MDS patients treated with EPO had a significantly lower mortality (60.0% vs 88.2%; HR 0.41; 95% CI 0.18, 0.96). No significant differences were found between treatment arms for subgroup analyses of mortality by gender, age, or MDS subtypes other than RARS. Thompson et al (2000)¹⁷⁷ found no significant difference in mortality between EPO and granulocyte macrophage colony-stimulating factor (GM-CSF) combination therapy and GM-CSF monotherapy (6.7% vs 0.0%; RR 3.35; 95% CI 0.18, 62.03).

Figure 3.17 presents a meta-analysis of mortality in MDS patients treated with ESAs compared with control. There was no significant difference between treatment arms (41.8% vs 61.5%; RR 0.89; 0.72, 1.10). MDS is a heterogeneous condition and disease subtype or baseline EPO concentration may influence mortality outcome.

Table 3.111 Results for ESAs vs no ESAs in MDS (mortality)

Study	Patient population	Intervention vs	Length of	Outcome			Results			
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )		
LEVEL II STUDIES Greenberg et al (2009) ¹⁷⁶	Patients with anaemia of MDS	EPO vs standard care	1 year	Mortality, n/N (%) N=110	38/53 (71.7)	48/57 (84.2)	HR 0.77 (0.48, 1.24)	No significant difference P=0.28		
Poor				Mortality (male), n/N (%) N=69	25/33 (75.8)	33/36 (91.7)	HR 0.63 (0.34, 1.17)	No significant difference P=0.14		
				Mortality (female), n/N (%) N=41	13/20 (65.0)	15/21 (71.4)	HR 0.77 (0.28, 2.14)	No significant difference P=0.62		
						Mortality (age<65 years), n/N (%) N=17	5/10 (50.0)	4/7 (57.1)	HR 1.00 (0.13, 7.51)	No significant difference P=1.00
				Mortality (RA MDS) N=42	14/20 (70.0)	17/22 (77.3)	HR 0.84 (0.40, 1.80)	No significant difference P=0.66		
				Mortality (RARS MDS) N=37	12/20 (60.0)	15/17 (88.2)	HR 0.41 (0.18, 0.96)	Favours EPO P=0.041		
				Mortality (RAEB MDS) N=29	11/12 (91.7)	15/17 (88.2)	HR 1.54 (0.55, 4.33)	No significant difference P=0.41		
				Mortality (patients with no previous transfusion support) N=42	14/21 (66.7)	14/21 (66.7)	HR 0.72 (0.31, 1.64)	No significant difference P=0.43		
				Mortality (patients with previous transfusion support) N=67	24/32 (75.0)	33/35 (94.3)	HR 0.67 (0.36, 1.26)	No significant difference P=0.22		
				Mortality (EPO<200 mU/ mL) N=76	25/38 (65.8)	31/38 (81.6)	HR 0.71 (0.39, 1.28)	No significant difference P=0.25		
				Mortality (EPO≥200 mU/ mL) N=33	13/15 (86.7)	16/18 (88.9)	HR 0.87 (0.37, 2.02)	No significant difference P=0.74		

Study	Patient population Intervention vs	tient population Intervention vs Length of Outcome	Outcome					
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )
				Mortality (lower risk IPSS ^a score) N=91	29/43 (67.4)	41/48 (85.4)	HR 0.73 (0.43, 1.25)	No significant difference P=0.25
				Mortality (higher risk IPSS ^a score) N=18	9/9 (100.0)	7/9 (77.8)	HR 1.46 (0.12, 17.08)	No significant difference P=0.76
Thompson et al (2000) ¹⁷⁷ Poor	Patients with anaemia of MDS	EPO plus GM-CSF	Placebo plus GM-CSF	Mortality, n/N (%) N=66	3/45 (6.7)	0/21 (0.0)	RR 3.35 (0.18, 62.03) ^b	No significant difference P=0.42 ^b

CI, confidence interval; EPO, erythropoietin; ESA, erythropoiesis stimulating agent; GM-CSF, granulocyte macrophage colony-stimulating factor; Hb, haemoglobin; HR, hazard ratio; IPSS, International Prognostic Scoring System; MDS, myelodysplastic syndrome; RA, refractory anaemia; RAEB, refractory anaemia with excess blasts; RARS, refractory anaemia with ring sideroblasts; RR, relative risk a Takes into account age, white blood cell count, Hb levels, peripheral blood blast percentage and constitutional symptoms.

^b Calculated for the purpose of this systematic review using Review Manager.

#### Experimental Control **Risk Ratio Risk Ratio** Study or Subgroup Events Total Events Total Weight M-H, Fixed, 95% Cl M-H, Fixed, 95% CI Greenberg 2009 38 53 48 57 98.6% 0.85 [0.69, 1.04] Thompson 2000 3 45 0 21 1.4% 3.35 [0.18, 62.03] Total (95% CI) 0.89 [0.72, 1.10] 98 78 100.0% Total events 41 48 Heterogeneity: Chi² = 0.95, df = 1 (P = 0.33); l² = 0% 0.01 0.1 100 10 1 Test for overall effect: Z = 1.10 (P = 0.27) Favours ESA Favours no ESA

#### Figure 3.17 Meta-analysis of ESAs vs no ESAs in MDS (mortality)

### **Blood transfusion**

One RCT (Thompson et al [2000]¹⁷⁷) reported RBC transfusion incidence and volume as clinical outcomes (Table 3.112). Overall, there was no significant difference in RBC transfusion incidence between patients treated with EPO plus GM-CSF compared with patients treated with placebo and GM-CSF (76% vs 90%; RR 0.84; 95% CI 0.67, 1.04). EPO plus GM-CSF did, on the other hand, significantly reduce RBC transfusion incidence compared with GM-CSF plus placebo in patients with baseline endogenous EPO less than or equal to 500 mU/ mL (60% vs 92%; RR 0.65; 95% CI 0.46, 0.94). There was no significant difference in the mean units of RBCs transfused between treatment arms, either overall or for patients with baseline endogenous EPO less than or equal to 500 mU/ mL.

Table 3.112 Results for ESAs vs no ESAs in MDS (blood transfusion)

Study	Patient population	Intervention vs	Length of	Outcome			Results	
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )
LEVEL II STUDIES								
Thompson et al (2000) ¹⁷⁷ <i>Poor</i>	Patients with anaemia of MDS	EPO plus GM-CSF	Placebo plus GM-CSF	RBC transfusion incidence, n/N (%) (N=66)	34/45 (76)	19/21 (90)	RR 0.84 (0.67, 1.04) ^a	No significant difference P=0.10 ^a
				RBC transfusion incidence (baseline endogenous EPO≤500 mU/ mL), n/N (%) (N=37)	15/25 (60)	11/12 (92)	RR 0.65 (0.46, 0.94) ^a	Favours EPO P=0.02ª
				RBC transfusion incidence (baseline endogenous EPO>500), n/N (%) (N=29)	19/20 (95)	8/9 (89)	RR 1.07 (0.83, 1.37)ª	No significant difference P=0.60 ^a
				Mean (SD) units of RBCs transfused during Months 2 and 3 (N=66)	7.6 (NR)	9.1 (NR)	NR	No significant difference P>0.05
				Mean (SD) units of RBCs transfused during Months 2 and 3 (baseline endogenous EPO<500 mU/ mL)	5.9 (NR)	9.5 (NR)	NR	<i>No significant difference</i> P=0.09
				Mean (SD) units of RBCs transfused during Months 2 and 3 (baseline endogenous EPO>500 mU/mL)	9.7 (NR)	8.6 (NR)	NR	No significant difference P=0.62

CI, confidence interval; EPO, erythropoietin; ESA, erythropoiesis-stimulating agents; GM-CSF, granulocyte macrophage colony-stimulating factor; MDS, myelodysplastic syndrome; NR, not reported; RBC, red blood cell; RR, relative risk; SD, standard deviation

^a Calculated for the purpose of this systematic review using Review Manager.

#### Thromboembolic events

None of the RCTs found any effect of ESAs on the incidence of thromboembolic events in patients with anaemia of MDS (Table 3.113). Greenberg et al  $(2009)^{176}$  reported no significant difference between EPO and standard care for the incidence of DVT (1.8% vs 0.0%; RR 2.79; 95% CI 0.12, 67.10). There was no significant difference between treatment arms in the incidence of stroke as reported in Thompson et al  $(2000)^{177}$  (2.2% vs 0%; RR 1.43; 95% CI 0.06, 33.82) and Ferrini et al (1998)¹⁷⁸ (2.3% vs 0%; RR 2.93; 95% CI 0.12, 70.08).

Figure 3.18 presents a meta-analysis for the impact of ESAs on the incidence of stroke in adults with anaemia of MDS. The pooled results did not demonstrate a significant difference in incidence between patients who did and did not receive EPO (2.2% vs 0.0%; RR 2.05; 95% CI 0.22, 19.23).

Table 3.113 Results for ESAs vs no ESAs in MDS	(thromboembolic events)
------------------------------------------------	-------------------------

Study	Patient population	Intervention vs	Intervention vs Length of Outcome	Results				
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (l²)
LEVEL II STUDIES								
Greenberg et al (2009) ¹⁷⁶ Poor	Patients with anaemia of MDS	EPO vs standard care	1 year	DVT, n/N (%) (N=110)	1/57 (1.8)	0/53 (0.0)	RR 2.79 (0.12, 67.10)	No significant difference P=0.53
Thompson et al (2000) ¹⁷⁷ <i>Poor</i>	Patients with anaemia of MDS	EPO plus GM-CSF	Placebo plus GM-CSF	Stroke, n/N (%) (N=66)	1/45 (2.2)	0/21 (0.0)	RR 1.43 (0.06, 33.82)	No significant difference P=0.82
Ferrini et al (1998) ¹⁷⁸ Poor	Patients with anaemia of MDS	EPO vs placebo	8 weeks	Stroke, n/N (%) (N=87)	1/44 (2.3)	0/43 (0.0)	RR 2.93 (0.12, 70.08)	No significant difference P=0.51

CI, confidence interval; DVT, deep vein thrombosis; EPO, erythropoietin; ESA, erythropoiesis stimulating agent; MDS, myelodysplastic syndrome; NA, not applicable; NR, not reported; RR, relative risk; VTE, venous thromboembolism

^a Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I²<25%; moderate heterogeneity if I² between 25%-50%; substantial heterogeneity if I²>50%.

<u>Total</u> 44 45	Events 0 0	Total 43 21	Weight 49.8% 50.2%	M-H, Random, 95% Cl 2.93 [0.12, 70.08] 1.43 [0.06, 33.82]	M-H, Ra	Indom, 95% C	<u> </u>
	•						_
45	0	21	50.2%	1.43 [0.06, 33.82]			_
89		64	100.0%	2.05 [0.22, 19.23]			
	0						
= 0.10, c	df = 1 (P =	= 0.75);	l ² = 0%				100
		-	0.10, df = 1 (P = 0.75);	0.10, df = 1 (P = 0.75); l ² = 0%	0 0.10, df = 1 (P = 0.75); l ² = 0%	0 0.10, df = 1 (P = 0.75); $l^2 = 0\%$ 0.01 0.1	0 0.10, df = 1 (P = 0.75); l ² = 0%

#### Figure 3.18 Meta-analysis of ESAs vs no ESAs in MDS (stroke)

#### Functional/performance status

Greenberg et al  $(2009)^{176}$  found no significant difference in FACT subscale and fatigue scores between EPO and standard care (P>0.05; Table 3.114). However, treatment with EPO was associated with erythroid response, and patients with erythroid response at 4 months had a significant improvement from baseline in physical (P=0.007), emotional (P=0.02), and functional (P=0.005) well-being, as well as fatigue (P=0.02) and overall QoL (P=0.02).

Study	Patient population Intervention vs				Results			
Quality		comparator	follow-up	No. trials (no. patients)	Intervention	Comparator	Risk estimate (95% CI)	Significance P-value Heterogeneity P-value (I ² )
LEVEL II STUDIES								
Greenberg et al (2009) ¹⁷⁶ <i>Poor</i>	Patients with anaemia of MDS	EPO vs standard care	4 months	FACT subscale and fatigue scores (at 4 months follow-up) N=84	NR	NR	NR	<i>No significant difference</i> P>0.05
			FACT score (patients who had an erythroid response at 4 months) N=23	Significant improvement from baseline in physical (P=0.007), emotional (P=0.02), and functional (P=0.005) well-being, as well as fatigue (P=0.02) and overall QoL (P=0.02; 2-way analysis of variance)				

### Table 3.114 Results for ESA vs no ESA in MDS (functional/performance status)

CI, confidence interval; EPO, erythropoietin; ESA, erythropoiesis stimulating agents; FACT, Functional Assessment of Cancer Therapy; MDS, myelodysplastic syndrome; NR, not reported; QoL, quality of life a Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I2<25%; (ii) mild heterogeneity if I2<25%; moderate heterogeneity if I2 between 25%-50%; substantial heterogeneity if I2>50%.

# 3.4 Question 4

# **Question 4 (Intervention)**

In medical patients, what is the effect of fresh frozen plasma, cryoprecipitate, fibrinogen concentrate, and/or platelet transfusion on patient outcomes?

# 3.4.1 Fresh frozen plasma

Evide	ence statements – fresh frozen plasma	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES4.1	In patients with acute pancreatitis, the effect of FFP on mortality is uncertain. (See evidence matrix EM4.A in Volume 2 of the technical report)	Х	V	NA	X	Х
ES4.2	In patients with acute pancreatitis, the effect of FFP on bleeding events is uncertain. (See evidence matrix EM4.B in Volume 2 of the technical report)	Х	$\checkmark$	NA	Х	Х
ES4.3	In patients with liver disease, the effect of FFP on mortality is uncertain. (See evidence matrix EM4.C in Volume 2 of the technical report)	Х	NA	NA		
ES4.4	In patients with liver disease, the effect of FFP on bleeding events is uncertain. (See evidence matrix EM4.D in Volume 2 of the technical report)	Х	NA	NA	Х	$\checkmark$
	lence statement; FFP, fresh frozen plasma $\sqrt{\sqrt{=B}}$ ; $\sqrt{=C}$ ; X=D; NA, not applicable					

Pract	tice points – fresh frozen plasma
PP16	The <i>routine</i> use of FFP in medical patients with coagulopathy (including those with liver impairment) is not supported. Tests for coagulation correlate poorly with bleeding risk in liver impairment.
	The underlying causes of coagulopathy should be assessed. Where FFP transfusion is considered necessary, the risks and benefits should be considered for each patient, and expert guidance sought.
PP17	For guidance on the use of FFP in specific patient groups, refer to:
	<ul> <li>Patient Blood Management Guidelines: Module 1 – Critical Bleeding/Massive Transfusion (2011)¹¹⁰</li> </ul>

•	Patient Blood Management Guidelines: Module 2 – Perioperative (2012) ¹⁷⁹
•	Warfarin Reversal: Consensus Guidelines, on behalf of the Australasian Society of Thrombosis and Haemostasis (2004) ¹⁸⁰
•	AHCDO guidelines for patients with specific factor deficiencies (www.ahcdo.org.au)
•	Guidelines for the Use of Fresh-Frozen Plasma, Cryoprecipitate and Cryosupernatant (2004). ¹⁸¹
	Cryosupernatant (2004). ¹⁸¹ emophilia Centre Directors' Organisation: EEP, fresh frozen plasma: PP, practice point

#### Summary of the evidence

Plasma transfusion is a therapeutic intervention used in a range of clinical scenarios, including critical bleeding and massive transfusion, surgery, warfarin reversal in patients with and without severe bleeding, liver disease, coagulation factor deficiencies, and thrombotic thrombocytopenic purpura (TTP). In the current systematic review (Murad et al 2010)¹⁸², only studies that compared plasma transfusion to an infusion of a non-haemostatic solution were included. For example, an RCT in cirrhosis/hepatitis by Mannucci et al (1976)¹⁸³ was excluded because it used infusion of prothrombin complex in the control arm. Studies in a perioperative setting or critical bleeding/massive transfusion setting were also excluded, as these have been covered in other modules of the PBM guidelines.

As this is an intervention question, the levels of evidence are as follows: Level I – a systematic review of two or more Level II studies; Level II – an RCT; Level III – (I) a pseudo-RCT, (II) a comparative study with concurrent controls and (III) a comparative study without concurrent controls; and Level IV – case series with either post-test or pre-test/post-test outcomes. For this question, the search was limited to studies that could be categorised as Level II or above.

The literature search identified no systematic reviews that specifically addressed the PICO criteria specified in the Research Protocol. A number of systematic reviews assessed the effect of plasma transfusion on morbidity and mortality;^{182,184-186} however, the reviews included studies that were not RCTs, studies that were not in eligible populations, and studies that included ineligible comparators. Through searching the reference lists of these reviews, three Level II studies comparing treatment with FFP with no FFP were identified. An updated literature search was undertaken to identify any studies published since the most recent review was undertaken.^a The updated literature search identified no new eligible RCTs.

The included studies assessed the use of FFP in the following populations: acute pancreatitis, and liver disease.

#### FFP VS NO FFP FOR PATIENTS WITH ACUTE PANCREATITIS

#### Methods

There were two studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

^a The literature search in Murad et al (2010) included papers published until August 2009

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

#### Level I evidence

The literature search identified no systematic reviews examining FFP vs no FFP in patients with acute pancreatitis.

#### Level II evidence

There were two studies identified from the systematic review and hand searching process (see Appendix C, Volume 2). The main characteristics of these studies are summarised in **Table 3.84**. Both studies were fair quality RCTs in which patients with acute pancreatitis were randomised to receive FFP or a similar volume of colloid control as part of their intravenous fluid therapy. At eight units daily, the dose of FFP used in the more recent study¹⁸⁷ was four times greater than the dose used in the in the earlier study.¹⁸⁸

Level II evid	ence				
Study	Study type Study quality	Population N	Intervention	Comparator	Outcomes
Leese et al (1987) ¹⁸⁸	RCT Fair	Patients with severe acute pancreatitis and no coagulopathy N=202	FFP 2 units daily for 3 days (total 400 mL/day)	Albumin	Mortality Gastrointestinal haemorrhage
Leese et al (1991) ¹⁸⁷	RCT Fair	Patients with severe acute pancreatitis N=72	FFP 8 units daily for 3 days (total 400 mL/day)	2000 mL daily of human albumin solution as colloid control.	Mortality Gastrointestinal haemorrhage

FFP, fresh frozen plasma; RCT, randomised controlled trial

#### Results

#### Mortality

Mortality was reported in the both of the included studies.^{187,188} **Table 3.85** provides a summary of these results. Neither study observed a significant difference between study arms in terms of mortality. This is not surprising, given that both studies were underpowered to measure the effect of treatment on mortality.

# Table 3.116 Results for FFP vs. no FFP in acute pancreatitis (mortality)

	Level of	avel of					Results				
Study	evidence <i>Quality</i>	Sample size	Patient population	Setting	Intervention	Outcome	Intervention	Comparator	Relative risk (95% CI)	Significance ^a P-value	
LEVEL II STUDIES											
Leese (1987) ¹⁸⁸	Level II Fair	N=202	Patients with severe acute pancreatitis and no coagulopathy	UK hospital	FFP vs albumin	Mortality	8/99 (8)	9/99 (9)	0.97 (0.38-2.42)	No significant effect P=1	
Leese (1991) ¹⁸⁷	Level II Fair	N=72	Patients with severe acute pancreatitis	UK hospital	FFP vs albumin	Mortality	7/36 (19)	6/36 (17)	1.17 (0.43-3.13)	No significant effect P=0.76	

CI, confidence interval; FFP, fresh frozen plasma; UK, United Kingdom ^a Relative risk and statistical significance were calculated independently in Review Manager 5, using Mantel-Haenszel statistical methods and a random effects analysis model.

#### **Bleeding events**

The incidence of gastrointestinal haemorrhage was reported in the both of the included studies.^{187,188} **Table 3.86** provides a summary of these results. Neither study observed a significant difference between study arms in terms of bleeding events. This is not surprising, given that both studies were inadequately powered to detect significant differences between study arms.

	Level of						Results				
Study	evidence Quality	Sample size	Patient population	Setting	Intervention	Outcome	Intervention	Comparator	Relative risk (95% Cl)	Significance ^a P-value	
LEVEL II STUDIES											
Leese (1987) ¹⁸⁸	Level II <i>Fair</i>	N=202	Patients with severe acute pancreatitis and no coagulopathy	UK hospital	FFP vs albumin	Gastrointestinal haemorrhage	1/99	4/99	0.25 (0.03-2.2)	No significant effect P=0.21	
Leese (1991) ¹⁸⁷	Level II Fair	N=72	Patients with severe acute pancreatitis	UK hospital	FFP vs albumin	Gastrointestinal haemorrhage	0/36 (0)	1/36 (3)	0.33 (0.01-7.92)	<i>No significant effect</i> P=0.50	

# Table 3.117 Results for FFP vs. no FFP in acute pancreatitis (bleeding events)

CI, confidence interval; FFP, fresh frozen plasma; UK, United Kingdom ^a Relative risk and statistical significance were calculated independently in Review Manager 5, using Mantel-Haenszel statistical methods and a random effects analysis model.

#### Transfusion related serious adverse events

There were no RCTs reporting the incidence of transfusion-related SAEs in patients with acute pancreatitis receiving plasma transfusions.

#### FFP VS NO FFP FOR PATIENTS WITH LIVER DISEASE

#### Methods

There was one study identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

#### Level I evidence

The literature search identified no systematic reviews examining FFP vs no FFP in patients with liver disease.

#### Level II evidence

There was one eligible study identified from the systematic review and hand searching process (see Appendix C, Volume 2). The main characteristics of this study are summarised in Table 3.118. The study by Gazzard et al (1975)¹⁸⁹ was a poor quality RCT that compared the clinical effectiveness of FFP with a control group given no FFP. The study population consisted of 20 patients with liver disease due to paracetamol overdosage (as shown by a prothrombin time ratio of more than 2.2). The 20 patients were randomly allocated to supportive therapy only or to treatment with FFP (300 mL every 6 hours) until the prothrombin time ratio had fallen to less than 1.4. For both groups, if at any time, the prothrombin time ratio rose to 7.0 or more, the dose of FFP was increased to 600 mL.

The small size of this study was not optimal to detect any clinically or statistically significant differences in clinical outcomes between the two groups. Furthermore, any details about randomisation, allocation of concealment and analysis were not reported.

Level II evide	ence				
Study	Study type Study quality	Population N	Intervention	Comparator	Outcomes
Gazzard et al (1975) ¹⁸⁹	RCT Poor	Patients with severe coagulation defects following paracetamol overdose, as shown by a prothrombin time ratio >2.2. N=20	FFP 300 mL/6 h (600 mL if prothrombin time ratio >7)	No FFP (unless prothrombin time ratio >7)	Mortality

Table 3.118 Characte	eristics and quality o	of Level II evidence
----------------------	------------------------	----------------------

FFP, fresh frozen plasma; RCT, randomised controlled trial

#### Results

# Mortality

Mortality was reported in the study by Gazzard et al (1975).¹⁸⁹ Table 3.119 provides a summary of these results. The study did not detect a significant difference between study arms in terms of mortality. This is not surprising, given the study was underpowered to measure the effect of treatment on mortality.

	Level of						Results				
Study	evidence Quality	Sample size	Patient population	Setting	Intervention	Outcome	Intervention	Comparator	Relative risk (95% Cl)	Significance ^a P-value	
LEVEL II STUDIES											
Gazzard (1975) 189	Level II Poor	N=20	Patients with prothrombin time ratio >2.2 due to paracetamol overdose.	Single site in the UK	FFP 300 mL/6 h (600 mL if prothrombin time ratio >7) vs. no FFP (unless prothrombin time ratio >7)	Mortality	1/10 (10)	2/10 (20)	0.5 (0.1 - 4.7)	No significant effect P=1	

CI, confidence interval; FFP, fresh frozen plasma; UK, United Kingdom ^a Relative risk and statistical significance were calculated independently in Review Manager 5, using Mantel-Haenszel statistical methods and a random effects analysis model.

#### **Bleeding events**

Evidence of bleeding was reported in the study by Gazzard et al (1975).¹⁸⁹ Table 3.120 provides a summary of these results. Neither study arm reported any instances of bleeding events. With only 20 patients in both arms, the study was most probably underpowered to detect differences for this outcome.

# Table 3.120 Results for FFP vs. no FFP in in liver disease (bleeding events)

	Level of evidence <i>Quality</i>	Sample size	Patient population	Setting	Intervention	Outcome	Results				
Study							Intervention	Comparator	Relative risk (95% CI)	Significance P-value	
LEVEL II STUDIES											
Gazzard (1975) 189	Level II Poor	N=20	Patients with prothrombin time ratio >2.2 due to paracetamol overdose.	Single site in the UK	FFP 300 mL/6 h (600 mL if prothrombin time ratio >7) vs. no FFP (unless prothrombin time ratio >7)	Bleeding events	0/10 (0)	0/10 (0)	NE	No significant effect	

CI, confidence interval; FFP, fresh frozen plasma; UK, United Kingdom

#### Transfusion related serious adverse events

There were no RCTs reporting the incidence of transfusion-related SAEs in patients with liver disease receiving plasma transfusions.

# 3.4.2 Fibrinogen and cryoprecipitate

Evide	Evidence statements – fibrinogen and cryoprecipitate							
ES4.5	In medical patients, no relevant studies were found reporting the effect of fibrinogen replacement, using cryoprecipitate or fibrinogen concentrate on mortality, bleeding events and transfusion-related serious adverse events.							
ES, evid	ES, evidence statement							

Pract	ice points – fibrinogen and cryoprecipitate					
PP18	The <i>routine</i> use of cryoprecipitate or fibrinogen concentrate in medical patients with coagulopathy is not advised. The underlying causes of coagulopathy should be identified; where transfusion is considered necessary, the risks and benefits should be considered for each patient. Specialist opinion is advised for the management of DIC.					
PP19	For guidance on the use of cryoprecipitate or fibrinogen concentrate in specific patient groups, refer to:					
	<ul> <li>Patient Blood Management Guidelines: Module 1 – Critical Bleeding/Massive Transfusion (2011)¹¹⁰</li> </ul>					
	<ul> <li>AHCDO guidelines for patients with specific factor deficiencies (www.ahcdo.org.au).</li> </ul>					
AHCDO, Au point	Istralian Haemophilia Centre Directors' Organisation; DIC, disseminated intravascular coagulation; PP, practice					

#### Summary of the evidence

Cryoprecipitate is prepared from controlled thawing of FFP; it contains factors VIII and XIII, fibrinogen and fibronectin. Some plasma fractionators now produce fibrinogen concentrates, which have the benefits of improved viral safety profile and defined dose in a small infusion volume. Fibrinogen concentrate is now licensed in Australia for the treatment of acute bleeding episodes in patients with congenital fibrinogen deficiency, including afibrinogenaemia and hypofibrinogenaemia. There is limited experience with the use of the product for the treatment of congenital dysfibrinogenaemia.

The objective of the current systematic review was to identify and review clinical studies comparing fibrinogen or cryoprecipitate transfusion with no fibrinogen or cryoprecipitate transfusion. Studies in a perioperative setting or critical bleeding/massive transfusion setting were excluded.

As this is an intervention question, the levels of evidence are as follows: Level I – a systematic review of two or more Level II studies; Level II – an RCT; Level III – (I) a pseudo-RCT, (II) a

comparative study with concurrent controls and (III) a comparative study without concurrent controls; and Level IV – case series with either post-test or pre-test/post-test outcomes. For this question, the search included all studies that could be categorised as Level II or above.

The literature search identified no Level I-IV that specifically addressed the PICO criteria specified in the Research Protocol. The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

### 3.4.3 Platelet transfusion

Evide	nce statements – platelet transfusion	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES4.6	In patients with haematological malignancies receiving chemotherapy, the effect of prophylactic platelet transfusion on mortality is uncertain. (See evidence matrix EM4.E in Volume 2 of the technical report)	X	$\sqrt{}$	V	$\sqrt{}$	$\checkmark$
ES4.7	In patients with haematological malignancies receiving chemotherapy, the effect of prophylactic platelet transfusion on bleeding events is uncertain. (See evidence matrix EM4.F in Volume 2 of the technical report)	X	$\sqrt{}$	NA	√	$\checkmark$
ES4.8	Platelet transfusions are associated with transfusion-related adverse events that can range from mild to serious. (See evidence matrix EM4.G in Volume 2 of the technical report)	X	$\sqrt{}$	$\sqrt{}$	1	V
ES4.9	In a broad population of hospitalised cancer patients, platelet transfusion may be associated with increased mortality, but causation has not been established. (See evidence matrix EM4.H in Volume 2 of the technical report)	X	NA	$\sqrt{}$	~~	$\sqrt{\sqrt{1}}$
ES4.10	In a broad population of hospitalised cancer patients, platelet transfusion may be associated with increased risk of thromboembolic events, but causation has not been established. (See evidence matrix EM4.I in Volume 2 of the technical report)	X	NA	V	~~	$\sqrt{\sqrt{1}}$
ES4.11	In patients receiving chemotherapy and prophylactic platelet transfusion, the effect of platelet dose on mortality is uncertain. (See evidence matrix EM4.J in Volume 2 of the technical report)	$\sqrt{\sqrt{1}}$	NA	NA	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{1}}$

Evide	nce statements – platelet transfusion	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES4.12	In patients receiving chemotherapy and prophylactic platelet transfusion, platelet dose has no effect on bleeding events defined as mild or greater (WHO grade 2 or above). (See evidence matrix EM4.K in Volume 2 of the technical report)	$\sqrt{}$	$\sqrt{}$	X	$\sqrt{\sqrt{2}}$	$\sqrt{}$
ES4.13	In patients receiving chemotherapy and prophylactic platelet transfusion, platelet dose does not appear to affect the incidence of transfusion- related adverse events. (See evidence matrix EM4.L in Volume 2 of the technical report)	$\sqrt{}$	V	V	$\sqrt{\sqrt{2}}$	~~~
	nce statement; WHO, World Health Organization $\sqrt{=}$ B; $\sqrt{=}$ C; X=D; NA, not applicable	1	1	1		I

Practic	e points – platelet concentrates
PP20	Platelet transfusion may be indicated for the prevention and treatment of haemorrhage in patients with thrombocytopenia or platelet function defects. Platelet transfusions are not indicated in all causes of thrombocytopenia, and may be contraindicated in certain conditions (e.g. TTP and HIT). Thus, the cause of the thrombocytopenia should be established and expert opinion sought.
PP21	In patients with chronic failure of platelet production (e.g. myelodysplasia or aplastic anaemia), a specific threshold for transfusion may not be appropriate. These patients are best managed on an individual basis, in consultation with a relevant expert. ¹⁹⁰
	Long-term prophylactic platelet transfusions may be best avoided because of the risk of complications (e.g. alloimmunisation and platelet refractoriness).
	Therapeutic platelet transfusions could be considered for treatment of bleeding.
HIT, hepari	n-induced thrombocytopaenia; PP, practice point; TTP, thrombotic thrombocytopenic purpura

#### Summary of the evidence

Platelet transfusion is a therapeutic intervention used for the prevention and treatment of bleeding in patients with thrombocytopenia. The objective of the current systematic review was to identify and review clinical studies comparing (i) the use of prophylactic transfusion and therapeutic transfusion strategies, and (ii) the use of different platelet transfusion doses. Studies in a perioperative setting or critical bleeding/massive transfusion setting were excluded.

As this is an intervention question, the levels of evidence are as follows: Level I – a systematic review of two or more Level II studies; Level II – an RCT; Level III – (I) a pseudo-randomised RCT, (II) a comparative study with concurrent controls and (III) a comparative study without concurrent controls; and Level IV – case series with either post-test or pre-test/post-test outcomes. For this question, the search included all studies that could be categorised as Level III or above and Level IV case series with more than 500 patients.

The literature search identified no systematic reviews that specifically addressed the PICO criteria specified in the Research Protocol. A number of systematic reviews assessed the effect of platelet transfusion on morbidity and mortality (Stanworth et al 2004a; Cid and Lozano 2007)^{185,191}; however the reviews included studies that were not in eligible populations, and studies that included ineligible comparators. Through searching the reference lists of these reviews, two eligible Level II studies were identified. An updated literature search was undertaken to identify any studies published since the most comprehensive and recent review was undertaken.^a The updated literature search identified no new eligible RCTs, but did identify one additional Level III study and four additional Level IV studies with more than 500 patients.

^a The literature search in Stanworth et al (2004a) included citations published from 1980-2002

The included studies were all in patients with cancer, and the majority of studies related to patients with thrombocytopenia as a result of chemotherapy or stem cell transplantation. Results for the broad population of patients with cancer, and patients with haematological malignancies undergoing chemotherapy are presented separately.

The CRG requested that populations of special interest included patients receiving treatment with anti-fibrinolytic or anti-platelet therapy. The literature search found no Level I-IV evidence in these populations.

# PROPHYLACTIC PLATELET TRANSFUSION IN PATIENTS WITH CANCER (INCLUDING PATIENTS WITH HAEMATOLOGICAL MALIGNANCIES RECEIVING CHEMOTHERAPY)

#### Methods

There were six studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

#### Level I evidence

The literature search identified no systematic reviews comparing prophylactic and therapeutic platelet transfusion in patients with chemotherapy and/or stem cell transplantation.

#### Level II evidence

There were two poor quality RCTs identified from the systematic review and hand searching process (see Appendix C, Volume 2). The main characteristics of these studies are summarised in Table 3.121.

The paper by Solomon et al (1978) ¹⁹² was a published letter reporting the results of a study of thrombocytopenic adult patients with acute lymphoblastic leukaemia who were randomised to receive prophylactic platelet transfusions (when platelet count <20 x  $10^9$ /L with clinically significant bleeding) or specifically indicated transfusions (when clinically significant bleeding or platelet count <20 x  $10^9$ /L was preceded by a decline in platelet count of ≥50% in the preceding 24 hours). In the study by Higby et al (1974) ¹⁹³, 18 patients with thrombocytopenia and acute leukaemia were randomised to receive either platelets or platelet-poor plasma as a prophylaxis against bleeding. Both of the aforementioned studies were inadequately powered to detect any clinically or statistically significant differences in clinical outcomes between the study arms. Furthermore, due to their age they are likely to be of limited applicability to current Australian clinical practice.

It should be noted that the definitions of prophylactic and therapeutic transfusions vary between studies.

Level II evide	ence				
Study	Study type Study quality	Population N	Intervention	Comparator	Outcomes
Solomon et al (1978) ¹⁹²	RCT Poor	Previously untreated adult patients with acute lymphoblastic with thrombocytopenia induced by induction chemotherapy. N=31	Prophylactic platelet transfusion (when platelet count <20 x 10%/L with clinically significant bleeding)	Specifically indicated transfusion (transfusion administered when clinically significant bleeding or platelet count <20 x 109/L was preceded by a decline in platelet count of ≥50% in the preceding 24 hours	All deaths within one month/course Bleeding deaths within 1 month
Higby et al (1974) ¹⁹³	RCT Poor	Adult afebrile thrombocytopenic patients with acute myelocytic leukaemia, without evidence of bleeding or haemolysis. Significant thrombocytopenia was defined as having a platelet count <30 x 10 ⁹ /L	Prophylactic platelet transfusion (~3 x10 ¹¹ platelets / square metre)	Therapeutic plasma infusion (platelet poor)	Major bleeding events

Table 3.121 Characteristics and quality of Level II evidence

RCT, randomised controlled trial

### Level III evidence

There literature search identified one poor quality Level III study, the main characteristics of which are summarised in Table 3.122.

The paper by Khorana et al (2008)¹¹⁹ was a retrospective cohort study investigating the associations between transfusions and venous thromboembolism, arterial thromboembolism, and mortality in hospitalised patients with cancer using the discharge database of the University Health System Consortium, which included 504,208 hospitalisations of patients with cancer between 1995 and 2003 at 60 US medical centres. Variables associated with a higher risk of mortality or thromboembolism were identified using multivariate logistic regression. Although this study provides low level (Level III-2) evidence, it is extremely large and well powered to detect rare events such as mortality and thromboembolism.

It should be noted that the analyses reported in this study included any hospitalised patients with cancer, including a large proportion who were not receiving chemotherapy. Therefore, the results for this population are presented separately to the Level II and Level IV evidence pertaining to patients with haematological malignancies receiving chemotherapy.

Study	Study type Study quality	Population N	Intervention	Comparator	Outcomes
Khorana et al (2008) ¹¹⁹	Level III- 2 <i>Fair</i>	Hospitalised patients with cancer N=504 208	Blood transfusions, including platelet transfusion	No transfusion	Mortality and thromboembolism

Table 3.122 Characteristics and quality of Level II evidence

### Level IV evidence

There literature search identified four poor quality Level IV studies that included more 500 patients. The main characteristics of these studies are summarised in Table 3.121.

The study by Slichter (1997)¹⁹⁴ was a multi-institutional, randomised, blinded trial to determine whether the use of platelets from which leukocytes had been removed by a filter or that had been treated with ultraviolet B irradiation would prevent the formation of antiplatelet alloantibodies and refractoriness to platelet transfusions. Although the study presents comparative data for different methods of platelet preparation, the data presented here are the pooled results across all study arms.

The study by McCullough et al (2004)¹⁹⁵ was a transfusion trial of platelets photochemically treated (PCT) for pathogen inactivation using the synthetic psoralen amotosalen HCl. Patients with thrombocytopenia were rando mLy assigned to receive either PCT or conventional (control) platelets for up to 28 days. The primary end point was the proportion of patients with World Health Organization (WHO) grade 2 bleeding during the period of platelet support. As was the case for the study by Slichter (1997), the results presented here reflect the overall rate of post-transfusion reaction in across all study arms.

The study by Heim et al (2008)¹⁹⁶ was a prospective single-centre study in which 9923 mainly prophylactic PLT transfusions given to 672 patients treated for haematologic malignancies between 1997 and 2004. The study by Osselaer et al (2008)¹⁹⁷ was also a prospective cohort study investigating the safety and characteristics of a system of pathogen inactivation (the INTERCEPT process).

The Level IV studies presented here provide data on the incidence of outcomes, but no comparative data. Two of the studies were relatively good-quality RCTs (Slichter 1997 and McCullough et al 2004); however in the context of the PICO criteria posed in this question they represent poor quality evidence.

Level II evide	ence				
Study	Study type Study quality	Population N	Intervention	Comparator	Outcomes
Slichter, 1997 ¹⁹⁴	Level IV Poor	Patients who were receiving induction chemotherapy for acute myeloid leukemia.	Four types of PLT transfusion, including: unmodified, pooled PLT concentrates from random donors (control); filtered, pooled PLT concentrates from random donors (F-PC); ultraviolet B– irradiated, pooled PLT concentrates from random donors (UVB-PC); or filtered platelets obtained by apheresis from single random donors (F- AP). In the current analysis, the study arms have been pooled	N/A	Incidence of severe platelet- transfusion reactions
McCullough et al 2004 ¹⁹⁵	Level IV Poor	Patients with thrombocytopenia requiring platelet transfusion support and were at least 6 years of age ^a . Only 3.4% of patients were aged less than 16.	Platelets photochemically treated for pathogen inactivation using the synthetic psoralen amotosalen HCI and control platelets. In the current analysis, the study arms have been pooled	N/A	Any grade 2 bleeding Any grade 3-4 bleeding Transfusion related adverse events Death
Heim et al 2008 ¹⁹⁶	Level IV Poor	Patients with malignant or nonmalignant hematologic diseases in need of prophylactic or therapeutic PLT transfusions and patients with nonhematologic malignancies being treated with myeloablative chemotherapy or with HSCT.	Platelet transfusion	N/A	Post-transfusion reactions in patients who had no fever before transfusion Fever in patients who had no fever before transfusion
Osselaer et al 2008 ¹⁹⁷	Level IV Poor	Patients in intensive and non-intensive locations receiving PLT transfusion. Haematooncology diseases with or without chemotherapy and/or stem cell transplant constituted 58.1% of the primary diagnoses among the transfused patient population.	Photochemically treated (INTERCEPT) platelet transfusion	N/A	Any transfusion related adverse event Transfusion related serious adverse event

Table 3.123 Characteristics and quality of Level II evidence

HSCT, hematopoietic stem cell transplantation; PLT, platelet ^a The underlying diagnoses of participants were: acute leukaemia, chronic leukaemia, lymphoma, myelodysplasia, plasma cell dyscrasia, non-haematopoeitic solid tumour and other.

#### Results

#### Mortality

Mortality was reported in one Level II study by Solomon et al (1978)¹⁹² and one Level IV study by McCullough et al (2004).¹⁹⁵ Table 3.124 provides a summary of these results.

The RCT by Solomon et al (1978)¹⁹² study observed no significant difference between study arms for the outcome of mortality; however with only 31 patients the study was inadequately powered to detect any clinically or statistically significant differences in clinical outcomes between the study arms. The Level IV study by McCullough et al (2004)¹⁹⁵ did not report any comparative data, but observed a mortality rate of 4.3% in patients receiving platelet transfusions.

	Level of							Re	sults	
Study	evidence Quality	Sample size	Patient population	Setting	Intervention	Outcome	Intervention	Comparator	Relative risk (95% CI)	Significance ^a P-value
LEVEL II STUDIES										
Solomon (1978) ¹⁹² Level II Poor		N=31	Adult patients with acute lymphoblastic leukaemia	USA	Prophylactic platelet transfusion	All deaths within one month/course	3/17	2/12	1.06 (0.21, 5.40)	No significant effect P=0.95
	let			vs. Specifically indicated transfusion	Bleeding deaths within one month/course	2/17	0/12	3.61 (0.19, 69.09)	No significant effect P=0.39	
LEVEL IV STUDIES										
McCullough (2004)	Level IV Poor	N=645	Patients ≥6 years of age with thrombocytopenia requiring transfusion support. The underlying diagnoses of participants were: AL, CLL, lymphoma, myelodysplasia, plasma cell dyscrasia, non- haematopoeitic solid tumour and other.	Numerous sites in the USA	Platelet transfusion	Mortality rate	28/645 (4.3%)	NA	NA	NA

Table 3.124 Results for prophylactic platelet transfusion in patients with haematological malignancies receiving chemotherapy (mortality)

AL, acute leukaemia; CLL, chronic lymphocytic leukaemia; Cl, confidence interval; USA, United States of America

^a Relative risk and statistical significance were calculated independently in Review Manager 5, using Mantel-Haenszel statistical methods and a random effects analysis model.

#### Bleeding events

One Level II study (Higby et al 1974)¹⁹³ and one Level IV study (McCullough et al 2004)¹⁹⁵ reported the incidence of bleeding events. Table 3.125 provides a summary of these results.

Higby et al (1974) found a trend towards reduced risk of major bleeding events in patients receiving prophylactic platelet transfusion; however the difference between study arms was non-significant (p=0.08).¹⁹³

The Level IV study by McCullough et al (2004)¹⁹⁵ did not report any comparative data, but found an incidence rate of 58.0% for grade 2 bleeding and 5.1% for grade 3-4 bleeding.

	Level of							Re	sults	
Study	Study evidence Sam Quality	Sample size Patient population		Setting Intervention		Outcome	Intervention	Comparator	Relative risk (95% CI)	Significance ^a P-value
LEVEL II STUDIES										
Higby (1974) ¹⁹³	Level II Poor	N=21	Adult afebrile patients with acute myelocytic leukaemia, without evidence of bleeding or haemolysis. Significant thrombocytopenia was defined as having a platelet count <30 x 10%/L	USA	Prophylactic platelet transfusion (-3 x10 ¹¹ platelets / square metre) vs. platelet poor	Major bleeding events	3/12 (%)	6/9 (%)	0.38 (0.13, 1.11)	Favours intervention P=0.08
LEVEL IV STUDIES										
McCullough (2004) ¹⁹⁵	Level IV Poor	N=645	Patients ≥6 years of age with thrombocytopenia	Numerous sites in the USA	Platelet transfusion	Any grade 2 bleeding	374/645 cases (58.0%)	NA	NA	NA
			requiring transfusion support. The underlying diagnoses of participants were: AL, CLL, lymphoma, myelodysplasia, plasma cell dyscrasia, non-haematopoeitic solid tumour and other.			Any grade 3-4 bleeding	33/645 cases (5.1%)	NA	NA	NA

Table 3.125 Results for prophylactic platelet transfu	ision in patients with hae	matological malignancies r	receiving chemotherap	by (bleeding events)
		J J	J 1	J \ J /

CI, confidence interval; USA, United States of America ^a Relative risk and statistical significance were calculated independently in Review Manager 5, using Mantel-Haenszel statistical methods and a random effects analysis model.

#### Transfusion related serious adverse events

Four Level IV studies reported the incidence of transfusion related adverse events in patients receiving platelet transfusions. These results are presented in Table 3.126.

Heim et al (2008) reported an incidence rate of 7.5% for post-transfusion reactions in patients without fever before transfusion, and 6.9% for fever in patients who had no fever before transfusion.¹⁹⁶ These rates are per transfusion, rather than per patient. McCullough et al (2004) reported that the incidence of transfusion related adverse events in patients receiving transfusion was 27.9%. ¹⁹⁵ This rate was similar to that reported by Slichter (1997),¹⁹⁴ where 22% of patients receiving any type of platelet transfusion had severe platelet-transfusion reactions. The results of these two studies differ markedly to those reported by Osselaer et al (2008),¹⁹⁷ where the transfusion related adverse event rate was 4.9% (per patient) and 0.8% (per transfusion). The rate of transfusion related serious adverse events in the study by Osselaer (2008) was relatively low, at 0.2% (per patient and per transfusion). This difference may be accounted for by the different populations included in the studies or differences in the clinical safety of the interventions. The study by Osselaer et al (2008) assessed the characteristics of the INTERCEPT pathogen inactivation system, in a population where a large proportion of patients were not oncological.¹⁹⁷

	Level of								Results	
Study	evidence Quality	Sample size	Patient population	Setting	Intervention	Outcome	Intervention	Comparator	Relative risk (95% CI)	Significance P-value
LEVEL IV STUDIES										
Heim (2008) ¹⁹⁶ Level IV Poor		N=672 patients; 9923 transfusions	Patients with malignant or nonmalignant hematologic diseases receiving platelet transfusions and	Single centre Switzerland	Platelet transfusion	Post-transfusion reactions in patients who had no fever before transfusion	753/9,923 cases (7.5% of all transfusions)	NA	NA	NA
			patients with nonhematologic malignancies being treated with myeloablative chemotherapy or HSCT.			Fever in patients who had no fever before transfusion	682/9,923 cases (6.9% of all transfusions)	NA	NA	NA
McCullough (2004) ¹⁹⁵	Level IV Poor	N=645	Patients ≥6 years of age with thrombocytopenia requiring transfusion support. The underlying diagnoses of participants were: AL, CLL, lymphoma, myelodysplasia, plasma cell dyscrasia, non- haematopoeitic solid tumour and other.	Numerous sites in the USA	Platelet transfusion	Transfusion- related adverse events	180/645 (27.9%)	NA	NA	NA
Osselaer (2008) ¹⁹⁷	Level IV Poor	N=651 patients; 5106 transfusions	Patients with haematooncology diseases, surgical patients, critical care patients and	Multiple centres Belgium, Norway, Spain and Italy.	Platelet transfusion (photochemically treated)	Any transfusion related adverse event	42/5106 (0.8%) transfusions 32/651(4.9%) patients	NA	NA	NA
			outpatients.			Transfusion related serious adverse event	1/5106 (0.2%) transfusions 1/651 (0.2%) patients	NA	NA	NA
Slichter (1997) ¹⁹⁴	Level IV Poor	N=530	Patients who were receiving induction chemotherapy for acute myeloid leukemia.	Multiple centres USA	Platelet transfusion (4 types compared)	Incidence of severe platelet- transfusion reactions	114/530 patients (22%) 160 ^a transfusions (2.0%)	NA	NA	NA

# Table 3.126 Results for prophylactic platelet transfusion in patients with haematological malignancies receiving chemotherapy (transfusion-related adverse events)

#### Mortality

Mortality was reported in the Level III study by Khorana et al (2008).¹¹⁹ Table 3.127 provides a summary of these results.

This large multivariate analysis found that platelet transfusion is significantly and independently associated with in-hospital mortality with a relative risk of 2.40 (95% CI: 2.27, 2.52; P<0.001). The study controlled for a range of variables in the analysis, including cancer type, age, sex, race/ethnicity, and clinical variables that were statistically significantly associated with risk of event in the full model. It should be noted that this type of study design does not establish causality.

Level of Study evidence Quality							Results				
		Sample size	Patient	Setting	Intervention	Outcome	· · · · · · · · · · · · · · · · · · ·		Significance ^a P-value		
	Quality		population			Bleeding deaths within one month/course	2/17	0/12	3.61 (0.19, 69.09)	No significant effect P=0.39	
LEVEL III STUDIES											
Khorana (2008) ¹¹⁹	Level III-2 Fair	N=504208	Hospitalised cancer patients. More than one third of patients were aged over 65 years.	60 centres USA	Platelet transfusion vs. No transfusion	In-hospital mortality	NR	NR	2.40 (2.27, 2.52)	Platelet transfusion is significantly and independently associated with in-hospital mortality P<0.001	

Table 3.127 Results for prophylactic platelet transfusion in patients with cancer (mortality)

AL, acute leukaemia; CLL, chronic lymphocytic leukaemia; Cl, confidence interval; USA, United States of America ^a Relative risk and statistical significance were calculated independently in Review Manager 5, using Mantel-Haenszel statistical methods and a random effects analysis model.

#### Transfusion related serious adverse events

One Level III study reported the incidence of transfusion related adverse events in patients receiving platelet transfusions (Khorana et al 2008).¹¹⁹ The results of this study are presented in Table 3.128.

This large multivariate analysis found that platelet transfusion is significantly and independently associated with venous and arterial thromboembolism. The relative risk of venous thromboembolism was 1.20 (95% CI: 1.11, 1.29; P<0.001) while the relative risk for arterial thromboembolism was 1.55 (95% CI: 1.40, 1.71; P<0.001). The study controlled for a range of variables in the analysis, including cancer type, age, sex, race/ethnicity, and clinical variables that were statistically significantly associated with risk of event in the full model. It should be noted that this type of study design does not establish causality.

	Level of								Results	
Study	evidence Quality	Sample size	Patient population	Setting	Intervention	Outcome	Intervention	Comparator	Relative riskSignificance a(95% Cl)P-value	0
LEVEL III STUDIES										
Khorana (2008) ¹¹⁹	Level III-2 Fair	N=504208	Hospitalised cancer patients. More than one third of patients were aged over 65 years.	60 centres USA	Platelet transfusion vs. No transfusion	Venous thromboembolism (VTE)	NR	NR	1.20 (1.11,1.29)	Platelet transfusion is significantly and independently associated with VTE P<0.001
						Arterial thromboembolism (ATE)	NR NR 1.55 (1.40-1.71	1.55 (1.40-1.71)	Platelet transfusion is significantly and independently associated with VTE P<0.001	

Table 3.128 Results for prophylactic platelet transfusion in patients with cancer (transfusion-related adverse events)

# PLATELET DOSE IN PATIENTS WITH HAEMATOLOGICAL MALIGNANCIES RECEIVING CHEMOTHERAPY

#### Methods

There were five studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

#### Level I evidence

The literature search identified no systematic reviews comparing high dose and low dose platelet transfusion in patients with chemotherapy and/or stem cell transplantation.

#### Level II evidence

There were two good quality RCTs (Slichter et al 2010, Heddle et al 2009) ^{198,199}, two fair quality RCTs (Tinmouth et al 2004, Goodnough et al 2001) ^{200,201} and one poor quality RCT (Sensebé et al 2005)²⁰² identified from the systematic review and hand searching process. The main characteristics of these studies are summarised in Table 3.129. The paper by Slichter et al (2010)¹⁹⁸ reports the results of a large multicentre RCT to determine the optimal prophylactic platelet dose in patients with hypoproliferative thrombocytopenia related to patients undergoing stem cell transplants or chemotherapy. The primary endpoint of the study was to compare three different platelet doses in terms of the incidence of WHO grade 2 bleeding events. The other good quality study by Heddle et al (2009)¹⁹⁹ had the same primary outcome. This was a multicentre prospective RCT undertaken in various sites across Canada, Norway and the US. Patients were eligible if they were thrombocytopenic and were likely to require at least 6 prophylactic platelet transfusions during their period of chemotherapy-induced thrombocytopenia

The study by Tinmouth et al (2004)²⁰⁰ was a fair quality RCT in which patients with acute leukaemia or undergoing autologous transplantation were randomly assigned to receive low-dose (3 units) or standard-dose (5 units) prophylactic PLT transfusions. Using a sequential Bayesian design, the difference in major bleeding events was determined. The numbers of platelets in each study arm were not reported. The other fair quality study reported by

Goodnough et al (2001)²⁰¹ was designed to determine whether platelets harvested from healthy donors treated with thrombopoietin could provide larger increases in platelet counts and thereby delay time to next platelet transfusion compared to routinely available platelets given to thrombocytopenic patients. Since the study reported the median number of platelets transfused in each study arm, it was considered eligible for inclusion in the current systematic review.

There was one poor quality study by Sensebé et al (2005)²⁰² that assessed the comparative efficacy of transfusion strategies with different platelet targets.

The definitions of thrombocytopenia and the assessed dose ranges vary widely between studies.

Level II evidence								
Study	Study type Study quality	Population N	Intervention	Comparator	Outcomes			
Slichter et al (2010) ¹⁹⁸	RCT Good	Patients undergoing hematopoietic stem-cell transplantation or chemotherapy for hematologic cancers or solid tumours with platelet counts $\leq 10$ x $10^{11}/L$ for 5 days or more.	Low dose: 1.1 x1011 platelets/ m2/ transfusion vs. Medium dose: 2.2 x1011 platelets/ m2/ transfusion vs. High dose: 4.4 x1011 platelets/ m2/ transfusion		Death from haemorrhage ≥1 Episode of bleeding of WHO grade 2 or higher Serious adverse events Adverse event occurring during or ≤4 hr after a transfusion			
Heddle et al (2009) ¹⁹⁹	RCT Good	Adults with chemotherapy- induced thrombocytopenia requiring prophylactic platelet transfusion (platelet count <10 x 10 ⁹ /L for a minimum of 10 days)	Standard dose prophylactic platelet transfusion (3-6 x 10 ¹¹ platelets/product)	Low dose prophylactic platelet transfusion (1.5- 3 x 10 ¹¹ platelets/product)	Occurrence of a WHO grade 2 or higher bleed			
Tinmouth et al 2004 200	RCT Fair	Patients undergoing ASCT or induction chemotherapy for acute myelogenous leukaemia or acute lymphoblastic leukaemia	Low dose platelets (3 whole-blood derived platelet units) Exact number of platelets not reported	Standard dose (5 whole-blood derived platelet units) Exact number of platelets not reported	Major bleeds Minor bleeds			
Goodnough et al 2001 ²⁰¹	RCT Fair	Patients with chemotherapy induced thrombocytopenia (platelet count <25 x 109/L)	Platelets derived from donors treated with placebo, PEG-rHuMGDF 1 mg/kg and PEG- rHuMGDF 3 mg/kg. Median platelets in each study arm: 3.4 x 1011 platelets for the placebo 5.7 x 1011 platelets for the PEG-rHuMGDF 1 mg/kg 11.0 x 1011 platelets for the PEG-rHuMGDF 3 mg/kg		Afebrile transfusion reaction			
Sensebé et al 2005 ²⁰²	RCT Poor	Patients who had not undergone transfusion who had acute leukaemia undergoing first-line treatment or ASCT	Single platelet dose (target 0.5 x 10 ¹¹ /10 kg)	Double dose (target 1.0 x 10 ¹¹ /10 kg)	Incidence of haemorrhage			

Table 3.129 Characteristics and quality of Level II evidence
--------------------------------------------------------------

ASCT, autologous stem cell transplantation; PEG-rHuMGDF, peglycated recombinant human megakaryocyte growth and development factor; RCT, randomised controlled trial; WHO, World Health Organisation

#### Results

#### Mortality

Mortality was only reported in one study by Slichter et al (2010).¹⁹⁸ Table 3.130 provides a summary of these results. The study found no significant difference between any of the assessed platelet doses for the outcome of mortality. Since the event rate was low, it is likely that the study was underpowered to detect differences between study arms for this outcome.

	Level of		Patient population	Setting			Results			
Study	evidence Quality	Sample size			Intervention	Outcome	Intervention	Comparator	Relative risk (95% Cl)	Significance ^a P-value
LEVEL II STUDIES										
(0.04.0) 100	Level II Good	N=1271	Patients undergoing hematopoietic stem-cell transplantation or chemotherapy for hematologic cancers or solid tumours with platelet countsA number of sites in the USA $\leq 10 \times 10^{11}/L$ for 5 days or more.A		Low dose: 1.1 x10 ¹¹ platelets/ m ² / transfusion vs.	Death from haemorrhage (low dose vs medium dose)	0/417 (0)	0/423 (0)	NE	NE
					Medium dose: 2.2 x10 ¹¹ platelets/ m ² / transfusion	2.2 x10 ¹¹ haemorrhage platelets/ m ² / (medium dose vs	0/423 (0)	1/432(0)	0.34 (0.01, 8.33)	<i>No significant effect</i> P=0.51
				vs. High dose: 4.4 x10 ¹¹ platelets/ m ² / transfusion	Death from haemorrhage (low dose vs high dose)	0/417 (0)	1/432 (0)	0.35 (0.01, 8.45)	No significant effect P=0.51	

Table 3.130 Results for platelet dose in patients with haematological malignancies receiving chemotherapy (mortality)

CI, confidence interval; USA, United States of America

^a Relative risk and statistical significance were calculated independently in Review Manager 5, using Mantel-Haenszel statistical methods and a random effects analysis model.

### **Bleeding events**

Two good quality studies (Slichter et al 2010, Heddle et al 2009)^{198,199} one fair quality study (Tinmouth et al 2004)²⁰⁰ and one poor quality study (Sensebé et al 2005)²⁰² reported the incidence of bleeding events in patients receiving different doses of platelets. These results are summarised in Table 3.131.

For the incidence of bleeding events with a WHO grade  $\geq 2$ , the large multicentre RCT by Slichter et al (2010) found no significant difference between study arms in any of the dose comparisons presented.¹⁹⁸ For the same outcome, the study by Heddle et al (2009) reported similar results (RR 0.95; 95% Cl 0.67, 1.36; p=0.78).¹⁹⁹ The fair quality study by Tinmouth et al (2004) found that there was a higher risk of experiencing a minor bleed in patients receiving 3 platelet units compared to 5 platelet units (RR 0.49; 95% Cl 0.26, 0.91; p=0.02).²⁰⁰ This difference remained significant in the subgroup of patients with acute leukaemia, but not recipients of autologous transplants. The same study found no significant difference between different platelet doses for the incidence of major bleeds.

The poor quality study by Sensebé et al (2005) found no effect of platelet dose on the incidence of haemorrhage; however it is likely that the study was underpowered to detect significant differences for this outcome.²⁰²

Table 3.131 Results for platelet dose in patients with haematological malignancies receiving chemotherapy (bleeding events)
-----------------------------------------------------------------------------------------------------------------------------

				Setting				R	esults	
Study	Level of evidence <i>Quality</i>	Sample size	Patient population		Intervention	Outcome	Intervention	Comparator	Relative risk (95% Cl)	Significance ^a P-value Heterogeneity ^b P-value (l ² )
LEVEL II STUDIES										
Slichter (2010) ¹⁹⁸	Level II Good	bd		A number of sites in the USA	Low dose: 1.1 x10 ¹¹ platelets/ m ² / transfusion vs. Medium dose: 2.2 x10 ¹¹ platelets/ m ² / transfusion vs. High dose: 4.4 x10 ¹¹ platelets/	≥1 Episode of bleeding of grade 2 or higher (low dose vs medium dose)	71/417 (17) (LOW)	69/423 (16) (MEDIUM)	1.04 (0.77, 1.41)	No significant effect P=0.78
						≥1 Episode of bleeding of grade 2 or higher (medium dose vs high dose)	69/423 (16)	70/432 (16)	1.01 (0.74, 1.36)	No significant effect P=0.97
					m ² / transfusion	≥1 Episode of bleeding of grade 2 or higher	71/417 (17)	70/432 (16)	1.05 (0.78, 1.42)	No significant effect P=0.75
					(1	(low dose vs high dose)				
Heddle (2009) ¹⁹⁹	Level II Good	N=129	Adults with chemotherapy- induced thrombocytopenia requiring prophylactic platelet transfusion.	3 Canadian sites, 1 Norwegian site, and 2 sites in the United States.	Standard dose (3-6 x 10 ¹¹ platelets/product) vs. Low dose (1.5-3 x 10 ¹¹ platelets/product)	Occurrence of a WHO grade 2 or higher bleed	30/58 (51.7)	30/61 (49.2)	0.95 (0.67, 1.36)	No significant effect P=0.78

								R	esults	
Study	Level of evidence <i>Quality</i>	Sample size	Patient population	Setting	Intervention	Outcome	Intervention	Comparator	Relative risk (95% CI)	Significance a P-value Heterogeneity b P-value (I ² )
Tinmouth (2004) 200	Level II Fair	N=111	Patients undergoing ASCT or induction chemotherapy for	One hospital in Canada	Low dose platelets (3 whole-blood derived platelet	Patients with major bleeds All patients	6/56 (10.7)	4/55 (7.3)	1.47 (0.44, 4.94)	No significant effect P=0.53
			acute myelogenous leukaemia or		units) vs. Standard dose (5	Patients with major bleeds	4/17 (23.5)	4/17 (23.5)	1.00 (0.30, 3.36)	No significant effect P=1.00
		acute lymphoblastic leukaemia.	lymphoblastic		whole-blood derived platelet units)	Patients with major bleeds Autologous PBPC transplant	C 2/39 (5.1) 0/38 (0)	4.88 (0.24, 98.32)	No significant effect P=0.30	
				Patients with 11/56 (19.6) minor bleeds All patients	22/55 (40.0)	0.49 (0.26, 0.91)	Favours low dose P=0.02			
					Patients with minor bleeds Acute leukaemia	6/17 (35.3)	13/17 (76.5)	0.46 (0.23, 0.93)	Favours low dose P=0.03	
						Patients with minor bleeds Autologous PBPC transplant	5/39 (12.8)	9/38 (23.7)	0.54 (0.20, 1.47)	No significant effect P=0.23
Sensebé (2005) ²⁰²	Level II Poor	N=96	Patients who had not undergone transfusion who had acute leukaemia undergoing first- line treatment or ASCT.	One hospital in France	Single platelet dose (target 0.5 x 1011/10 kg) vs. Double dose (target 1.0 x 10 ¹¹ /10 kg)	Incidence of haemorrhage	5/50	9/51	0.57 (0.20, 1.57)	No significant effect P=0.28

ASCT, autologous stem cell transplantation; CI, confidence interval; PBPC, peripheral blood progenitor cell; USA, United States of America; WHO, World Health Organisation ^a Relative risk and statistical significance were calculated independently in Review Manager 5, using Mantel-Haenszel statistical methods and a random effects analysis model. ^b Heterogeneity defined as follows: (i) no significant heterogeneity if Phet>0.1 and I²<25%; (ii) mild heterogeneity if I²<25%; moderate heterogeneity if I² between 25%-50%; substantial heterogeneity if I²>50%.

# Transfusion related serious adverse events

One good quality study (Slichter et al 2010)¹⁹⁸ and one fair quality study (Goodnough et al 2001)²⁰¹ reported the incidence of bleeding events in patients receiving different platelet doses. These results are summarised in Table 3.132.

The study by Slichter et al (2010) reported no significant difference in the incidence of serious adverse events, or adverse events occurring during or  $\leq$ 4 hours after transfusion, for any of the assessed dose comparisons.¹⁹⁸ Similarly, the study by Goodnough et al (2001) found no significant difference between study arms in the incidence of febrile transfusion reactions, although it should be noted that this study was probably inadequately powered to detect significant differences for this outcome.²⁰¹

In both studies, the overall rate of serious adverse events was relatively high.

	Level of							Res	ults	
Study	evidence Quality	Sample size	Patient population	Setting	Intervention	Outcome	Intervention	Comparator	Relative risk (95% Cl)	Significance ^a P-value
LEVEL II STUDIES										
Slichter (2010) ¹⁹⁸	Level II Good	N=1271	Patients undergoing hematopoietic stem-cell	A number of sites in the USA	Low dose: 1.1 x10 ¹¹ platelets/ m ² / transfusion vs. Medium dose: 2.2 x10 ¹¹ platelets/ m ² / transfusion vs. High dose: 4.4 x10 ¹¹ platelets/ m ² / transfusion	Serious adverse events (low dose vs medium dose)	35/417 (8)	27/423 (6)	1.31 (0.81, 2.13)	No significant effect P=0.27
			transplantation or chemotherapy for hematologic cancers or solid tumours with platelet counts ≤10 x 10 ¹¹ /L for 5			Serious adverse events (medium dose vs high dose)	27/423 (6)	36/432 (8)	0.77 (0.47, 1.24)	No significant effect P=0.28
						Serious adverse events (low dose vs high dose)	35/417 (8)	36/432 (8)	1.01 (0.65, 1.57)	No significant effect P=0.97
			days or more.			Adverse event occurring during or ≤4 hr after a transfusion (low dose vs medium dose)	193/417 (46)	181/423 (43)	1.08 (0.93, 1.26)	No significant effect P=0.31
						Adverse event occurring during or ≤4 hr after a transfusion (medium dose vs high dose)	181/423 (43)	205/432 (47)	0.90 (0.78, 1.05)	No significant effect P=0.17
			Adverse event occurring during or ≤4 hr after a transfusion (low dose vs high dose)	193/417 (46)	205/432 (47)	0.98 (0.85, 1.13)	No significant effect P=0.73			
Goodnough (2001) 201	Level II Fair	N=120	Patients with chemotherapy induced thrombocytopenia (platelet count <25 x 10%/L).	Five centres in the USA	<ul> <li>3.4 x 10¹¹ platelets for the placebo</li> <li>5.7 x 10¹¹ platelets for the PEG-rHuMGDF 1 mg/kg</li> <li>11.0 x 10¹¹ platelets for the PEG-rHuMGDF 3 mg/kg</li> </ul>	Febrile transfusion reaction (placebo vs both treated arms)	7/83 (8.4)	14/83 (16.9)	0.50 (0.21, 1.18)	No significant effect P=0.11

# Table 3.132 Results for platelet dose in patients with haematological malignancies receiving chemotherapy (transfusion-related SAEs)

CI, confidence interval; PEG-rHuMGDF, peglycated recombinant human megakaryocyte growth and development factor; SAE, serious adverse event; USA, United States of America a Relative risk and statistical significance were calculated independently in Review Manager 5, using Mantel-Haenszel statistical methods and a random effects analysis model.

# 3.5 Question 5

# **Question 5 (Intervention/prognostic)**

In medical patients, at what INR (or PT/APTT) for fresh frozen plasma, fibrinogen level for cryoprecipitate, platelet count for platelets concentrates should patients be transfused to avoid risks of significant adverse events?

# 3.5.1 Platelet count and prophylactic platelet transfusion in patients undergoing chemotherapy and haematopoietic stem cell transplantation

Evide	nce statements – chemotherapy and haematopoietic stem cell transplantation	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES5.9	In patients undergoing chemotherapy and haematopoietic stem cell transplantation – in relation to the effect on mortality – the difference between a prophylactic platelet transfusion trigger of $<10 \times 10^{9}$ /L without risk factors or $<20 \times 10^{9}$ /L plus risk factors versus a higher trigger is uncertain. The effect at lower values is unknown. (See evidence matrix EM5.A in Volume 2 of the technical report)	$\overline{\mathbf{A}}$		X	~~	$\overline{\mathbf{A}}$
ES5.10	In patients undergoing chemotherapy and haematopoietic stem cell transplantation – in relation to major bleeding events – there is no difference between a prophylactic platelet transfusion trigger of $<10 \times 10^{9}$ /L without risk factors or $<20 \times 10^{9}$ /L plus risk factors and a higher trigger. The effect at lower values is unknown. (See evidence matrix EM5.B in Volume 2 of the technical report)	~~	~~~	X	~~	$\sqrt{\sqrt{1}}$
ES5.11	In patients undergoing chemotherapy and haematopoietic stem cell transplantation – in relation to RBC transfusion – there is no difference between a prophylactic platelet transfusion trigger of <10 × 10 ⁹ /L without risk factors or <20 × 10 ⁹ /L plus risk factors and a higher trigger. The effect at lower values is unknown. (See evidence matrix EM5.C in Volume 2 of the technical report)	1	111	X	11	1
	nce statement ^I √=B; √=C; X=D; NA, not applicable	•		•	•	

Recomr transpla	mendation – chemotherapy and haematopoietic stem cell antation
R8 Grade B	In patients undergoing chemotherapy and haematopoietic stem cell transplantation, the recommended strategy for prophylactic use of platelets is transfusion at a platelet count of $<10 \times 10^9$ /L in the absence of risk factors, and at $<20 \times 10^9$ /L in the presence of risk factors.
Practice	e point – chemotherapy and haematopoietic stem cell transplantation
PP22	In patients undergoing chemotherapy and haematopoietic stem cell transplantation, there is no evidence to support:
	• a lower trigger for prophylactic platelet transfusion for patients with risk factors (e.g. fever, minor bleeding)
	<ul> <li>a strategy of therapeutic-only platelet transfusions (i.e. for treatment of clinically significant bleeding).</li> </ul>
	Further research to determine the safety and efficacy of a lower platelet transfusion trigger is underway.
PP, practice	point; R, recommendation

When the foreground questions for each module were originally defined, Question 5 was classified as a prognostic question. It was anticipated that the best evidence to answer the question would come from large cohort studies where the results are stratified according to baseline INR/fibrinogen/PLT count. At subsequent CRG meetings it was agreed that Question 5 could also be characterised as an intervention question, whereby the comparator intervention would be the use of a different transfusion trigger. The best evidence to answer this question would come from RCTs, while lower levels of evidence could include comparative studies of identical cohorts or retrospective studies of institutions where the implementation of new guidelines has resulted in a change in policy regarding transfusion triggers.

As a result, it was decided that this question would be approached in the first instance as an intervention question, and if relevant RCT evidence was not available, it would be subsequently treated as a prognostic question. Of the three interventions considered in the clinical question, only platelet transfusions had good-quality RCT evidence. For cryoprecipitate and fresh frozen plasma (FFP), the evidence included in the systematic review primarily consists of cohort studies in which patients are stratified by INR (or PT/APTT) or fibrinogen at baseline.

# 3.5.2 Prophylactic platelet transfusion with one trigger level vs another trigger level

# Summary of the evidence

Platelet transfusion is a therapeutic intervention used for the prevention and treatment of bleeding in patients with thrombocytopenia. The objective of the current systematic review was to identify and review clinical studies reporting the platelet counts at which patients should receive platelet transfusions in order to avoid risks of significant adverse events.

Studies in a peri-operative setting or critical bleeding/massive transfusion setting were excluded.

As discussed above, this question was initially treated as an intervention question comparing different transfusion triggers. The levels of evidence are as follows: Level I – a systematic review of two or more Level II studies; Level II – an RCT; Level III – (I) a pseudo-randomised RCT, (II) a comparative study with concurrent controls and (III) a comparative study without concurrent controls; and Level IV – case series with either post-test or pre-test/post-test outcomes.

There was one systematic review of RCTs that evaluated the optimal use of platelet transfusion for the prevention of haemorrhage (prophylactic platelet transfusion) in patients with haematological malignancies undergoing chemotherapy or stem cell transplantation (Stanworth et al 2004b)^a.²⁰³ The review included RCTs involving transfusions of platelet concentrates, prepared either from individual units of whole blood or by apheresis, and given prophylactically to prevent bleeding in patients with haematological malignancies. Various comparisons were undertaken in the review, including prophylactic platelet transfusion with one trigger level vs prophylactic platelet transfusion with another trigger level.

An updated literature search was undertaken to identify any publications published since the review by Stanworth et al (2004b).²⁰³ The updated literature search included all studies published after 1970. The search identified three RCTs that had already been included in the systematic review by Stanworth et al (2004b) and one new eligible RCT. The current systematic review includes data extracted from the primary publications for the four RCTs, and does not present results reported in the systematic review by Stanworth et al (2004b).²⁰³

All of the included studies were in patients with thrombocytopenia as a result of chemotherapy or stem cell transplantation.

# PATIENTS UNDERGOING CHEMOTHERAPY AND HAEMATOPOIETIC STEM CELL TRANSPLANTATION

#### Methods

The literature search identified four eligible RCTs.

The literature search identified one study reporting relevant socioeconomic outcomes (Diedrich et al 2005) and no studies pertaining to Australia's Indigenous population.

#### Level I evidence

There was one systematic review of randomised controlled trials (RCTs) that evaluated the optimal use of platelet transfusion for the prevention of haemorrhage (prophylactic platelet transfusion) in patients with haematological malignancies undergoing chemotherapy or stem cell transplantation (Stanworth et al 2004b).²⁰³ Since the data presented in the current review were extracted from the primary publications for the eligible RCTs, the results of this systematic review are not discussed further.

^a The literature search in Stanworth et al (2004b) included citations published from 1980 to 2002

#### Level II evidence

The literature search identified one good quality study, two studies of fair quality, and one poor quality study.

#### Level III evidence

Due to the identification of Level II evidence, the literature was not searched for Level III evidence.

#### Level IV evidence

Due to the identification of Level II evidence, the literature was not searched for Level IV evidence.

#### Results

#### Level II evidence

There was one good quality study, two studies of fair quality, and one poor quality study identified from the literature search. The main characteristics of these studies are summarised in Table 3.133.

The studies by Rebulla et al (1997),²⁰⁴ Heckman et al (1997)²⁰⁵ and Zumberg et al (2002)²⁰⁶ assessed the effects of a transfusion trigger of 10 x  $10^9$ /L compared to 20 x  $10^9$ /L; however, the criteria for patients requiring rescue transfusion differed between all three studies. The study by Diedrich et al (2005)²⁰⁷ had the same restrictive transfusion trigger of 10 x  $10^9$ /L in the intervention arm; however, the transfusion threshold in the control arm (30 x  $10^9$ /L) was higher than that in the other three studies.

The paper by Rebulla et al (1997)²⁰⁴ reported the results of a relatively large, good quality RCT in newly diagnosed patients with acute myeloid leukaemia (A ML) receiving induction therapy. The primary objective of this study was to measure frequency and severity of haemorrhage, with secondary objectives of numbers of platelet and red cell transfusions, rates of complete remission and mortality rates. Therapeutic transfusions for bleeding were allowed in both arms of the study, independently of platelet count, but details of the definition of a therapeutic transfusion were not provided. The study had very few protocol violations compared with other studies of platelet triggers.

Heckman (1997)²⁰⁵ was a fair quality RCT in patients undergoing induction therapy for acute leukaemia. The study reported a high rate of protocol deviations for the use of platelet transfusions: 38% and 15% of patients in the intervention and control arms respectively. The authors state that these violations were generally minor.

Diedrich et al (2005)²⁰⁷ was a fair quality RCT in patients undergoing allogeneic haematopoietic progenitor cell transplantation. The study population included patients with a range of malignancies, although the majority were patients with acute leukaemia or chronic leukaemia. The results are broadly generalisable to similar patients in Australia; however it should be noted that the study population included about 30% of patients aged 18 years or less. The primary outcome in this study was the frequency of haemorrhage. The trial also included a comparison of the costs associated with each transfusion strategy.

The study by Zumberg et al (2002)²⁰⁶ included patients older than 2 years who underwent an allogeneic, matched unrelated donor, syngeneic, or autologous bone marrow transplant. The trial population therefore included some children; however the exact numbers were not

provided. The primary objective of the study was to compare the number of prophylactic and therapeutic transfusions and the incidence of minor and major bleeding in the two study arms. The results are generally applicable to the Australian setting; however, it should be noted that the patterns of haematopoietic stem cell transplantation may have changed since the trial was undertaken, with fewer autologous transplantations for breast cancer and a larger number of nonmyeloblative transplantations. The trial had a high rate of protocol violations, with 49% of the transfusions in the lower trigger arm and 21% of transfusions in the higher trigger arm being given above the assigned trigger level.

It should be further noted that it is unclear if any of these studies were adequately powered to detect differences in the main outcomes of interest. Zumberg (2002) was the only study that clearly reported their power calculation, but it was not designed to test equivalence; the target number (which was not actually met) was based on detecting a difference in platelet transfusions of 25%.

Level II evide	Level II evidence								
Study	Study type Study quality	Population N	Intervention	Comparator	Outcomes				
Rebulla (1997) ²⁰⁴	RCT Good	Patients with a diagnosis of acute myeloid leukaemia, hospital admission for the first course of induction chemotherapy, and aged between 16 and 70 years. N=255	Platelet count <10 x 10 ⁹ /L or 10-20 x 10 ⁹ /L when the body temperature exceeded 38°C, in the presence of fresh minor or major bleeding, or if invasive procedures were necessary.	Platelet count <20 x 10%/L.	Mortality rates Frequency and severity of haemorrhage Numbers of platelet and red- cell transfusions				
Heckman (1997) ²⁰⁵	RCT Fair	Previously untreated adult patients with acute lymphoblastic with thrombocytopenia induced by induction chemotherapy. N=78	Platelet transfusion threshold of <10 x 109/L	Platelet transfusion threshold of <20 x 109/L	Mean RBC transfusions				

Tahle 3 133	Characteristics and	nuality of	f I evel II	evidence
10010 3.133	Unaraciensiles and	quality U		EVILLEILE

Level II evide	ence				
Study	Study type Study quality	Population N	Intervention	Comparator	Outcomes
Diedrich (2005) ²⁰⁷	RCT Fair	Patients undergoing allogeneic haematopoietic progenitor cell transplantation N=166	Prophylactic platelet transfusions when morning platelet counts decreased to below 10 x 10 ⁹ /L	Prophylactic platelet transfusions when morning platelet counts decreased to below 30 x 10 ⁹ /L	Survival (3 years) Subsequent RBC transfusion at 30 days Subsequent RBC transfusion at 60 days Median cost (USD) during first 2 months
Zumberg (2002) ²⁰⁶	RCT Poor	Patients undergoing allogeneic, matched unrelated donor (MUD), syngeneic, or autologous bone marrow transplant. N=159	Prophylactic platelet transfusions when morning platelet counts decreased to below 10 x 10 ⁹ /L	Prophylactic platelet transfusions when morning platelet counts decreased to below 20 x 10 ⁹ /L	Mortality (100 days) Mean number of packed RBC transfusions Number of bleeding days per patient Major bleeding events

RBC, red blood cell; RCT, randomised controlled trial; USD, United States dollars

#### Results

#### Mortality

Mortality was reported in the studies by Rebulla et al (1997),²⁰⁴ Diedrich et al (2005)²⁰⁷ and Zumberg et al (2002).²⁰⁶ Table 3.134 provides a summary of these results. None of the included studies observed a significant difference between study arms for the outcome of mortality. Nor were there any significant trends in favour of restrictive transfusion compared to standard of care, or vice versa. It should be noted that some of the studies may have been inadequately powered to detect any clinically or statistically significant differences in mortality between the study arms.

Table 3.134 Results for prophylactic platelet transfusion with one trigger level vs prophylactic platelet transfusion with another trigger level in patients
undergoing chemotherapy and haematopoietic stem cell transplantation (mortality)

	Level of							Res	sults	
Study	evidence Quality	Sample size	Patient population	Setting	Intervention	Outcome	Intervention	Comparator	Relative risk (95% CI)	Significance ^a P-value
LEVEL II STUDIES										
Rebulla (1997) ²⁰⁴	Level II Good	N=255	Patients with a diagnosis of acute myeloid leukaemia, hospital admission for the first course of induction chemotherapy, and aged between 16 and 70 years.	21 haematology centres in Italy	Prophylactic platelet transfusion vs. Specifically indicated transfusion	Death	18/144 (13)	9/132 (7)	1.83 (0.85, 3.94)	No significant difference P=0.12
Diedrich (2005) 207	Level II Fair	N=166	Patients undergoing allogeneic haematopoietic progenitor cell transplantation	Single hospital in Sweden	Prophylactic platelet transfusions when morning platelet counts decreased to below 10 x 10 ⁹ /L vs Prophylactic platelet transfusions when morning platelet counts decreased to below 30 x 10 ⁹ /L	Mortality (3 years)	20/79 (25)	26/87 (30)	NR	No significant difference
Zumberg (2002) 206	Level II Poor	N=159	Patients undergoing allogeneic, matched unrelated donor (MUD), syngeneic, or autologous bone marrow transplant.	Single hospital in USA	Prophylactic platelet transfusions when morning platelet counts decreased to below 10 x 10 ⁹ /L vs Prophylactic platelet transfusions when morning platelet counts decreased to below 20 x 10 ⁹ /L	Mortality (note that none of the deaths were attributable to bleeding)	8/78 (10)	5/81 (6)	NR	No significant difference

CI, confidence interval; NR, not reported; USA, United States of America ^a Relative risk and statistical significance were calculated independently in Review Manager 5, using Mantel-Haenszel statistical methods and a random effects analysis model.

### **Bleeding events**

Bleeding events were reported in the studies by Rebulla et al (1997) ²⁰⁴, Diedrich et al (2005) ²⁰⁷, and Zumberg et al (2002) ²⁰⁶. Table 3.135 provides a summary of these results. None of the included studies observed a significant difference between study arms for the outcome of bleeding events. Nor were there any significant trends in favour of restrictive transfusion compared to standard of care, or vice versa. It should be noted that studies had varying criteria for rescue transfusion and there were high rates of protocol violations in most cases. The exception to this was the study by Rebulla et al (1997), which had relatively low rates of protocol violations.

Table 3.135 Results for prophylactic platelet transfusion with one trigger level vs prophylactic platelet transfusion with another trigger level in patients
undergoing chemotherapy and haematopoietic stem cell transplantation (bleeding events)

	Level of							Res	ults	
Study	evidence Quality	Sample size	Patient population	Setting	Intervention	Outcome	Intervention	Comparator	Relative risk (95% CI)	Significance ^a P-value
LEVEL II STUDIES										
Rebulla (1997) ²⁰⁴	Level II Good	N=255	Patients with a diagnosis of acute myeloid leukaemia, hospital admission for the first course of induction chemotherapy, and aged between 16 and 70 years.	21 haematology centres in Italy	Morning platelet count <10 x 10%/L or 10-20 x 10%/L when the body temperature exceeded 38°C, in the presence of fresh minor or major bleeding, or if invasive procedures were necessary. Vs Morning platelet count <20 x 10%/L	Patients with major bleeding episodes	29/144 (20)	24/132 (18)	1.11 (0.68, 1.80)	No significant difference P=0.68
Diedrich (2005) 207	Level II Fair	N=166	Patients undergoing allogeneic haematopoietic progenitor cell transplantation	Single hospital in Sweden	Prophylactic platelet transfusions when morning platelet counts decreased to below 10 x 10%/L vs Prophylactic platelet transfusions when morning platelet counts decreased to below 30 x 10%/L	Bleeding (WHO Grades 2-4)	14/79 (18)	13/87 (15)	NR	No significant difference
Zumberg (2002) 206	Level II Poor	N=159	Patients undergoing allogeneic, matched unrelated donor (MUD),	Single hospital in USA	Prophylactic platelet transfusions when morning platelet counts	Major bleeding events	11/78 (14)	14/81 (17)	NR	No significant difference
			syngeneic, or autologous bone marrow transplant.		vs Prophylactic platelet counts decreased to below 10 x Prophylactic platelet transfusions when morning platelet counts decreased to below 20 x 10 ⁹ /L		11.4 (78)	11.4 (81)	NR	No significant difference P=0.99

CI, confidence interval; NR, not reported; USA, United States of America ^a Relative risk and statistical significance were calculated independently in Review Manager 5, using Mantel-Haenszel statistical methods and a random effects analysis model.

### **RBC transfusion**

RBC transfusion outcomes were reported in the studies by Rebulla et al (1997)²⁰⁴, Heckman et al (1997)²⁰⁵, Diedrich et al (2005)²⁰⁷ and Zumberg et al (2002)²⁰⁶. Table 3.136 provides a summary of these results. None of the included studies observed a significant difference between study arms in terms of the mean number of RBC units transfused, or the mean number of RBC transfusions. Nor were there any significant trends in favour of restrictive transfusion compared to the control arm, or vice versa.

Table 3.136 Results for prophylactic platelet transfusion with one trigger level vs prophylactic platelet transfusion with another trigger level in patients undergoing chemotherapy and haematopoietic stem cell transplantation (RBC transfusion)

								Res	ults	
Study	Level of evidence <i>Quality</i>	Sample size	Patient population	Setting	Intervention	Outcome	Intervention	Comparator	Relative risk (95% CI)	Significance ^a P-value Heterogeneity ^b P-value (l ² )
LEVEL II STUDIES										
Rebulla (1997) ²⁰⁴	Level II Good	N=255	Patients with a diagnosis of acute myeloid leukaemia, hospital admission for the first course of induction chemotherapy, and aged between 16 and 70 years.	21 haematology centres in Italy	Morning platelet count <10 x 10%/L or 10-20 x 10%/L when the body temperature exceeded 38°C, in the presence of fresh minor or major bleeding, or if invasive procedures were necessary. Vs Morning platelet count <20 x 10%/L	Number of RBC units transfused	9.57± 5.18 (135)	9.07± 4.58 (120)	0.50 (- 0.70, 1.70)	No significant difference P=0.41
Heckman (1997) ²⁰⁵	Level II Fair	N=78	Adults more than 17 years of age who were receiving induction for acute leukaemia, mainly myeloid, either newly presenting or in relapse	Single site in the USA	Platelet transfusion threshold of <10 x 109/L vs Platelet transfusion threshold of <20 x 10 ⁹ /L	Mean RBC transfusions	12.2 ± 6.9 (37)	10.7 ± 5.1 (41)	1.5 (-1.22, 4.22)	No significant difference P=0.28
Diedrich (2005) 207	Level II Fair	N=166	Patients undergoing allogeneic haematopoietic progenitor cell transplantation	Single hospital in Sweden	Prophylactic platelet transfusions when morning platelet counts decreased to below 10 x 10%/L	Subsequent RBC transfusion at 30 days (range)	4 (0-26)	4 (0-31)	NR	No significant difference
					vs Prophylactic platelet transfusions when morning platelet counts decreased to below 30 x 10%/L	Subsequent RBC transfusion at 60 days (range)	5 (0-40)	6 (0-44)	NR	No significant difference

								Res	ults	
Study	Level of evidence <i>Quality</i>	Sample size	Patient population	Setting	Intervention	Outcome	Intervention	Comparator	Relative risk (95% CI)	Significance ^a P-value Heterogeneity ^b P-value (l ² )
Zumberg (2002) ²⁰⁶	Level II Poor	N=159	Patients undergoing allogeneic, matched unrelated donor (MUD), syngeneic, or autologous bone marrow transplant.	Single hospital in USA	Prophylactic platelet transfusions when morning platelet counts decreased to below 10 x 10 ⁹ /L Vs Prophylactic platelet transfusions when morning platelet counts decreased to below 20 x 10 ⁹ /L	Mean number of packed RBC transfusions	6.0	5.9	NR	No significant difference P=0.93

CI, confidence interval; RBC, red blood cell; USA, United States of America ^a Relative risk and statistical significance were calculated independently in Review Manager 5, using Mantel-Haenszel statistical methods and a random effects analysis model.

#### Costs

The mean cost of therapy was only reported in one study by Diedrich et al (2005).²⁰⁷ Table 3.137 provides a summary of these results. The study found a mean difference of \$2,400 between study arms, in favour of a restrictive transfusion policy. This was largely attributable to a difference between study arms in terms of the number of platelet transfusions administered. The statistical significance of this finding was not reported. It should also be noted that due to differences in reporting and costs at different institutions, the applicability of these data to an Australian setting is uncertain.

	Level of							Res	ults	
Study	evidence Quality	Sample size	Patient population	Setting	Intervention	Outcome	Intervention	Comparator	Mean difference	Significance ^a P-value
LEVEL II STUDIES										
Diedrich (2005) 207	Level II Fair	N=166	Patients undergoing allogeneic haematopoietic progenitor cell transplantation	Single hospital in Sweden	Prophylactic platelet transfusions when morning platelet counts decreased to below 10 x 10%/L Vs Prophylactic platelet transfusions when morning platelet counts decreased to below 30 x 10%/L	Median cost (USD) during first 2 months (range)	\$1,600 (\$0- \$22,400)	\$4,000 (\$0- \$32,400)	\$2,400	NR

# Table 3.137 Results for prophylactic platelet transfusion with one trigger level vs prophylactic platelet transfusion with another trigger level in patients undergoing chemotherapy and haematopoietic stem cell transplantation (costs)

NR, not reported; USD, United States dollars

vide	nce statements – coagulation parameters and transfusion	Evidence	Consistency	Clinical impact	Generalisability	Applicability
5.1	In patients with liver disease, an elevated INR/PT/APTT level is independently associated with an increased risk of mortality. (See evidence matrix EM5.D in Volume 2 of the technical report)	V	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{}$
5.2	In patients with acute leukaemia, INR/PT/APTT levels may be independently associated with mortality. (See evidence matrix EM5.E in Volume 2 of the technical report)	V	NA	N	$\sqrt{\sqrt{1}}$	$\sqrt{}$
5.3	In patients with acute promyelocytic leukaemia, the independent association between INR/PT/APTT levels and bleeding events is uncertain. (See evidence matrix EM5.F in Volume 2 of the technical report)	$\checkmark$	NA	X	~~~	$\sqrt{}$
5.4	In heparinised patients with ACS receiving standard- dose reteplase or half-dose reteplase and full-dose abciximab, subtherapeutic peak APTT levels may be associated with an increased risk of mortality. (See evidence matrix EM5.G in Volume 2 of the	$\sqrt{\sqrt{1}}$	NA	V	$\sqrt{}$	$\sqrt{\sqrt{1}}$
	technical report)					
\$5.5	In heparinised patients with ACS receiving standard- dose reteplase or half-dose reteplase and full-dose abciximab, supratherapeutic peak APTT levels may be associated with an increased risk of moderate-to- severe bleeding.	$\sqrt{\sqrt{1}}$	NA	N	$\sqrt{}$	$\sqrt{\sqrt{1}}$
	(See evidence matrix EM5.H in Volume 2 of the technical report)					
rmalise	severe bleeding. (See evidence matrix EM5.H in Volume 2 of the	n time; ES	δ, θ	S, evidence st	S, evidence statement; IN	S, evidence statement; INR, internation

# 3.5.3 Risk of adverse events associated with different INR (or PT/aPTT) levels

#### Summary of the evidence

Transfusion of fresh frozen plasma (FFP) is a therapeutic intervention used in a range of clinical scenarios, including critical bleeding and massive transfusion, surgery, warfarin reversal in patients with and without severe bleeding, liver disease, coagulation factor deficiencies, and thrombotic thrombocytopenic purpura (TTP). The objective of the current systematic review was to identify and review clinical studies reporting the INR (or PT/aPTT) levels at which patients should receive plasma transfusions in order to avoid risks of significant adverse events. Studies in a perioperative setting or critical bleeding/massive transfusion setting were excluded. As described in the Research Protocol, studies in which

patients were receiving oral anti-coagulation (OAC) were also excluded, as OAC reversal was considered outside the scope of the current guidelines.

As discussed previously, this question was initially treated as an intervention question comparing different transfusion triggers; however, if relevant RCT evidence was not available, it would be subsequently treated as a prognostic question. Since literature search did not identify any relevant RCTs with different triggers for FFP transfusion, the evidence included in the systematic review primarily consists of cohort studies in which patients are stratified by INR (or PT/APTT) at baseline. To minimise the risk of confounding, only studies which have adjusted for potential confounding variables using multivariate analysis, have been included in this analysis; studies in which only univariate analyses have been undertaken have been excluded. Since FFP transfusion is itself, a major confounding variable, studies in which patients received plasma transfusions were excluded.

There were no systematic reviews of evidence in this area, so the literature search included all studies published after 1970.

The search identified studies in three distinct population groups: patients with liver disease, patients with acute leukaemia, and patients with acute coronary syndromes receiving antifibrinolytic and/or antiplatelet therapy.

#### PATIENTS WITH LIVER DISEASE

#### Methods

The literature search identified two eligible prospective cohort studies and two retrospective cohort studies in patients with liver disease.

The literature search identified no socioeconomic literature, or literature pertaining to Australia's Indigenous population relevant to this research question.

#### Level I evidence

The literature search identified no Level I evidence examining prognostic markers in patients with liver disease.

#### Level II evidence

The literature search identified two Level II studies examining prognostic markers in patients with liver disease.

#### Level III evidence

The literature search identified two Level III studies examining prognostic markers in patients with liver disease.

#### Level IV evidence

Due to the identification of Level II and Level III evidence, Level IV evidence was not included in the systematic review.

#### Results

#### Level II evidence

The literature search identified two Level II studies examining prognostic markers in patients with liver disease. The main characteristics of these studies are summarised in Table 3.138.

The study by Garden et al (1985)²⁰⁸ was a fair quality prospective cohort study in 70 patients with acute variceal haemorrhage. The final analysis included data from 100 hospital admissions in the study cohort. For the majority of patients, variceal bleeding was caused by cirrhosis or hepatitis. The multivariate analysis assessed the association between a range of risk factors (including prothrombin ratio) and admission mortality, defined as death in hospital within 30 days of admission. The study is relatively old, and is therefore likely to have limited applicability to current standard of care in Australia. It should also be noted that the study did not stratify patients by different prothrombin ratio and admission mortality.

The study by Violi et al (1995)²⁰⁹ was a poor quality prospective cohort study in 165 patients with cirrhosis, hospitalised for diagnosis or worsening of liver failure. The study used multivariate analysis to identify risk factors for mortality, and to predict which patients were better candidates for liver transplantation. Unlike the study by Garden et al (1985), this study stratified patients according to their baseline aPTT levels, and levels of prothrombin activity. At 2 years, the follow up period for this study was much longer than that for the study by Garden et al (1985).

Level II evidence			
Study	Study type Study quality	Population N	Outcomes
Garden (1985) ²⁰⁸	Prospective cohort study Fair	Patients with acute variceal haemorrhage N=70 (100 admissions)	Admission mortality, defined as death in hospital within 30 days of admission.
Violi (1995) 209	Prospective cohort study Poor	Patients with cirrhosis, hospitalised for diagnosis or worsening of liver failure. N=102	Survival

Table 3.138 Characteristics and quality of Level II evidence

# Level III evidence

The literature search identified two Level III-3 studies examining prognostic markers in patients with liver disease. The main characteristics of these studies are summarised in Table 3.139.

The paper by Le Moine et al (1992) ²¹⁰ reports the results of a good quality retrospective cohort study in 102 patients with a diagnosis of parenchymal cirrhosis. Cirrhosis was alcoholic in origin in the majority of cases. The study used multivariate analysis to identify risk factors for mortality as a result of liver failure or exsanguination. The study assessed a broad range of prognostic markers including prothrombin time; however, it should be noted that patients were not stratified according to their baseline prothrombin time. The length of follow-up in this study was 6 weeks.

The study by Krige et al (2009) ²¹¹ was a fair quality study in 310 patients with acute esophageal variceal bleeding from alcohol related cirrhosis. The study used multivariate analysis to assess the association between a range of risk factors (including INR) and variceal

rebleeding and death. Although the study was published relatively recently, it should be noted that the analysis included data collected from patients over a 26 year period. Results from older patients may have limited applicability to the current Australian healthcare setting.

Level III evidence			
Study	Study type Study quality	Population N	Outcomes
Le Moine (1992) ²¹⁰	Retrospective cohort study Good	Patients with a diagnosis of parenchymal cirrhosis, Cirrhosis was of alcoholic origin in 62% of the cases. N=102	Survival or death as a result of liver failure or exsanguination
Krige (2009) ²¹¹	Retrospective cohort study <i>Fair</i>	Adult patients with endoscopically proven acute esophageal variceal bleeding from alcohol- related cirrhosis who were treated with injection sclerotherapy. N=310	Variceal rebleeding Death

Table 3.139 Characteristics and quality of Level III evidence

#### Results

#### Mortality

Mortality and/or survival was reported in the studies by Garden et al (1985), Violi et al (1995), Le Moine et al (1992) and Krige et al (2009).²⁰⁸⁻²¹¹ Table 3.140 provides a summary of the results.

The trials measured a range of coagulation parameters, including absolute prothrombin ratio (PR), prothrombin time, partial thromboplastin time (aPPT) and international normalised ratio (INR). There was also some variation between studies in how the results were reported, with one study reporting the mean difference in the absolute prothrombin ratio in patients who survived and those who died (Garden et al, 1985)²⁰⁸, another reporting a regression coefficient for prothrombin time (Le Moine et al, 1992)²¹⁰ and another reporting relative risk (Krige et al 2009). All of the included studies, with the exception of one poor quality prospective cohort study (Violi et al, 1995)²⁰⁹ found that coagulopathy was an independent risk factor for mortality. In the study by Violi et al (1995), aPTT and prothrombin time were associated with survival in the univariate analysis but not in the multivariate analysis.²⁰⁹ The studies by Garden et al (1985) and Le Moine et al (1992) did not stratify patients according to their baseline clotting parameters; however, the study by Krige et al (2009) reported that an INR  $\geq$ 2.3 was an independent risk factor for mortality k factor for mortality (P=0.003).

	Level of	Sample size	Patient	Setting				Res	sults	
Study	evidence <i>Quality</i>	included in analysis	population	Location	Risk factors assessed	Outcome	Risk factor definition	No risk factor definition	Relative Risk (95% CI)	Significance P-value
LEVEL II STUDIES										
Garden (1985) 208	Level II Fair	N=70 (100 admissions)	Patients with acute variceal haemorrhage	Single site in Scotland	Prothrombin ratio, age, sex, cause and duration of liver disease, time since first variceal haemorrhage, presence of ascites, encephalopathy, bilirubin, alanine aminotransferase, alkaline phosphatase, urea, creatinine, total protein, kaolin cephalin clotting ratio, thrombin ratio, Hb, white cell count, platelet count.	Admission mortality	Absolute prothromb does not report diffe time thresholds)		Mean difference 0.5	The prothrombin ratio at admission is an independent predictor of admission mortality. P<0.001
Violi (1995) 209	Level II Poor	N=165	Patients with cirrhosis, hospitalised for diagnosis or worsening of liver failure.	Single site in Italy	Fibrinogen, prothrombin activity, aPTT, factor VII, prekallikrein, grade of liver disease, D-dimer, albumin, bilirubin, age.	Survival	aPTT <1.3 mg/dL, 2 1.9 mg/dL, >3.4 mg, Prothrombin activity 31-36 sec,>36 sec		No significant assoc aPTT and prothrom associated with sur analysis but not in t analysis.	bin activity were <i>v</i> ival in the univariate

# Table 3.140 Results for INR (or PT/APTT) level and risk of adverse events in patients with liver disease (mortality/survival)

Study	Level of evidence <i>Quality</i>	Sample size included in analysis	Patient population	Setting Location	Risk factors assessed	Outcome	Results			
							Risk factor definition	No risk factor definition	Relative Risk (95% Cl)	Significance P-value
LEVEL III-3 STUDIES	S									
Le Moine (1992) ²¹⁰	Level III-3 Good	N=102	Patients with a diagnosis of parenchymal cirrhosis, Cirrhosis was of alcoholic origin in 62% of the cases.	Single site in the Belgium	Prothrombin time, sex, aetiology of cirrhosis, activity of alcoholism, duration of liver disease from initial diagnosis, degree of ascites, degree of encephalopathy, extra-hepatic infection, previous non-surgical haemostatic procedures before admission if referred from other hospitals, source of variceal bleeding, staging of oesophageal varices and presence of blood in stomach, systolic blood pressure, heart rate, Hb, albumin, aspartate aminotransferase, alanine aminotransferase, bilirubin, the number of blood units transfused within 72 hours of admission, the amount of polidocanol injected per patient during the first sclerotherapy session, Child-Pugh score, and serum creatinin.	Mortality related to liver disease	Prothrombin time (a		Regression co- efficient (SE) 0.102 (0.037)	The value of the prothrombin time at admission is associated with mortality related to liver disease. P<0.01
Krige (2009) ²¹¹	Level III-3 Fair	N=310	Adult patients with acute esophageal variceal bleeding from alcohol-related cirrhosis who were treated with injection sclerotherapy.	Single site in South Africa	Tested variables included albumin level (<25 vs.>25 g/L), total bilirubin level (<51 vs. >51 lmol/l), ascites (nil and mild vs. moderate and severe), and encephalopathy (nil and mild vs. moderate and severe). The categorical variables included gender, age (<60 years vs.>60 years), pitressin, and theneed for balloon tube tamponade.	Mortality	INR ≥2.3	INR ≤2.3	4.93 (1.70, 14.24)	An INR ≥2.3 is significantly associated with an increased risk of death P=0.003

aPTT, activated partial thromboplastin time; CI, confidence interval; INR, international normalisation ratio; PT, prothrombin time; SE, standard error

#### **Bleeding events**

The literature search did not identify any studies reporting whether coagulopathy is an independent risk factor for bleeding events in patients with liver disease.

#### **RBC transfusions**

The literature search did not identify any studies reporting whether coagulopathy is an independent risk factor for RBC transfusion in patients with liver disease.

### PATIENTS WITH ACUTE LEUKAEMIA

#### Methods

The literature search identified two eligible retrospective cohort studies in patients with acute leukaemia.

The literature search identified no socioeconomic literature, or literature pertaining to Australia's Indigenous population relevant to this research question.

#### Level I evidence

The literature search identified no Level I evidence examining prognostic markers in patients with acute leukaemia.

#### Level II evidence

The literature search identified no Level II evidence examining prognostic markers in patients with acute leukaemia.

#### Level III evidence

The literature search identified two Level III studies examining prognostic markers in patients with acute leukaemia.

#### Level IV evidence

Due to the identification of Level III evidence, Level IV evidence was not included in the systematic review.

#### Results

# Level III evidence

The literature search identified two Level III-3 studies examining prognostic markers in patients with acute leukaemia. The main characteristics of these studies are summarised in Table 3.141.

The paper by Kim et al (2006)²¹² reports the results of large, good quality retrospective cohort study including 792 patients with leukaemia diagnosed between July 1989 and March 2003. The study used multivariate analysis to examine the association between various risk factors (including a range of coagulation parameters) and fatal intracranial haemorrhage (FICH).

The study by Dally et al (2005) ²¹³ was a fair quality retrospective study in patients with acute promyelocytic leukaemia (APL) receiving induction therapy. For a rare disease with high mortality, the cohort size is relatively large and well-powered. The outcomes measured included severe haemorrhagic and thrombotic events. Severe bleeding included any bleeding to vital organs (intracranial bleeding and diffuse alveolar haemorrhage) or significant bleeding necessitating transfusion (severe vaginal bleeding and intraabdominal haemorrhage).

Level III evidence								
Study	Study type Study quality	Population N	Outcomes					
Kim (2006) 212	Retrospective cohort study Good	Patients with acute leukaemia. N=792	Fatal intracranial haemorrhage (FICH)					
Dally (2005) ²¹³	Retrospective cohort study Fair	Patients with acute promyelocytic leukaemia (APL) receiving induction therapy. N=34	Severe hemorrhagic and thrombotic events					

# Results

#### Mortality

Only one study in patients with acute leukaemia reported the association between coagulation parameters and mortality. This good quality Level III-3 study by Kim et al (2006) reported the relative risk of experiencing FICH, in patients with INR ≥1.5 compared to those with INR <1.5.²¹² The results of this study are presented in Table 3.142. The study found that a high INR is an independent risk factor for FICH in patients with acute leukaemia (RR 3.29; 95% CI 1.25, 8.69). The study also found that aPTT is not an independent risk factor for FICH.

Table 3.142 Results for INR (or PT/APTT) level and risk of adverse events in patients with acute leukaemia (mortality)
------------------------------------------------------------------------------------------------------------------------

	Level of							Re	sults	
Study	evidence Quality	Sample size included in analysis	Patient population	Setting Location		Risk factor definition	No risk factor definition	Relative Risk (95% Cl)	Significance P-value	
LEVEL III STUDIES										
Kim (2006) ²¹²	Level III-3 Good	N=792	Acute leukaemia	Single site in Korea	Plasma fibrinogen: <250 vs ≥250 mg/dl, prothrombin time (PT): <1.5 vs ≥1.5 INR, activated partial thromboplastim time (aPTT): <48 vs ≥48 s, APL vs acute leukemia other than APL, hemorrhage score	Fatal intracranial haemorrhage	INR ≥1.5	INR <1.5	3.29 (1.25-8.67)	INR is an independent risk factor for fatal intracranial haemorrhage P=0.016
					(0 vs ≥1), ALL vs non-ALL, gender (male vs female), age (<40 vs ≥40 years), white blood cell (WBC) counts (<50 000 vs ≥50 000/mm3), platelets (<35 000 vs ≥35 000/mm3), peripheral blood blasts (<70 vs ≥70%), performance status (<70 vs ≥70%), performance of induction chemotherapy (done vs not done) and presence of fever (none vs present).		aPTT ≥38s	aPTT <38s	2.26 (0.99-5.21)	There is a trend towards aPTT being an independent risk factor for fatal intracranial haemorrhage P=0.054

APL, acute promyelocytic leukaemia; aPTT, activated partial thromboplastin time; CI, confidence interval; INR, international normalisation ratio; PT, prothrombin time; WBC, white blood cell

#### **Bleeding events**

Only one study in patients with acute leukaemia reported the association between coagulation parameters and bleeding events. This fair quality Level III-3 study by Dally et al (2005) reported the relative risk of experiencing severe bleeding, in patients with PT  $\geq 60\%$  compared to those with PT < 60%.²¹³ The results, presented in Table 3.143, found that a high PT or aPTT level is not an independent risk factor for severe bleeding in patients with promyelocytic leukaemia.

	Level of							Re	sults	
Study	evidence Quality	Sample size included in analysis	Patient population	Setting Location	Risk factors assessed	Outcome	Risk factor definition	No risk factor definition	Odds ratio (95% Cl)	Significance P-value
LEVEL III STUDIES										
Dally (2005) ²¹³	Level III-3 Fair	N=34	Acute promyelocytic leukaemia	Single site in Israel	Prothrombin time (PT) partial thromboplastin time (aPTT), fibrinogen level, platelets and white blood cells.	Severe bleeding	PT <60% ^a	PT ≥60% ª	2.6 (0.15, 43.5)	Prothrombin time is not an independent risk factor for bleeding complications P=0.505
							aPTT ≥27 s	aPTT <27 s	NR	Partial thromboplastin time is not an independent risk factor for bleeding complications

aPTT, activated partial thromboplastin time; CI, confidence interval; INR, international normalisation ratio; NR, not reported; PT prothrombin time

^a Note that >60% is defined as normal for that laboratory

#### **RBC transfusions**

The literature search did not identify any studies reporting whether coagulopathy is an independent risk factor for RBC transfusion in patients with acute leukaemia.

# PATIENTS WITH ACUTE CORONARY SYNDROMES RECEIVING ANTIFIBRINOLYTIC OR ANTIPLATELET THERAPY

#### Methods

The literature search identified one eligible prospective cohort study in patients with acute coronary syndromes receiving antifibrinolytic or antiplatelet therapy.

The literature search identified no socioeconomic literature, or literature pertaining to Australia's Indigenous population relevant to this research question.

#### Level I evidence

The literature search identified no Level I evidence examining prognostic markers in patients with acute coronary syndromes receiving antifibrinolytic or antiplatelet therapy.

#### Level II evidence

The literature search identified one Level II study examining prognostic markers in patients acute coronary syndromes receiving antifibrinolytic or antiplatelet therapy.

#### Level III evidence

Due to the identification of Level II evidence, Level III evidence was not included in the systematic review.

#### Level IV evidence

Due to the identification of Level II evidence, Level IV evidence was not included in the systematic review.

#### Results

#### Level II evidence

The literature search identified one Level II study examining prognostic markers in patients with acute coronary syndromes receiving antifibrinolytic or antiplatelet therapy. The main characteristics of this study are summarised in Table 3.144.

This was a large prospective cohort analysis based on RCT data (Nallamothu, 2005).²¹⁴ The RCT on which the analysis is based included patients in the first 6 h of evolving ST-segment elevation myocardial infarction who were rando mLy assigned standard-dose reteplase or half-dose reteplase and full-dose abciximab. Reteplase is an anti-fibrinolytic, and abciximab is an antiplatelet agent. Both study arms were also treated with intravenous unfractionated heparin (UFH). A lower dose of UFH in the combination therapy group was used to compensate for the anticoagulant effect of abciximab. The primary endpoint of the analysis was overall 30-day mortality. Additional endpoints assessed at 7 days or discharge (whichever occurred first) included moderate to severe bleeding, intracerebral haemorrhage, and reinfarction. Although this was a multivariate analysis, the authors note that the results may be confounded by greater use of UFH in patients receiving reteplase only.

Level III evidence									
Study	Study type Study quality	Population N	Outcomes						
Nallamothu (2005) ²¹⁴	Prospective cohort study Fair	Patients with acute coronary syndromes receiving antifibrinolytic or antiplatelet therapy N=11,420	30-day mortality Severe bleeding						

Table 3.144 Characteristics and quality of Level II evidence

#### Results

### Mortality

Only one study in patients with acute coronary syndromes receiving antifibrinolytic or antiplatelet therapy reported the association between coagulation parameters and mortality. This fair quality Level II study by Nallamothu et al (2005) reported the relative risk of experiencing 30-day mortality in patients who were stratified according to their peak aPTT levels (<50, 50–70, >70 s). ²¹⁴The results of this study are presented in Table 3.145. The study found that in patients with peak aPTT levels <50 s, increased aPTT levels are associated with a decreased risk of mortality. The relative risk for each one second increase in peak aPTT in patients with peak aPTT <50 seconds was 0.94 (95% CI 0.92, 0.91), when compared with a peak aPTT level of 50 seconds. It should also be noted that the correlations observed are based on peak aPTT levels, and may have been different had aPTT levels been assessed at a specific time point.

# Table 3.145 Results for INR (or PT/APTT) level and risk of adverse events in patients with acute coronary syndromes receiving antifibrinolytic or antiplatelet therapy (mortality)

	Level of						Results			
Study	evidence Quality	Sample size included in analysis	Patient population	Setting Location	Risk factors assessed	Outcome	Risk factor definition	No risk factor definition	Relative Risk (95% Cl)	Significance P-value
LEVEL III STUDIES										
Nallamothu (2005) ²¹⁴	Level II <i>Fair</i>	11,420	Patients in the first 6 h of evolving ST- segment elevation myocardial infarction who were rando mLy assigned standard-dose reteplase or half-dose reteplase and full-dose abciximab.	820 hospitals in 20 countries (including Australia)	Peak activated partial thromboplastin time (aPTT) levels. For moderate-to-severe bleeding, intracerebral haemorrhage, and reinfarction, the analyses were adjusted for age, gender, and weight. In the analyses were adjusted for age, gender, myocardial infarction, the use of nitrates in <48 h, blood pressure, pulse, Killip classification, infarct location, and time to reperfusion therapy.	30-day mortality (<50 s) 30-day mortality (50–70 s) 30-day mortality (>70 s)	Patients were strati assignment and pea (<50, 50–70, >70 s)	ak aPTT levels	0.94 (0.92-0.95) for each 1s increase in peak aPTT <50s when compared with a peak aPTT level of 50s. NR	In patients with peak aPTT levels <50 s, increased aPTT levels are associated with a decreased risk of mortality. P<0.001 There is no association between peak aPTT levels and mortality risk at 30 days, for patients with peak aPTT levels 50–70 s P=0.461
									NR	There is no association between peak aPTT levels and mortality risk at 30 days, for patients with peak aPTT levels 50–70 s P=0.260

aPTT, activated partial thromboplastin time; CI, confidence interval; INR, international normalisation ratio; NR, not reported; PT, prothrombin time

#### **Bleeding events**

Only one study in patients with acute coronary syndromes receiving antifibrinolytic or antiplatelet therapy reported the association between coagulation parameters and bleeding events. This fair quality Level II study by Nallamothu et al (2005) reported the relative risk of experiencing bleeding events in patients who were stratified according to their peak aPTT levels (<50, 50–70, >70 s).²¹⁴ The results of this study are presented in Table 3.146. The study found that in patients with peak aPTT levels >70 s, increased aPTT levels are associated with an increased risk of moderate-to-severe bleeding. The risk was observed to be greater in patients receiving combination therapy.

# Table 3.146 Results for INR (or PT/APTT) level and risk of adverse events in patients with acute coronary syndromes receiving antifibrinolytic or antiplatelet therapy (bleeding events)

	Level of							Re	sults	
Study	evidence Quality	Sample size included in analysis	Patient population	Setting Location	Risk factors assessed	Outcome	Risk factor definition	No risk factor definition	Relative Risk (95% Cl)	Significance P-value
LEVEL III STUDIES										
Nallamothu (2005) ²¹⁴	Level II Fair	11,420	Patients in the first 6 h of evolving ST- segment elevation myocardial infarction who were rando mLy assigned standard-dose reteplase or half-dose reteplase and full-dose abciximab.	820 hospitals in 20 countries (including Australia)	Peak activated partial thromboplastin time (aPTT) levels. For moderate-to-severe bleeding, intracerebral haemorrhage, and reinfarction, the analyses were adjusted for age, gender, and weight. In the analyses were adjusted for age, gender, myocardial infarction, the use of nitrates in <48 h, blood pressure, pulse, Killip classification, infarct location, and time to reperfusion therapy.	Severe bleeding	Patients were stratif assignment and pea (<50, 50–70, >70 s)	ik aPTT levels	NR	In patients with peak aPTT levels >70 s, increased aPTT levels are associated with an increased risk of moderate-to- severe bleeding. The risk is greater in patients receiving combination therapy. P<0.001 (combination therapy) P<0.004 (reteplase therapy)

aPTT, activated partial thromboplastin time; CI, confidence interval; INR, international normalisation ratio; NR, not reported; PT, prothrombin time

# **RBC transfusions**

The literature search did not identify any studies reporting whether coagulopathy is an independent risk factor for RBC transfusion in patients with acute coronary syndromes receiving antifibrinolytic or antiplatelet therapy.

# 3.5.4 Fibrinogen level and cryoprecipitate or fibrinogen concentrate

Evide	ence statements – fibrinogen level and cryoprecipitate or fibrinogen concentrate	Evidence	Consistency	Clinical impact	Generalisability	Applicability
ES5.6	In patients with liver disease, an independent association between fibrinogen levels and mortality is uncertain.	Х	NA	Х	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$
	(See evidence matrix EM5.I in Volume 2 of the technical report)					
ES5.7	In patients with acute leukaemia, the independent association between fibrinogen levels and mortality is uncertain.	V	NA	Х	$\sqrt{\sqrt{1}}$	V
	(See evidence matrix EM5.J in Volume 2 of the technical report)					
ES5.8	In patients with acute promyelocytic leukaemia, the independent association between fibrinogen levels and bleeding events is uncertain.	V	NA	Х	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{1}}$
	(See evidence matrix EM5.K in Volume 2 of the technical report)					
	ence statement √√=B; √=C; X=D; NA, not applicable					

#### Summary of the evidence

Fibrinogen, also known as Factor I, is synthesized in the liver and circulates in the blood with a normal plasma concentration of 250 to 400 mg/dL. Fibrinogen concentrates or cryoprecipitate may be transfused in patients with congenital fibrinogen deficiency (afibrinogenemia), or those with an acquired deficiency. Acquired deficiency may occur as a result of haemodilution, severe blood loss, during some phases of disseminated intravascular coagulation (DIC) and in sepsis. The objective of the current systematic review was to identify and review clinical studies reporting the fibrinogen levels at which patients should receive cryoprecipitate in order to avoid risks of significant adverse events. Studies in a perioperative setting or critical bleeding/massive transfusion setting were excluded.

As discussed previously, this question was initially treated as an intervention question comparing different transfusion triggers; however, if relevant RCT evidence was not available, it would be subsequently treated as a prognostic question. Since literature search did not identify any relevant RCTs with different triggers for cryoprecipitate transfusion, the evidence included in the systematic review primarily consists of cohort studies in which patients are stratified by fibrinogen level at baseline. To minimise the risk of confounding, only studies which have adjusted for potential confounding variables using multivariate analysis, have been included in this analysis; studies in which only univariate analyses have been undertaken have been excluded. Since cryoprecipitate transfusion is itself, a major confounding variable, studies in which patients received these transfusions were excluded.

There were no systematic reviews of evidence in this area, so the literature search included all studies published after 1970.

The search identified studies in three distinct population groups: patients with liver disease and patients with acute leukaemia.

#### PATIENTS WITH LIVER DISEASE

#### Methods

The literature search identified one eligible prospective cohort study in patients with liver disease.

The literature search identified no socioeconomic literature, or literature pertaining to Australia's Indigenous population relevant to this research question.

#### Level I evidence

The literature search identified no Level I evidence examining prognostic markers in patients with liver disease.

#### Level II evidence

The literature search identified no Level II studies examining prognostic markers in patients with liver disease.

#### Level III evidence

The literature search identified one Level III studies examining prognostic markers in patients with liver disease.

#### Level IV evidence

Due to the identification of Level III evidence, Level IV evidence was not included in the systematic review.

#### Results

#### Level II evidence

The literature search identified one Level II study examining prognostic markers in patients with liver disease. The main characteristics of this study are summarised in Table 3.147.

The study by Violi et al (1995)²⁰⁹ was a poor quality prospective cohort study in 165 patients with cirrhosis, hospitalised for diagnosis or worsening of liver failure. The study used multivariate analysis to identify risk factors for mortality, and to predict which patients were better candidates for liver transplantation. The study stratified patients according to their baseline fibrinogen levels.

Level II evidence     Study type     Population     Outcomes									
Study	Study quality	N	outcomes						
Violi (1995) 209	Prospective cohort study Poor	Patients with cirrhosis, hospitalised for diagnosis or worsening of liver failure. N=165	Survival						

# Results

# Mortality

Mortality and/or survival were only reported in the study by Violi et al (1995).²⁰⁹ Table 3.148 provides a summary of the results.

In the study by Violi et al (1995), fibrinogen level was associated with survival in the univariate analysis but not in the multivariate analysis.

	Level of	Sample size	Patient	Setting			Results				
Study	evidence Quality	included in analysis	population	Location	Risk factors assessed	Outcome	Outcome	Risk factor definition	No risk factor definition	Relative Risk (95% Cl)	Significance P-value
LEVEL II STUDIES											
Violi (1995) 209	Level II Poor	N=165	Patients with cirrhosis, hospitalised for diagnosis or worsening of liver failure.	Single site in Italy	Fibrinogen, prothrombin activity, aPTT, factor VII, prekallikrein, grade of liver disease, D-dimer, albumin, bilirubin, age.	Survival	Fibrinogen >254 mg mg/dL,195-143 mg/		No significant asso Fibrinogen was ass in the univariate an multivariate analysi	ociated with survival alysis but not in the	

# Table 3.148 Results for fibrinogen level and risk of adverse events in patients with liver disease (survival)

aPTT, activated partial thromboplastin time; CI, confidence interval

#### **Bleeding events**

The literature search did not identify any studies reporting whether fibrinogen levels are an independent risk factor for bleeding events in patients with liver disease.

#### **RBC transfusions**

The literature search did not identify any studies reporting whether fibrinogen levels are an independent risk factor for RBC transfusion in patients with liver disease.

# PATIENTS WITH ACUTE LEUKAEMIA

#### Methods

The literature search identified two eligible retrospective cohort studies in patients with acute leukaemia.

The literature search identified no socioeconomic literature, or literature pertaining to Australia's Indigenous population relevant to this research question.

#### Level I evidence

The literature search identified no Level I evidence examining prognostic markers in patients with acute leukaemia.

#### Level II evidence

The literature search identified no Level II evidence examining prognostic markers in patients with acute leukaemia.

# Level III evidence

The literature search identified two Level III studies examining prognostic markers in patients with acute leukaemia.

# Level IV evidence

Due to the identification of Level III evidence, Level IV evidence was not included in the systematic review.

#### Results

# Level III evidence

The literature search identified two Level III-3 studies examining prognostic markers in patients with acute leukaemia. The main characteristics of these studies are summarised in Table 3.149.

The paper by Kim et al (2006) ²¹² reports the results of large, good quality retrospective cohort study including 792 patients with leukaemia diagnosed between July 1989 and March 2003. The study used multivariate analysis to examine the association between various risk factors (including a range of coagulation parameters) and fatal intracranial haemorrhage (FICH).

The study by Dally et al (2005)²¹³ was a small, fair quality retrospective study in patients with acute promyelocytic leukaemia (APL) receiving induction therapy. The outcomes measured included severe haemorrhagic and thrombotic events. Severe bleeding included any bleeding to vital organs (intracranial bleeding and diffuse alveolar haemorrhage) or significant bleeding necessitating transfusion (severe vaginal bleeding and intraabdominal

haemorrhage). This small retrospective cohort study is unlikely to be adequately powered to properly ascertain the influence of various prognostic markers on bleeding. It should be further noted that the study only adjusted for a small number of clinical parameters.

Level III evidence			
Study	Study type Study quality	Population N	Outcomes
Kim (2006) ²¹²	Retrospective cohort study Good	Patients with acute leukaemia. N=792	Fatal intracranial haemorrhage (FICH)
Dally (2005) 213	Retrospective cohort study <i>Fair</i>	Patients with acute promyelocytic leukaemia (APL) receiving induction therapy. N=34	Severe hemorrhagic and thrombotic events

Table 3.149 Characteristics and quality of Level III evidence

#### Results

# Mortality

Only one study in patients with acute leukaemia reported the association between fibrinogen levels and mortality. This good quality Level III-3 study by Kim et al (2006) reported the relative risk of experiencing FICH, in patients with serum fibrinogen <250 mg/dL compared to those with serum fibrinogen ≥250 mg/dL. ²¹²The results of this study are presented in Table 3.150. The study found that in the univariate analysis, plasma fibrinogen was not significantly associated with FICH.

	Level of						Results			
Study	evidence Quality	Sample size included in analysis	Patient population	Setting Location	Risk factors assessed	Outcome	Risk factor definition	No risk factor definition	Relative Risk (95% Cl)	Significance P-value
LEVEL III STUDIES										
Kim (2006) ²¹²	Level III-3 Good	N=792	Acute leukaemia	Single site in Korea	Plasma fibrinogen: <250 vs ≥250 mg/dl, prothrombin time (PT): <1.5 vs ≥1.5 INR, activated partial thromboplastim time (aPTT): <48 vs ≥48 s, APL vs acute leukemia other than APL, hemorrhage score (0 vs ≥1), ALL vs non-ALL, gender (male vs female), age (<40 vs ≥40 years), white blood cell (WBC) counts (<50 000 vs ≥50 000/mm3), platelets (<35 000 vs ≥55 000/mm3), peripheral blood blasts (<70 vs ≥70%), performance status (<70 vs ≥70%), performance of induction chemotherapy (done vs not done) and presence of fever (none vs present).	Fatal intracranial haemorrhage	Serum fibrinogen <250 mg/dL	Serum fibrinogen ≥250 mg/dL	No significant ass In the univariate a fibrinogen was no associated with FI	nalysis, plasma t significantly

# Table 3.150 Results for fibrinogen level and risk of adverse events in patients with acute leukaemia (mortality)

aPTT, activated partial thromboplastin time; CI, confidence interval; FICH, fatal intracranial haemorrhage; PT, prothrombin time; WBC, white blood cell

### **Bleeding events**

Only one study in patients with acute leukaemia reported the association between fibrinogen levels and bleeding events. This fair quality Level III-3 study by Dally et al (2005) reported the relative risk of experiencing severe bleeding, in patients with fibrinogen levels <160 mg/dL compared to those with fibrinogen levels ≥160 mg/dL.²¹³ The results, presented in Table 3.151, found that fibrinogen is not an independent risk factor for bleeding complications in patients with promyelocytic leukaemia.

	Level of evidence QualitySample size included in analysisPatient populationSetting LocationRisk factors assessedOutcome		Results							
Study		included in		-	Risk factors assessed	Outcome	Risk factor definition	No risk factor definition	Relative Risk (95% Cl)	Significance P-value
LEVEL III STUDIES										
Dally (2005) 213	Level III-3 Fair	N=34	Acute promyelocytic leukaemia	Single site in Israel	Prothrombin time (PT) partial thromboplastin time (aPTT), fibrinogen level, platelets and white blood cells.	Severe bleeding	Fibrinogen <160/mg/dL	Fibrinogen ≥160/mg/dL	1.3 (0.09, 18.8)	Fibrinogen is not an independent risk factor for bleeding complications P=0.843

# Table 3.151 Results for fibrinogen level and risk of adverse events in patients with acute leukaemia (bleeding events)

aPTT, activated partial thromboplastin time; CI, confidence interval; PT, prothrombin time

# **RBC transfusions**

The literature search did not identify any studies reporting whether fibrinogen level is an independent risk factor for RBC transfusion in patients with acute leukaemia.

# 3.6 Question 6: Triggers for RBC transfusion in chronically transfused patients

# **Question 6 (prognostic)**

In specific regularly and chronically transfused patients, at what Hb threshold should patients be transfused to avoid adverse outcomes?

# 3.6.1 Thalassaemia

Evidence statements – thalassaemia			Consistency	Clinical impact	Generalisability	Applicability		
ES6.1	In patients with thalassaemia, the effect of the pretransfusion Hb threshold on mortality is uncertain. (See evidence matrix EM6.A in Volume 2 of the technical report)	X	NA	$\checkmark$	$\sqrt{\sqrt{2}}$	Х		
ES6.2	In patients with thalassaemia, a pretransfusion Hb concentration of 90–100 g/L may reduce transfusion volume, compared to 100–120 g/L. (See evidence matrix EM6.B in Volume 2 of the technical report)	N	V	V	$\sqrt{}$	$\sqrt{\sqrt{1}}$		
	ES, evidence statement; Hb, haemoglobin $\sqrt{\sqrt{-B}}; \sqrt{-E}; X=D; NA, not applicable$							

Practice	Practice point – thalassaemia								
PP23	In patients with thalassaemia, the evidence does not support any change to the current practice of maintaining a pretransfusion Hb concentration of 90–100 g/L, with transfusions at about monthly intervals.								
Hb, haemog	Hb, haemoglobin; PP, practice point								

Thalasaemias are inherited blood diseases in which there is reduced production or no production of one of the globin chains of the Hb molecule. Sickle cell diseases, which are caused by impaired globin functioning, were specifically excluded from this question.

### Methods

There were four studies identified from the systematic review and hand searching process (see Appendix C, Volume 2).

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

#### Level I evidence

The literature search identified no systematic reviews examining the prognostic value of pretransfusion Hb in patients with thalassaemia.

#### Level II evidence

The literature search identified two Level II studies examining the prognostic value of pretransfusion Hb in patients with thalassaemia. The main characteristics of these studies are summarised in Table 3.152.

Level II evidence						
Author	Study type Study quality	Population	Outcomes			
Masera et al (1982) ²¹⁵	Prospective cohort study <i>Poor</i>	Patients (aged 6-14 years) with a diagnosis of $\beta$ -thalassaemia. All paitents splenectomised. N=11	Transfusion volume			
Torcharus et al (1993) ²¹⁶	Prospective cohort study <i>Poor</i>	Patients (aged 2-13 years) with a diagnosis of β-thalassaemia or HbE.	Transfusion volume			

Table 3.152 Question 6 (Thalassaemia): Characteristics and quality of Level II evidence

# Level III evidence

The literature search identified two Level III studies examining the prognostic value of pretransfusion Hb in patients with thalassaemia. The main characteristics of these studies are summarised in Table 3.153.

Table 3.153 Question 6 (Thalassaemia): Characteristics and quality of Level III evidence

Level III evidenc	Level III evidence							
Author	Study type Study quality	Population	Outcomes					
Cazzola et al (1997) ²¹⁷	Retrospective cohort crossover study <i>Fair</i>	Patients with a diagnosis of β-thalassaemia aged 16-30 years. N=32	Transfusion volume					
Roudbari et al (2008) ²¹⁸	Retrospective cohort study <i>Fair</i>	Patients diagnosed with $\beta$ -thalassaemia N = 578	Survival					

# Level IV evidence

The literature search identified no Level IV studies examining the prognostic value of pretransfusion Hb in patients with thalassaemia.

#### Results

# Pre-transfusion Hb level as a predictor of survival

One study, Roudbari (2008) ²¹⁸, reported survival in thalassaemia patients with differing pretransfusion Hb levels (Table 3.154). Roudbari et al (2008) reported that subjects with a pretransfusion Hb level >90 g/L had significantly longer mean survival than subjects whose pretransfusion Hb level was  $\leq$ 90 g/L (33.5 years vs. 26.1 years, p=0.002). Roudbari et al(2008) also examined pre-transfusion Hb as a continuous variable. The authors reported that a 10 g/L increase in pre-transfusion Hb resulted in a 33% reduction in the risk of mortality (OR 0.67; 95% CI 0.47, 0.93; p=0.018).

# Table 3.154 Question 6 (Thalassaemia) – mortality/Survival

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	sample size included in analysis	Surgical procedure	Location		Analysis type	Risk factor	No risk factor	Risk estimate (95% CI)	<i>Significance</i> P-value
THALASSAEMIA	·								
ALL PATIENTS									
Hb as a categorical	variable								
Roudbari et al (2008) ²¹⁸ Level III-3 <i>Poor</i>	1 retrospective cohort study N=578	Patients diagnosed with β-thalassaemia	Treatment centre Iran	Pre-transfusion Hb >90 g/L vs. Pre-transfusion Hb ≤90 g/L	Survival (mean±SE, years) Univariate	33.5±2.04	26.1±1.56	NR	<i>Favours pre-transfusion</i> <i>Hb &gt;90 g/L</i> P=0.002
Hb as a continuous	variable								
Roudbari et al (2008) ²¹⁸	1 retrospective cohort study	Patients diagnosed with β-thalassaemia	Treatment centre	Pre-transfusion Hb increase of 10 g/L	Survival Multivariate	NR		OR=0.67 (0.47, 0.93)	A 10 g/L increase in Hb results in a 33% decrease in the risk of
Level III-3 Poor	N=578		Iran			Adjusted for: trans blood transfused, comorbidities.	sfusion frequency, type of serum ferritin,		decrease in the fisk of death. P=0.018

Cl, confidence interval; g, grams; Hb, haemoglobin; L, litre; NR, not reported; OR, odds ratio; SE, standard error.

# Pre-transfusion Hb level as a predictor of RBC transfusion volume

Three studies (Cazzola et al (1997)²¹⁷, Masera et al (1982)²¹⁵ and Torcharus et al (1993)²¹⁶) investigated the relationship between pre-transfusion Hb levels and transfusion volume (Table 3.155).

Cazzola et al (1997) ²¹⁷ studied thalassaemia patients aged 16 to 30 years and reported the mean transfusion volume in patients with pre-transfusion Hb of 100-120 g/L compared to patients with pre-transfusion Hb of 90-100 g/L. A pretransfusion Hb level of 90-100 g/L was associated with a significantly lower mean transfusion volume compared to a level of 100-120 g/L (104 mL/kg/year vs. 137 mL/kg/year, p<0.0001). The same effect was observed when the study population was split into splenectomised and non-splenectomised subgroups (p<0.0001 in both subgroups).

The study by Masera et al (1982) ²¹⁵ examined splenectomised thalassaemia patients aged 6 to 14 years. The study compared subjects on two transfusion regimens with mean pretransfusion Hb levels of 102 g/L and 123 g/L. In the first five months of treatment subjects with a mean pre-transfusion Hb level of 123 g/L had a significantly greater mean transfusion volume compared to subjects with a mean pre-transfusion Hb level of 102 g/L (20.3 mL/kg/month vs. 16.7 mL/kg/month, p<0.01). After five months of treatment there was no significant difference in transfusion volume between the two groups.

Torcharus et al (1993) ²¹⁶ also studied children with thalassaemia (ages 2 to 13 years). The authors report that patients with pretransfusion Hb level of >80 g/L had a higher mean transfusion volume (208.4 mL/kg/year) than subjects with a mean pre-transfusion Hb of 60-70 g/L (175 mL/kg/year).

# Table 3.155 Question 6 (Thalassaemia) – transfusion volume

Study	No. of trials /	Patient population /	Setting	Risk factor	Outcome	Results			
Level of evidence ^a <i>Quality</i>	sample size included in analysis	Surgical procedure	Location			Risk factor	No risk factor	Risk estimate (95% CI)	Significance P-value
THALASSAEMIA	•								
ALL PATIENTS									
Cazzola et al (1997) ²¹⁷ Level III-3 <i>Fair</i>	1 retrospective crossover cohort study N=32	Patients with a diagnosis of β- thalassaemia aged 16-30 years.	Hospital Italy	Hyper-transfusion (pre-transfusion Hb 100-120 g/L) vs. moderate transfusion (pre-transfusion Hb 90- 100 g/L)	Transfusion volume (mean±SD, mL/kg/year) All patients, N=32	137±26	104±23	NR	A moderate transfusion regimen results in lower transfusion volume compared to hyper-transfusion. P<0.0001
					Transfusion volume (mean±SD, mL/kg/year) Splenectomised patients, N=NR	124±18	93±14	NR	A moderate transfusion regimen results in lower transfusion volume compared to hyper-transfusion. P<0.0001
					Transfusion volume (mean±SD, mL/kg/year) Not splenectomised patients, N=NR	162±21	126±22	NR	A moderate transfusion regimen results in lower transfusion volume compared to hyper-transfusion. P<0.0001
CHILD PATIENTS									
Masera et al (1982) ²¹⁵ Level II <i>Poor</i>	a et al 1 prospective Child patients (aged cohort study 6-14 years) with a	study     6-14 years) with a     clinic       diagnosis of β-     Italy       thalassaemia. All     jaitents	Standard transfusion (mean pre- transfusion Hb 102 g/L) vs. supertransfusion (mean pre- transfusion Hb 123 g/L, up to 5 months treatment)	Transfusion volume (mean, mL/kg/month)	16.71±2.0	20.30±3.5	NR	A standard transfusion regimen results in lower transfusion volume compared to up to 5 months of supertransfusion. P<0.01	
			enectomised.	Standard transfusion (mean pre- transfusion Hb 102 g/L) vs. supertransfusion (mean pre- transfusion Hb 123 g/L, more than 5 months of treatment)	Transfusion volume (mean, mL/kg/month)	16.71±2.0	16.53±2.0	NR	A standard transfusion regimen shows no significant difference in transfusion volume compared to over 5 months of supertransfusion. P=Not significant
Torcharus et al (1993) ²¹⁶ Level II <i>Poor</i>	1 prospective cohort study N=18	Child patients (aged 2-13 years) with a diagnosis of $\beta$ -thalassaemia or HbE.	Hospital Thailand	Hyper-transfusion (pre-transfusion Hb >80 g/L) vs. Standard transfusion (pre-transfusion Hb 60- 70 g/L)	Transfusion volume (mean, mL/kg/year)	208.4±67	175±45	NR	A standard transfusion regimen results in lower transfusion volume compared to hyper-transfusion P=NR

CI, confidence interval; g, grams; Hb, haemoglobin; kg, kilogram; L, litre; mL, millilitre; NR, not reported; SD, standard deviation

#### Pre-transfusion Hb level as a predictor of transfusion incidence

No studies were identified that investigated an association between pre-transfusion Hb levels and transfusion incidence in thalassaemia patients.

#### Pre-transfusion Hb level as a predictor of functional and performance status

No studies were identified that investigated an association between pre-transfusion Hb levels and functional and performance status in thalassaemia patients.

#### Pre-transfusion Hb level as a predictor of arterial thromboembolic events

No studies were identified that investigated an association between pre-transfusion Hb levels and the incidence of arterial thromboembolic events in thalassaemia patients.

# 3.6.2 Myelodysplasia

Evide	ence statements – myelodysplasia					
ES6.3	In patients with myelodysplasia, no studies were found reporting the effect of the pretransfusion Hb threshold on mortality, transfusion incidence, transfusion volume, thromboembolic events and functional or performance status.					
ES, evidence statement						

# Practice point – myelodysplasia

PP24	In patients with myelodysplasia who are regularly and chronically transfused,
	there is no evidence to guide particular Hb thresholds. Decisions around
	appropriate triggers and frequency of transfusion need to be individualised, taking
	into account anaemia-related symptoms, functional or performance status, and
	the patient's response to previous transfusions.

Hb, haemoglobin; PP, practice point

Myelodysplasia, also known as myelodysplastic syndrome, is a collection of conditions involving impaired production of myeloid cells. In 2008 the World Health Organization created a new classification of myelodysplastic-myeloproliferative disease for chronic myelomonocytic leukaemia (CMML). Studies conducted with CMML patients have been included in this question under myelodysplasia because of the significant overlap between the two categories.

#### Methods

There were no studies identified from the systematic review and hand searching process that examined the prognostic value of the Hb level in patients with myelodysplasia. (see Appendix C, Volume 2).

The literature search identified 19 studies that have been included in this report to provide background information on myelodysplasia.

The literature search identified no socioeconomic literature or literature pertaining to Australia's Indigenous population relevant to this research question.

#### Level I evidence

The literature search identified one systematic review examining the Hb level in patients with myelodysplasia. The main characteristics of the systematic review are shown in Table 3.156.

Level I evidence							
Author	Study type Study quality	Population	Outcomes				
Pinchon et al (2009) ²¹⁹	Systematic review <i>Fair</i>	Studies repoting health-realted quality of life where at least 50% of subjects had a diagnosis of MDS N = 1234	Functional/Performance status				

Table 3.156 Question 6 (Myelodysplasia): Characteristics and quality of Level I evidence

Pinchon et al (2009)²¹⁹ provided insufficient detail of the outcomes from the individual trials for the purposes of this systematic review. Consequently the individual studies identified in the Pinchon et al (2009) review were retrieved and assessed for eligibility for inclusion as lower level evidence.

#### Level II evidence

The review of the studies identified in Pinchon et al (2009) did not identify any studies suitable for inclusion as Level II evidence. ²¹⁹ One study, Jansen 2003, has been included in this report to give background information about functional and performance status in myelodysplasia patients.²²⁰ The study was a good quality prospective cross sectional survey that that identified Hb level as a prognostic factor by multivariate analysis. This study was also identified in the literature search.

The literature search did not identify any Level II studies that investigated the pre-transfusion Hb level in myelodysplasia. The literature search identified one Level II study examining the prognostic value of the Hb level at diagnosis in patients with myelodysplasia. ²²¹ The main characteristics of this study are summarised in Table 3.157.

Background Level II evidence								
Author	Study type Study quality	Population	Outcomes					
Michaux and Martiat (1991) ²²¹	Prospective cohort study <i>Fair</i>	Adults with a diagnosis of CM ML N = 100	Survival					
Jansen et al (2003) ²²⁰	Prospective cross-sectional survey <i>Fair</i>	Adults with a diagnosis of MDS (includes 5 CM ML patients) N = 50	Functional/Performance status					

Table 3.157 C	Question 6 (Myelod	ysplasia): Characteris	tics and quality of L	evel II evidence
---------------	--------------------	------------------------	-----------------------	------------------

CM ML, chronic myelomonocytic leukaemia; MDS, myelodysplastic syndrome

#### Level III evidence

The literature search did not identify any Level III studies that investigated the pretransfusion Hb level in myelodysplasia. The literature search identified 16 Level III studies examining the prognostic value of the Hb level at the time of presentation or diagnosis in patients with myelodysplasia. These studies have been included here to provide background information on myelodysplasia. The main characteristics of these studies are summarised in Table 3.158.

Author	Study type	Population	Outcomes
	Study quality	F	
Aul et al (1992) ²²²	Retrospective cohort study	Patients (age 17 to 90 years) with a diagnosis of MDS	Survival
(1772)	Fair	N=232	
Breccia et al 2009) ²²³	Retrospective cohort study <i>Fair</i>	Adults with a diagnosis of MDS, RAEB-2 subtype N = 98	Survival
Catalano et al 1996) ²²⁴	Retrospective cohort study <i>Poor</i>	Adults with a diagnosis of CM ML N=77	Survival
Demirkan et al (2008) ²²⁵	Retrospective cohort study <i>Fair</i>	Adults with a diagnosis of CM ML N=37	Survival
Fenaux et al 1988) ²²⁶	Retrospective cohort study <i>Fair</i>	Adults with a diagnosis of CM ML N=107	Survival
Garcia et al (1988) ²²⁷	Retrospective cohort study <i>Fair</i>	Adults with a diagnosis of MDS N=107	Survival
Germing et al (1998) ²²⁸	Retrospective cohort study <i>Fair</i>	Adults with a diagnosis of CM ML (includes 81 patients with the MDS subtype of CM ML) N=158	Survival
Gonzales- Aedina et al 2002) ²²⁹	Retrospective cohort study <i>Fair</i>	Adults with a diagnosis of CM ML N=49	Survival
Guerci et al (1995) ²³⁰	Retrospective cohort study <i>Fair</i>	Adults with a diagnosis of RAEB N=91	Survival
Kao et al 2008) ²³¹	Retrospective cohort study Poor	Adults with a diagnosis of primary MDS N=815	Survival
Onida et al (2002) ²³²	Retrospective cohort study Good	Adults with a diagnosis of CM ML N=213	Survival
Riccardi et al 1988) ²³³	Retrospective cohort study <i>Fair</i>	Patients with a diagnosis of MDS N=72	Survival
Sanz et al 1995) ²³⁴	Retrospective cohort study <i>Fair</i>	Adults with a diagnosis of MDS (includes 9 patients with therapy-related MDS) N=368	Survival
Solal-Celigny et al (1984) ²³⁵	Retrospective cohort study <i>Fair</i>	Adults with a diagnosis of CM ML N=35	Survival

 Table 3.158 Question 6 (Myelodysplasia): Characteristics and quality of Level III evidence

Background Level III evidence									
Author	Study type Study quality	Population	Outcomes						
Takahashi et al (1990) ²³⁶	Retrospective cohort study <i>Poor</i>	Adults with a diagnosis of primary MDS N=124	Survival						
Tefferi et al (1989) ²³⁷	Retrospective cohort study <i>Fair</i>	Adults with a diagnosis of CM ML N=41	Survival						

CM ML, chronic myelomonocytic leukaemia; MDS, myelodysplastic syndrome; RAEB, refractory anaemia with excess blasts

#### Level IV evidence

The literature search identified no Level IV studies examining the prognostic value of pretransfusion Hb in patients with myelodysplasia.

# Results

# Hb level as a predictor of survival

No Level I to Level IV studies were identified that investigated the association between the pre-transfusion Hb level and survival in patients with MDS

Seventeen studies were identified that examined the association between Hb level at diagnosis and survival in patients with MDS (Table 3.159). These studies have been included in this report to provide background information on myelodysplasia.

For this prognostic factor only studies that used a multivariate analysis of the survival data were included. The studies by Garcia et al (1988) and Sanz et al (1995) shared one common institution and have overlap in their study periods.^{227,234} It is likely that these two studies contain data from the same patients. The studies by Garcia et al (1988) and Riccardi et al (1988) did not specify the direction of the association between Hb level and survival.^{227,233} For these studies it was assumed that a lower Hb level at diagnosis was associated with shorter survival, as this was the association observed in all other studies.

One Level II study by the Michaux and Martiat (1991)  221  compared survival in patients with Hb levels at diagnosis of >100 g/L compared to levels  $\leq$ 100 g/L. The authors report a hazards ration for Hb  $\geq$ 100 g/L of 0.40 (p=0.003), indicating the a Hb level of <100 g/L at diagnosis is an independent predictor of shorter survival.

Ten of the identified Level III studies assessed Hb level as a categorical variable. Two studies by Gonzales-Medina et al (2002) and Onida et al (2002) analysed survival in CM ML patients with Hb levels at diagnosis of <120 g/L compared to  $\geq$ 120 g/L. Gonzales-Medina et al (2002) found that a Hb level <120 g/L at diagnosis was not a significant predictor of survival.²²⁹ In contrast, Onida et al (2002) reported a hazards ratio of 1.8 (95% Cl 1.2, 2.8; p<0.01) for Hb level at diagnosis of <120 g/L.

The studies by Breccia et al (2009), Demirkan et al (2008), Guerci et al (1995), Kao et al (2008) and Tefferi et al (1989) used multivariate analysis to compare survival in MDS patients with Hb levels at diagnosis of <100 g/L and  $\geq$ 100 g/L.^{223,225,230-232,237} Four of these studies found that a Hb level <100 g/L was significantly associated with shorter survival. The Demirkan et al (2008) study reported a hazards ratio of 2.4 (p=0.03) for a Hb level at diagnosis of <100 g/L compared to a level  $\geq$ 100 g/L.²²⁵ The Guerci et al (1995) study reported

a relative risk for mortality of 1.97 (95% CI 1.11, 3.49; p=0.04) for Hb <100 g/L compared to Hb  $\geq$ 100 g/L at presentation.²³⁰ Breccia et al (2008) and Kao et al (2008) also reported significant association s between survival and Hb levels at diagnosis of <100 g/L.^{223,231} In contrast, Tefferi et al (2009) found that a Hb level below 100 g/L at diagnosis was not a significant predictor of survival in CM ML patients.²³⁷

Germing et al (1998) found that CM ML patients with a Hb level at diagnosis  $\leq$ 90 g/L had significantly shorter survival than those with Hb levels >90 g/L (p=0.003).²²⁸ The same effect was observed when the analysis was restricted to CM ML patients with the MDS disease subtype (p=0.002). Catalano et al (1996) reported a hazards ratio of 0.15 (p=0.01) for survival in CM ML patients with a Hb level at diagnosis of >88 g/L compared to patients with levels of  $\leq$ 88 g/L.²²⁴ The study by Garcia et al (1988) found that MDS patients with a Hb level at diagnosis of <70 g/L has significantly shorter median survival than subjects with Hb levels >70 g/L (p=0.017).

Six of the identified studies assessed the association between survival and Hb level at diagnosis as a continuous variable. The studies by Aul et al (1992), Garcia et al (1988), Riccardi et al (1988), Sanz et al (1995) and Takahashi et al (1990) all found that a higher Hb level at diagnosis was significantly associated with improved survival in MDS patients.^{222,227,233,234,236} The study by Solal-Celigny et al (1984) found that the Hb level at diagnosis was not a significant predictor of survival in CM ML patients.²³⁵

In addition to the studies shown in Table 3.159, the study by Fenaux et al (1988) examined survival in 107 CM ML patients. The study separated paietns into those whose survived for <1 year and those who survived for  $\geq$ 1 year. The authors found that the mean Hb at diagnosis was significantly lower in patients who survived <1 year compared to patients who survived  $\geq$ 1 year (85 g/L vs. 108 g/L; p<0.005). The analysis was repeated with patients who survived 12-42 months compared to patients who survived >42 months, however no significant difference was found.²²⁶

# Table 3.159 Question 6 (Myelodysplasia) – mortality/survival

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results							
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location	tion Analysis type	Analysis type	Risk factor	No risk factor	Risk estimate (95% CI)	<i>Significance</i> P-value				
Myelodysplasia													
Level II studies					ī								
Michaux and Martiat1991 ²¹⁸ Level II Fair	Prospective cohort study N=100	Adults diagnosed with CM ML	16 centres France, Belgium and Germany	Hb level at presentation Hb >100 g/L vs. Hb ≤100 g/L	Survival <i>Multivariate</i>	NR Adjusted for: Platele myelocytes plus met	NR         HR=0.40           pr: Platelet count, splenomegaly, PB promyelocytes plus s plus metamyelocytes and PB blasts.		Hb level at diagnosis ≤100 g/L is an independent predictor of survival P=0.003				
Level III studies													
Hb as a categorical	variable												
Gonzales-Medina	Retrospective	Adults with a diagnosis	Hospital	Hb level at	Survival	NR	NR	NR	Hb level at diagnosis <120 g/L				
et al (2002) ²²⁶ Level III-3 <i>Fair</i>	cohort study N=49	of CM ML	Spain	diagnosis Hb <120 g/L vs. Hb ≥120 g/L	Multivariate	Adjusted for: PB leukocytes, PB monocytes, PB myeloid precursors and blasts, LDH levels, BM blast % and BM myelodysplasia.			is not a significant independent predictor of survival. P=NS				
Onida et al (2002)	Retrospective Adults with a diagnosis of CM ML				NR	NR	HR=1.8 (1.2, 2.8)	Hb level <120 g/L at admission is associated with shorter					
Level III-3 Good	N=213		05	admission Multivariate Hb <120 g/L vs. Hb $\geq$ 120 g/L		Adjusted for: Platelets, PB IMCs, WBC count, absolute monocyte count, absolute lymphocyte count, BM blast %, BM erythroid %, serum LDH and cytogenetics.			survival. P<0.01				
Breccia et al (2009)	Retrospective cohort study	Adults with a diagnosis of MDS_RAFB-2						Hb level at	al Hb level at Survival diagnosis <i>Multivariate</i>	NR	NR	CI: 0.40-2.79	Hb level at diagnosis <100 g/L is associated with shorter
Level III-3 Fair	N=98	subtype	llaly	Hb <100 g/L vs. Hb ≥100 g/L	wuuwanate	Adjusted for: age, platelet count, bone marrow blastosis %, complex karyotype.			<i>survival.</i> P=0.0001				
Demirkan et al	Retrospective	Adults diagnosed with	Hospital	Hb level at	Survival	NR	NR	HR=2.4	Hb at presentation <100 g/L is				
(2008) ²²⁵ Level III-3 <i>Fair</i>	cohort study N=37	CM ML	Turkey	presentation Hb <100 g/L vs. Hb ≥100 g/L	Multivariate	Adjusted for: Platele count.	t count, lymphocyte count a	and bone marrow blast	associated with reduced survival. P=0.03				
Guerci et al (1995)	Retrospective	Adults with a diagnosis	Hospital	Hb level at	Survival	NR	NR	RR=1.97 (1.11, 3.49)	Hb level below 100 g/L at				
²³⁰ Level III-3 Fair	cohort study N=91	of RAEB	France	presentation Hb <100 g/L vs. Hb ≥100 g/L	Multivariate	Adjusted for: age, sex, blast cell %, platelet count, WBC count, absolute neutrophil count, peripheral blast cell (%).			presentation is associated with greater risk of death. P=0.018				
Kao et al (2008)	Retrospective cohort study with				Hb level at Survival				NR	NR	NR	Hb level at presentation >100 g/L is associated with	
Level III-3 Poor	databse of subjects from seven studies N=815	IPSS scores of Int-1 or Int-2		Hb <100 g/L vs. Hb ≥100 g/L	wuuwanate	Adjusted for: platelet count, absolute neutrophil count, IPSS score.			improved survival. P=Significant				
Tefferi et al (1989)	Retrospective	Adults diagnosed with	Hospital	Hb level at	Survival	NR	NR	NR	Hb level at diagnosis is not a				

Technical report on medical patient blood management – Volume 1 April 2012

Study	No. of trials /		pulation Setting	ng Risk factor Ou	Outcome	Results				
Level of evidence ^a <i>Quality</i>	sample size included in analysis		Location		Analysis type	Risk factor	No risk factor	Risk estimate (95% CI)	<i>Significance</i> P-value	
²³⁷ Level III-3 <i>Fair</i>	cohort study N=41	CM ML	US	diagnosis Hb <100 g/L vs. Hb ≥100 g/L	Multivariate	Adjusted for: BM blast % and "modified Bournemouth score".		significant independent predictor of survival. P=NS		
Germing et al (1998) ²²⁸ Level III-3	(1998) ²²⁸ cohort study CM I	Adults diagnosed with CM ML N=158	Hospital Germany		Survival Multivariate	NR	NR	Exp(B)=0.50 (0.32, 0.79)	Hb level at diagnosis >90 g/L is associated with improved survival in CM ML patients.	
Fair	11-130	11-150		Hb >90 g/L		Adjusted for: Mono	ocyte count, LDH level and F	PB blast count.	P=0.003	
		Adults diagnosed with MDS subtype of CM ML	Hospital Germany	Hb level at Survival diagnosis <i>Multivariate</i> Hb ≤90 g/L vs.	NR	NR	Exp(B)=0.32 (0.17, 0.59)	Hb level at diagnosis >90 g/L is associated with improved survival in MDS-CM ML		
		N=81		Hb >90 g/L vs. Hb >90 g/L		Adjusted for: Mono	ocyte count, LDH level and F	PB blast count.	patients. P=0.002	
Catalano et al	Retrospective	Adults with a diagnosis	5 hospitals			NR	NR	RR=0.15	Hb level at diagnosis >88 g/L	
(1996) ²²⁴ Level III-3 <i>Poor</i>	cohort study N=77	of CM ML (includes 4 patients with BM blasts of 20-30%)	Italy	diagnosis Hb>88_g/L vs. Hb ≤88 g/L	Multivariate	Adjusted for: WBC count, platelet count, neutrophils, monocytes, promyelocytes, myelocytes, PB blasts, BM erythroid %, BM myeloid %, BM monocyte %, BM blats %, LDH, AST, creatinine and γ-globulin levels.			is associated with improved survival. P=0.01	
Garcia et al (1988)		i i i i i i i i i i i i i i i i i i i	Hospital Hb level at 5	Survival	NR	NR	NR	Hb level at diagnosis <70 g/L		
^{a 227} Level III-3 Fair	cohort study N=107	of MDS	Spain	diagnosis Hb <70 g/L vs. Hb >70 g/L	Multivariate	Adjusted for: age, systemic symptoms, platelet count, circulating bl circulating myeloid precursors, circulating erythroblasts, bone marr cellularity, blasts I, blasts II, dyserythropoiesis, dysgranulopoiesis, I subtype.			is associated with shorter survival. ° P=0.017	
Hb as a continuous	variable	1	I		1					
Aul et al (1992) 222 Level III-3	Retrospective cohort study	Patients (age 17 to 90 years) with a diagnosis	43 hospitals Germany	Hb level at diagnosis	Survival Multivariate	NR	NR	NR	Higher Hb level at diagnosis is associated with improved	
Fair	N=232	of MDS					sex, platelet and leukocyte ( (%), peripheral blast cells ( , MDS subtype.		survival. P=0.003	
Garcia et al (1988) a 227	Retrospective cohort study	Adults with a diagnosis of MDS	Hospital Spain	Hb level at diagnosis	Survival Multivariate	NR	NR	NR	Higher Hb level at diagnosis is associated with improved	
Level III-3 Fair	N=107		opun		manifanato	circulating myeloid	systemic symptoms, platele d precursors, circulating eryt , blasts II, dyserythropoiesis	survival. P=0.011		
Riccardi et al (1988) 233	Retrospective cohort study	Patients with a diagnosis of MDS	Hospital	Hb level at	Survival Standardised coefficient (β) = +0.42 NR		NR	Higher Hb level at diagnosis is associated with improved survival. ^b P<0.05		
Level III-3 Fair	N=72	ulayi losis Ul IVIDO	Italy	diagnosis	Multiple regression	Adjusted for: BM cellularity, BL blast %, erythroid/myeloid ratio and age.				
Sanz et al (1995) ^a 234	Retrospective cohort study	Adults with a diagnosis of MDS	Three hospitals	Hb level at presentation	Survival Multivariate	NR	NR	NR	Higher Hb levels at presentation are associated	

Study	No. of trials /	Patient population	Setting	Risk factor	Outcome	Results			
Level of evidence ^a Quality	sample size included in analysis	l in type	Analysis type	Risk factor	No risk factor	Risk estimate (95% CI)	Significance P-value		
Level III-3 Fair	N=368	(includes 9 patients with therapy-related MDS)	Spain	Adjusted for: Total bone marrow blasts (%), age, sex, platelets, neutrophils, immature myeloid precursors, nucleated RBC, blast cells, bone marrow dyserythropoiesis, bone marrow dysgranulopoiesis, bone marrow dysthrombopoiesis, WBC count, haemorrhages, systemic symptoms, interval first symptom to diagnosis, serum creatinine, serum uric acid, serum biliribulin, serum GPT, serum LDH, FAB classification.				ated RBC, blast cells, sgranulopoiesis, bone rhages, systemic rum creatinine, serum	with improved survival. P=0.0008
Solal-Celigny et al (1984) 235	Retrospective cohort study	Adults with a diagnosis of CM ML	Hospital	Hb level at diagnosis	Survival	NR	NR	NR	Hb level at diagnosis is not a significant predictor of survival.
Level III-3 Poor	N=35		France	ulayilosis	Multivariate	Adjusted for: WBC, monocytosis, platelet count, PB blast %, BM blast %, serum IgG, blood lysozyme levels.			P=NS
Takahashi et al (1990) ²³⁶ Level III-3	Retrospective cohort study N=124	Adults with a diagnosis of MDS	Hospital Japan	Hb level at diagnosis	Survival Multivariate	NR	NR	F value for testing regression co-efficient = 2.21184	Higher Hb level at diagnosis is associated with improved survival.
Poor						Adjusted for: age, marrow erythroblasts (%), marrow lymphocytes (%), netrophil alkaline phosphatase score, marrow CFU, marrow granulocytes with atypia (%),Morphological dyserythropoiesis (%), Morphological dysgranulopoiesis (%), Morphological dysmegakaryopoiesis (%).			P=Significant

^a The patients in the study by Garcia may also be included in the study by Sanz ^b The direction of the relationship between Hb level and survival was assumed based on the results of the univariate analysis in the same study.

c For the multivariate analysis it was assumed that binary categories for Hb were the same as were reported in the univariate analysis and that lower Hb was associated with shorter survival.

AST, aspartate transaminase; BM, bone marrow; CFU, colony forming units; CI, confidence interval; CM ML, chronic myelomonocytic leukaemia;; FAB, French–American–British; g, grams; GPT, glutamic pyruvic transaminase; g, grams; Hb, haemoglobin; ; IMC, immature myeloid cell; IPSS, International Prognostic Scoring System; L, litre; LDH, lactate dehydrogenase; MDS, myelodysplastic syndrome; NR, not reported; PB, peripheral blood; RAEB, refractory anaemia with an excess of blasts; RBC, red blood cell; RR, relative risk; US, the United States of America; WBC, white blood cell.

# Pre-transfusion Hb level as a predictor of functional and performance status

No Level I to Level IV studies were identified that investigated an association between pretransfusion Hb levels and functional and performance status in MDS patients.

One study, Jansen 2003²²⁰, has been included in this report to give background information about functional and performance status in myelodysplasia patients. The study was a good quality prospective cross sectional survey that that used a multivariate analysis of the study data. This study was also identified in the literature search.

The study by Jansen (2003) analyses the association between Hb level 24 hours prior to testing and the outcome of functional and performance status testing. In the time between Hb measurement and testing no transfusions were allowed. The study was a prospective hospital-based survey of 50 adult MDS patients using the EuroQOL 5D visual analogue scale (EQ-5D VAS) and SF-36 instruments (Table 3.160). The authors report that Hb level may be associated with EQ-5D VAS score (p=0.05). They also report that Hb level is significantly associated with the Physical functioning (p=0.00), Role physical (p=0.02), Vitality (p=0.02) and Physical sum score (p=0.01) scales of the SF-36 instrument. No significant association was found for the Bodily pain (p=0.58), General health (p=0.29), Mental health (p=0.52), Role emotional (p=0.13), Social functioning (p=0.22) and Mental sum score (p=0.54) SF-36 scales.

Study	No. of trials /		Setting	Analysis	Outcome	Results	Results					
Level of evidence ^a <i>Quality</i>	included in		Risk factor	No risk factor	Risk estimate (95% CI)	Significance P-value						
Myelodysplasia												
ADULT PATIENTS												
Hb as a continuous	variable											
Jansen 2003 220 Level II	Prospective cross- sectional	Adults with a diagnosis of MDS	Four hospitals The	Multivariate Adjusted for: Age, sex, MDS subtype, hospital.	EQ-5D ^b visual analogue scale	Hb level		NR	Hb level may be correlated with EQ-5D VAS score. P=0.05			
Fair	survey N=50	(includes 5 CM ML patients)	Netherlands	Hb level was measured 24 hours prior to the survey and no transfusions were allowed between	SF-36 ^b Bodily pain	Hb level		NR	Hb level is not correlated with SF-36 bodily pain score. P=0.58			
			Hb measurement and the time of the survey.	SF-36 b Physical functioning	Hb level		NR	Hb level is correlated with SF-36 physical functioning score P=0.00				
				SF-36 ^b Role physical	Hb level		NR	Hb level is correlated with SF-36 role physical score. P=0.02				
					SF-36 ^b General health	Hb level		NR	Hb level is not correlated with SF-36 general health score. P=0.29			
					SF-36 ^b Physical sum score	Hb level		NR	Hb level is correlated with SF-36 physical sum score. P=0.01			
					SF-36 ^b Mental health	Hb level		NR	Hb level is not correlated with SF-36 mental health score. P=0.52			
				SF-36 ^b Role emotional	Hb level		NR	Hb level is not correlated with SF-36 role emotional score. P=0.13				
			SF-36 ^b Social functioning	Hb level		NR	Hb level is not correlated with SF-36 social functioning score. P=0.22					
								SF-36 ^b Vitality	Hb level		NR	Hb level is correlated with SF-36 vitality score P=0.02
			SF-36 ^b Mental sum score	Hb level		NR	Hb level is not correlated with SF-36 mental sum score. P=0.54					

# Table 3.160 Question 6 (Myelodysplasia) – functional and performance status

BFI, Brief Fatigue Inventory; BMI, body mass index; CI, confidence interval; CM ML, chronic myelomonocytic leukaemia; EQ-5D, EuroQOL 5D; FACT-An, Functional Assessment of Cancer Therapy-Anemia; g, grams; Hb, haemoglobin; MDS, myelodysplastic syndrome; NR, not reported; QOL, quality of life; SF-36, 36-question Short Form Health Survey; VAS, visual analogue scale. b Scale has a score range of 1-100.

### Pre-transfusion Hb level as a predictor of arterial thromboembolic events

No studies were identified that investigated an association between pre-transfusion Hb levels and the incidence of arterial thromboembolic events in MDS patients.

#### Pre-transfusion Hb level as a predictor of RBC transfusion incidence

No studies were identified that investigated an association between pre-transfusion Hb levels and transfusion incidence in MDS patients.

#### Pre-transfusion Hb level as a predictor of RBC transfusion volume

No studies were identified that investigated an association between pre-transfusion Hb levels and transfusion volume in MDS patients

# 4 Appendixes

# 4.1 Appendix 1 – Research question structure

The structure of the foreground research questions for medical patient blood management is presented in **Table 4.1.1** (generic questions relevant to all modules of the patient blood management guidelines) and **Note:** The CRG consider that the cardiac, elderly/geriatric and chronic transfusion (chronic anaemia) subgroups are the most important to identify. The cardiac (heart failure and ACS) and elderly populations need to be addressed in question 1 or 2. The elderly population needs to be addressed in question 3. The chronic transfusion subgroup is addressed in specific question 1.

Note: The CRG consider that for question 5 studies of platelet transfusion in bleeding patients receiving anti-platelet or anti-fibrinolytic therapies should be searched for up to Level II evidence. All studies of cryoprecipitate and fibrinogen will be searched for up to Level II evidence.

Note: The CRG decided that question 6 should be answered using interventional studies comparing different transfusion triggers.

Abbreviations: ACS, acute coronary syndrome; ADL, Activities of Daily Living; AE, adverse event; APTT, partial thromboplastin time; AQoL, Assessment of Quality of Life; ASTH, Australasian Society of Thrombosis and Haemostasis; DASI, Duke Activity Status Index; BM, bone marrow; DVT, deep vein thrombosis; ECOG, Eastern Cooperative Oncology Group; EQ5D, EuroQoL 5D; ESA, erythropoiesis stimulating agent; FACIT, Functional Assessment of Chronic Illness Therapy; FFP, fresh frozen plasma; GP, general practitioner; Hb, haemoglobin; Hct, haematocrit; HIV, human immunodeficiency virus; HUI, Health Utilities Index; IADL, Instrumental Activities of Daily Living; IM, intramuscular; INR, international normalised ratio; IV, intravenous; MI, myocardial infarction; 6MWT, 6-min Walk Test; MQoL, McGill Quality of Life Questionnaire; NHP, Nottingham Health Profile; OS, overall survival; PE, pulmonary embolism; PFS, progressionfree survival; PT, prothrombin time; QWB, Quality of Well-Being; RBC, red blood cell; SAE, serious adverse event; SF-12, 12-item Short Form Health Survey; SF-36, 36-question Short Form Health Survey; SR, systematic review; TACO, transfusion-associated circulatory overload; TRALI, transfusion-related immunomodulation.

^a Within malignant haematology subgroup, consider high dose chemo/transplant patients as a subpopulation.

^b Within renal subgroup, consider non-end stage renal failure as a subpopulation.

^c Consider geriatrics without comorbidities.

^d Within gastro subgroup, consider patients excluded from the TRICC trial (i.e., patients with significant, ongoing bleeding who are not acutely compromised).

^e Only common, validated functional and performance status instruments will be included: AQoL, Barthel ADL, 15D, DASI, ECOG, EQ-5D, FACIT, HUI2, HUI3, IADL, Karnofsky, Katz ADL, 6MWT, MQoL, NHP, QWB, RAND-36, SF-12, SF-36. Disease-specific quality of life instruments will not be included.

^f These additional outcomes will only be addressed if the specified subgroup falls out of the literature. The literature search will not be conducted to specifically look for this subgroup.

⁹ Chronic anaemia includes chronic regular transfusion/transfusion-dependant patients.

^h Other transfusion-related SAEs includes haemolytic transfusion reactions, transfusion transmitted infections, transfusion-induced graftversus-host-disease, anaphylactic reactions.

¹The cardiothoracic subgroup was covered in the Peri-operative module. Any relevant studies identified in the Peri-operative module will be carried over to this module.

^j Will require CRG expertise to identify 'true' vs. functional' iron deficiency.

^k Trial-based definitions of thromboembolic events will be recorded in the Technical Report.

¹ Consider subgroup of cardiac patients who have received fibrinolytics and antiplatelet agents.

^m Refers to prophylactic vs. therapeutic use

Table 4.1.2. (question specific to the medical patient blood management guidelines). As the generic research questions were designed to identify evidence relevant to all modules, **Note:** The CRG consider that the cardiac, elderly/geriatric and chronic transfusion (chronic anaemia) subgroups are the most important to identify. The cardiac (heart failure and ACS) and elderly populations need to be addressed in question 1 or 2. The elderly population needs to be addressed in question 3. The chronic transfusion subgroup is addressed in specific question 1.

Note: The CRG consider that for question 5 studies of platelet transfusion in bleeding patients receiving anti-platelet or anti-fibrinolytic therapies should be searched for up to Level II evidence. All studies of cryoprecipitate and fibrinogen will be searched for up to Level II evidence.

Note: The CRG decided that question 6 should be answered using interventional studies comparing different transfusion triggers.

Abbreviations: ACS, acute coronary syndrome; ADL, Activities of Daily Living; AE, adverse event; APTT, partial thromboplastin time; AQoL, Assessment of Quality of Life; ASTH, Australasian Society of Thrombosis and Haemostasis; DASI, Duke Activity Status Index; BM, bone marrow; DVT, deep vein thrombosis; ECOG, Eastern Cooperative Oncology Group; EQ5D, EuroQoL 5D; ESA, erythropoiesis stimulating agent; FACIT, Functional Assessment of Chronic Illness Therapy; FFP, fresh frozen plasma; GP, general practitioner; Hb, haemoglobin; Hct, haematocrit; HIV, human immunodeficiency virus; HUI, Health Utilities Index; IADL, Instrumental Activities of Daily Living; IM, intramuscular; INR, international normalised ratio; IV, intravenous; MI, myocardial infarction; 6MWT, 6-min Walk Test; MQoL, McGill Quality of Life Questionnaire; NHP, Nottingham Health Profile; OS, overall survival; PE, pulmonary embolism; PFS, progressionfree survival; PT, prothrombin time; QWB, Quality of Well-Being; RBC, red blood cell; SAE, serious adverse event; SF-12, 12-item Short Form Health Survey; SF-36, 36-question Short Form Health Survey; SR, systematic review; TACO, transfusion-associated circulatory overload; TRALI, transfusion-related immunomodulation.

^a Within malignant haematology subgroup, consider high dose chemo/transplant patients as a subpopulation.

^b Within renal subgroup, consider non-end stage renal failure as a subpopulation.

^c Consider geriatrics without comorbidities.

^d Within gastro subgroup, consider patients excluded from the TRICC trial (i.e., patients with significant, ongoing bleeding who are not acutely compromised).

^e Only common, validated functional and performance status instruments will be included: AQoL, Barthel ADL, 15D, DASI, ECOG, EQ-5D, FACIT, HUI2, HUI3, IADL, Karnofsky, Katz ADL, 6MWT, MQoL, NHP, QWB, RAND-36, SF-12, SF-36. Disease-specific quality of life instruments will not be included.

^f These additional outcomes will only be addressed if the specified subgroup falls out of the literature. The literature search will not be conducted to specifically look for this subgroup.

9 Chronic anaemia includes chronic regular transfusion/transfusion-dependant patients.

^h Other transfusion-related SAEs includes haemolytic transfusion reactions, transfusion transmitted infections, transfusion-induced graft-versus-host-disease, anaphylactic reactions.

¹The cardiothoracic subgroup was covered in the Peri-operative module. Any relevant studies identified in the Peri-operative module will be carried over to this module.

^j Will require CRG expertise to identify 'true' vs. functional' iron deficiency.

k Trial-based definitions of thromboembolic events will be recorded in the Technical Report.

¹ Consider subgroup of cardiac patients who have received fibrinolytics and antiplatelet agents.

^m Refers to prophylactic vs. therapeutic use

Table 4.1.2 specifies subgroups relevant to the medical module's population.

Table 4.1.1	Structure of generic questions
-------------	--------------------------------

Population	Risk factor	Comparison	Outcomes (primary, unless specified)
All patients	Anaemia	No anaemia	mortality
	<ul> <li>Anaemia by Hb level</li> </ul>	Another level of anaemia	• MI/stroke
Subgroups:			<ul> <li>functional/performance statuse</li> </ul>
Cardiac (including heart failure & ACS)			• other morbidity specific to particular subgroup
Cerebrovascular disease			(see below) ^f
Oncology			
<ul> <li>Radiotherapy patients</li> </ul>			Cardiac subgroup:
Malignant haematology ^a			reinfarction/arrhythmias/ composite outcomes
<ul> <li>Non-malignant haematology</li> </ul>			
Respiratory			
• Renal ^b			
<ul> <li>Elderly (aged ≥65 years)^c</li> </ul>			
Palliative care			
Chronic anaemia			
<ul> <li>Other conditions (neurology, gastro^d, rheumatology, HIV)</li> </ul>			
Stratify by:			
<ul> <li>Age (≥16 yrs only)</li> </ul>			
<ul> <li>Indigenous/non-indigenous</li> </ul>			

Population	Intervention	Comparison	Outcomes (primary, unless specified)		
All patients Subgroups: ACS Cardiac Cerebrovascular disease Oncology Radiotherapy patients Malignant haematology ^a Non-malignant haematology Respiratory Respiratory Renal ^b Elderly Palliative care Chronic anaemia ^g Other conditions (neurology, gastro ^d , rheumatology, HIV) Stratify by: Anaemia status according to Hb level Age Indigenous/non-indigenous	1. RBC (allogeneic) transfusion (including dose) 2. Restrictive transfusion (e.g. Hb trigger of <70 g/L and maintained between 70 and 90 g/L)	1. No transfusion (or alternative doses) 2. Liberal transfusion (e.g. Hb trigger of <100 g/L and maintain between 100 and 120 g/L	<ul> <li>mortality</li> <li>MI/stroke</li> <li>functional/performance status^e</li> <li>transfusion-related SAEs (TACO, TRALI, other^h)</li> </ul>		

Population	Intervention	Comparison	Outcomes (primary, unless specified)		
All patients Subgroups: ACS Cardiac ⁱ Cerebrovascular disease Oncology Radiotherapy patients Malignant haematology ^a Non-malignant haematology Respiratory Renal ^b Elderly Palliative care Chronic anaemia Other conditions (neurology, gastro ^d , rheumatology, HIV) Stratify: By level and type of anaemia/baseline Hbi	<ol> <li>ESAs</li> <li>Oral and/or parenteral iron therapy (IV or IM)</li> <li>Combination of these</li> <li>Nb. Look at all dose regimens reported in relevant studies</li> </ol>	No intervention or any active head-to-head (e.g., 1 vs. 2, 1 vs. 3, 2 vs. 3)	<ul> <li>mortality</li> <li>transfusion frequency</li> <li>transfusion volume (in transfused patients only)</li> <li>thromboembolic events (stroke, MI, DVT, PE)</li> </ul> Secondary outcomes <ul> <li>functional/performance status^e</li> </ul>		

Population	Intervention	Comparison	Outcomes (primary, unless specified)		
All patients	1. FFP	1. No FFP	• mortality		
	2. Cryoprecipitate	2. No cryoprecipitate	<ul> <li>bleeding events (major and minor)</li> </ul>		
Subgroups:	3. Platelet transfusion	3. No platelet transfusion or	• transfusion-related SAEs (TACO, TRALI,		
ACS	4. Fibrinogen concentrate	different platelet dose	other ^h )		
Cardiac ⁱ		4. No fibrinogen concentrate			
Cerebrovascular disease					
Intracranial/ocular bleeding					
Oncology					
Malignant haematology ^a					
<ul> <li>Non-malignant haematology</li> </ul>					
Respiratory					
■ Renal ^b					
Elderly					
Palliative care					
Chronic anaemia					
Gastro ^d , hepatic failure					
<ul> <li>Other conditions (neurology, rheumatology, HIV)</li> </ul>					
ratify by:					
<ul> <li>Bleeding/non-bleeding^m</li> </ul>					
ardiology and intracranial bleeding subgroups: <ul> <li>Antiplatelet therapy</li> </ul>					

Population	Predictor	Comparison	Outcomes (primary, unless specified)
All patients Subgroups: • ACS • Cardiac patients who have received fibrinolytics or antiplatelet agents • Cardiac • Carebrovascular disease • Intracranial/ocular bleeding • Oncology • Malignant haematology ^a • Non-malignant haematology • Respiratory • Renal ^b • Elderly • Palliative care • Chronic anaemia • Gastro ^d , hepatic failure • Other conditions (neurology, rheumatology, HIV)	<ol> <li>INR (PT/APTT) threshold</li> <li>Fibrinogen level</li> <li>Platelets level</li> </ol>	No comparator needed	<ul> <li>mortality</li> <li>bleeding in previously non-bleeding patients (dichotomous)</li> <li>subsequent RBC transfusion incidence/volume (in bleeding patients only)</li> </ul>

Note: The CRG consider that the cardiac, elderly/geriatric and chronic transfusion (chronic anaemia) subgroups are the most important to identify. The cardiac (heart failure and ACS) and elderly populations need to be addressed in question 1 or 2. The elderly population needs to be addressed in question 3. The chronic transfusion subgroup is addressed in specific question 1.

Note: The CRG consider that for question 5 studies of platelet transfusion in bleeding patients receiving anti-platelet or anti-fibrinolytic therapies should be searched for up to Level II evidence. All studies of cryoprecipitate and fibrinogen will be searched for up to Level II evidence.

Note: The CRG decided that question 6 should be answered using interventional studies comparing different transfusion triggers.

Abbreviations: ACS, acute coronary syndrome; ADL, Activities of Daily Living; AE, adverse event; APTT, partial thromboplastin time; AQoL, Assessment of Quality of Life; ASTH, Australasian Society of Thrombosis and Haemostasis; DASI, Duke Activity Status Index; BM, bone marrow; DVT, deep vein thrombosis; ECOG, Eastern Cooperative Oncology Group; EQ5D, EuroQoL 5D; ESA, erythropoiesis stimulating agent; FACIT, Functional Assessment of Chronic Illness Therapy; FFP, fresh frozen plasma; GP, general practitioner; Hb, haemoglobin; Hct, haematocrit; HIV, human immunodeficiency virus; HUI, Health Utilities Index; IADL, Instrumental Activities of Daily Living; IM, intramuscular; INR, international normalised ratio; IV, intravenous; MI, myocardial infarction; 6MWT, 6-min Walk Test; MQoL, McGill Quality of Life Questionnaire; NHP, Nottingham Health Profile; OS, overall survival; PE, pulmonary embolism; PFS, progression-free survival; PT, prothrombin time; QWB, Quality of Well-Being; RBC, red blood cell; SAE, serious adverse event; SF-12, 12-item Short Form Health Survey; SF-36, 36-question Short Form Health Survey; SR, systematic review; TACO, transfusion-associated circulatory overload; TRALI, transfusion-related immunomodulation.

^a Within malignant haematology subgroup, consider high dose chemo/transplant patients as a subpopulation.

^b Within renal subgroup, consider non-end stage renal failure as a subpopulation.

^c Consider geriatrics without comorbidities.

^d Within gastro subgroup, consider patients excluded from the TRICC trial (i.e., patients with significant, ongoing bleeding who are not acutely compromised).

^e Only common, validated functional and performance status instruments will be included: AQoL, Barthel ADL, 15D, DASI, ECOG, EQ-5D, FACIT, HUI2, HUI3, IADL, Karnofsky, Katz ADL, 6MWT, MQoL, NHP, QWB, RAND-36, SF-12, SF-36. Disease-specific quality of life instruments will not be included.

^f These additional outcomes will only be addressed if the specified subgroup falls out of the literature. The literature search will not be conducted to specifically look for this subgroup.

^g Chronic anaemia includes chronic regular transfusion/transfusion-dependant patients.

^h Other transfusion-related SAEs includes haemolytic transfusion reactions, transfusion transmitted infections, transfusion-induced graft-versus-host-disease, anaphylactic reactions.

The cardiothoracic subgroup was covered in the Peri-operative module. Any relevant studies identified in the Peri-operative module will be carried over to this module.

^j Will require CRG expertise to identify 'true' vs. functional' iron deficiency.

^k Trial-based definitions of thromboembolic events will be recorded in the Technical Report.

¹ Consider subgroup of cardiac patients who have received fibrinolytics and antiplatelet agents.

^m Refers to prophylactic vs. therapeutic use

#### Table 4.1.2 Structure of research question specific to medical patient blood management

[Prognostic question]								
Population	Predictor	Comparison	Outcomes (primary, unless specified)					
Regularly and chronically transfused patients (not limited to adults) Subgroups:	Hb threshold (however reported)		<ul> <li>mortality/survival</li> <li>functional/performance status^a</li> <li>arterial thromboembolic events (stroke/MI)^b</li> </ul>					
<ul><li>Thalassaemia (not sickle cell anaemia)</li><li>Myelodysplasia</li></ul>			Secondary outcomes: •transfusion incidence					
Stratify by: • Age (including children)			<ul> <li>transfusion volume</li> </ul>					

Technical report on medical patient blood management – Volume 1April 2012

# 4.2 Appendix 2. Quality assessment

Each included study was assessed using the quality criteria for the relevant study type, as shown below. Studies were considered:

- good quality, with a low risk of bias, if they met all, or all but one, of the criteria
- fair quality, with a medium risk of bias, if they did not meet two or three criteria
- poor quality, with a high risk of bias, if they did not meet four or more criteria.

#### 4.2.1 Systematic reviews

Study type:			Systematic review		
Cita	ation:				
Y	Ν	NR	NA	Quality criteria	
				A. Was an adequate search strategy used?	
✓				Was a systematic search strategy reported?	1
				Were the databases searched reported?	III
				Was more than one database searched?	
				Were search terms reported?	IV
				Did the literature search include hand searching?	IV
				B. Were the inclusion criteria appropriate and applied in an unbiased way?	
				Were inclusion/exclusion criteria reported?	Ш
			Was the inclusion criteria applied in an unbiased way?	III	
			Was only level II evidence included?	I-IV	
				C. Was a quality assessment of included studies undertaken?	
				Was the quality of the studies reported?	
				Was a clear, pre-determined strategy used to assess study quality?	IV
				D. Were the characteristics and results of the individual studies appropriately summarised?	
				Were the characteristics of the individual studies reported?	III
				Were baseline demographic and clinical characteristics reported for patients in the individual studies?	IV
				Were the results of the individual studies reported?	III
				E. Were the methods for pooling the data appropriate?	
				If appropriate, was a meta-analysis conducted?	III-IV
				F. Were the sources of heterogeneity explored?	
				Was a test for heterogeneity applied?	III-IV
				If there was heterogeneity, was this discussed or the reasons explored?	III-IV
Cor	mment	S:			
	ality ra			Systematic review:	
[Go	[Good/Fair/Poor]		]	Included studies:	

Note: Quality criteria adapted from NHMRC (2000) How to use the evidence: assessment and application of scientific evidence. NHMRC, Canberra.

^a Assess criterion using Y (yes), N (no), NR (not reported) or NA (not applicable). ^b Error categories as follows: (I) leads to exclusion of the study; (II) automatically leads to a poor rating; (III) leads to a one grade reduction in quality rating (eg, good to fair, or fair to poor); and (IV) errors that are may or may not be sufficient to lead to a decrease in rating. ^c Where applicable, provide clarification for any of the criteria, particularly where it may result in downgrading of the study quality. For quality assessment of systematic reviews, this should include a statement regarding the methodological quality of the studies included in the systematic review.

^dQuality ratings are good, fair or poor.

Source of quality criteria: NHMRC (2000)⁵

#### 4.2.2 Randomised controlled trials

Stuc	dy type	:		Randomised controlled trial	
Cita	tion:				
Y	Ν	NR	NA	Quality criteria	
				A. Was assignment of subjects to treatment group randomised?	
✓				Was the use of randomisation reported?	1
				Was the method of randomisation reported?	III
				Was the method of randomisation appropriate?	-
				A. Was allocation to treatment groups concealed from those responsible for recruiting subjects?	
				Was a method of allocation concealment reported?	III
				Was the method of allocation concealment adequate?	III
				B. Was the study double-blinded?	
				Were subjects and investigators blinded to treatment arm?	II-IV
				C. Were patient characteristics and demographics similar between treatment arms at baseline?	
				Were baseline patient characteristics and demographics reported?	III
				Were the characteristics similar between treatment arms?	III-IV
				D. Were all randomised participants included in the analysis?	
				Was loss to follow-up reported?	Ш
				Was loss to follow-up appropriately accounted for in the analysis?	III-IV
				E. Was outcome assessment likely to be subject to bias?	
				Were all relevant outcomes measured in a standard, valid, and reliable way?	III-IV
				Was outcome assessment blinded to treatment allocation?	III
				If outcome assessment was not blinded, were outcomes objective and unlikely to be influenced by blinding of assessment?	
				F. Were the statistical methods appropriate?	
				Were the methods used for comparing results between treatment arms appropriate?	III
				If the study was carried out at more than one site, are the results comparable for all sites?	IV
				G. If appropriate, were any subgroup analyses carried out?	
				Were subgroup analyses reported?	III-IV
				Were subgroup analyses appropriate?	III-IV
Corr	nments	S:			
	lity rat od/Fai	ing: /Poor]			

^a Assess criterion using Y (yes), N (no), NR (not reported) or NA (not applicable). ^b Error categories as follows: (I) leads to exclusion of the study; (II) automatically leads to a poor rating; (III) leads to a one grade reduction in quality rating (eg, good to fair, or fair to poor); and (IV) errors that are may or may not be sufficient to lead to a decrease in rating.

^c Where applicable, provide clarification for any of the criteria, particularly where it may result in downgrading of the study quality.

^d Quality ratings are good, fair or poor. Source of quality criteria: NHMRC (2000)⁵

#### 4.2.3 Cohort studies

Stuc	dy type	:		Cohort study	
Cita	tion:				
Y	Ν	NR	NA	Quality criteria	
				A. Was the selection of subjects appropriate?	
~				Were the two groups being studied selected from source populations that are comparable in all respects other than the factor under investigation?	II-IV
				Was the likelihood that some eligible subjects might have the outcome at the time of enrolment adequately accounted for in the analysis?	III
				B. Were all recruited participants included in the analysis?	
				Does the study report whether all people who were asked to take part did so, in each of the groups being studied?	III
				Was loss to follow-up and exclusions from analysis reported?	П
				Was loss to follow-up and exclusions from analysis appropriately accounted for in the analysis?	III-IV
				C. Does the study design/analysis adequately control for potential confounding variables?	
				Does the study adequately control for demographic characteristics, clinical features, and other potential confounding variables in the study design or analysis?	II-IV
				D. Was outcome assessment subject to bias?	
				Were all relevant outcomes measured in a standard, valid, and reliable way?	III-IV
				Was outcome assessment blinded to exposure status?	III
				If outcome assessment was not blinded, were outcomes objective and unlikely to be influenced by blinding of assessment?	Ш
				E. Was follow-up adequate?	
				Was follow-up long enough for outcomes to occur?	III
Con	nments	S:			
	ılity rat od/Faiı	ing: /Poor]			

Note: Quality criteria adapted from NHMRC (2000) How to use the evidence: assessment and application of scientific evidence. NHMRC, Canberra.

^a Assess criterion using Y (yes), N (no), NR (not reported) or NA (not applicable).

^b Error categories as follows: (I) leads to exclusion of the study; (II) automatically leads to a poor rating; (III) leads to a one grade reduction in quality rating (eg, good to fair, or fair to poor); and (IV) errors that are may or may not be sufficient to lead to a decrease in rating. ^c Where applicable, provide clarification for any of the criteria, particularly where it may result in downgrading of the study quality.

^d Quality ratings are good, fair or poor.

Source of quality criteria: NHMRC (2000)⁵

## 4.3 Appendix 3. NHMRC evidence statement form

Key question(s):			Evidence table ref:
<b>1. Evidence base</b> (number of studies, level of evidence and risk of bias in the include	d stu	dies)	
	A	One or more Level I studies with a low risk of bias or several L bias	evel II studies with a low risk of
	В	One or two Level II studies with a low risk of bias or SR/severabias	al Level III studies with a low risk of
	С	One or two Level III studies with a low risk of bias or Level I or bias	II studies with a moderate risk of
	D	Level IV studies or Level I to III studies/SRs with a high risk of	bias
2. Consistency (if only one study was available, rank this component as 'not applicable	ble')		
	А	All studies consistent	
	В	Most studies consistent and inconsistency can be explained	
	С	Some inconsistency, reflecting genuine uncertainty around qu	uestion
	D	Evidence is inconsistent	
	NA	Not applicable (one study only)	
<b>3. Clinical impact</b> (Indicate in the space below if the study results varied according to intervention could not be determined)	o sorr	ne <b>unknown</b> factor (not simply study quality or sample size) and	thus the clinical impact of the
	А	Very large	
	В	Substantial	
	С	Moderate	
	D	Slight/Restricted	
	NA	Not applicable/no difference/underpowered	
4. Generalisability (How well does the body of evidence match the population and o	clinica	al settings being targeted by the Guidelines?)	
	А	Evidence directly generalisable to target population	
	В	Evidence directly generalisable to target population with som	e caveats
	С	Evidence not directly generalisable to the target population b	ut could be sensibly applied
	D	Evidence not directly generalisable to target population and h to apply	hard to judge whether it is sensible

5. Applicability (Is the body of evidence relevant to the Australian healthcare context in terms of health services/delivery of care and cultural factors?)						
A Evidence directly applicable to Australian healthcare context						
		Evidence applicable to Australian healthcare context with few caveats				
	С	Evidence probably applicable to Australian healthcare context with some caveats				
	D	Evidence not applicable to Australian healthcare context				

**Other factors** (Indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation)

#### **Evidence statement matrix**

Please summarise the development group's synthesis of the evidence relating to the key question, taking all the above factors into account

Component	Rating	Description		
Evidence base				
Consistency				
Clinical impact				
Generalisability				
Applicability				
Indicate any diss	enting o	pinions		
Recommendation Grade of recommendatio			Grade of recommendation	]
What recommendation(s) does the guidelines development group draw from this evidence? Use action statements where possible				
	es or no	<b>RECOMMENDATION</b> to the following questions. Where the answer is yes please provide explanator the guidelines	ry information about this. This informatio	n will be used to develop the
Will this recommendation result in changes in usual care?			YE	ES NO
Are there any resource implications associated with implementing this recommendation?				ES NO
Will the implementation of this recommendation require changes in the way care is currently organised?				ES NO
Are the guidelines development group aware of any barriers to the implementation of this recommendation?				ES NO

# 4.4 Appendix 4. Facilitated group discussion for development of practice points

#### 4.4.1 Background

Often, there are insufficient high-quality data in the contemporary clinical literature to produce clinical guidelines with an evidence-based recommendation. Thus, there remains a role for expert opinion and consensus in guidelines development. The use of expert opinion as a form of 'evidence' requires a formal consensus development process among the guidelines developers, with rigorous rules that will lead to the same attributes of validity, reliability and applicability demanded for more rigorous evidence-based practice methodology.

#### 4.4.2 Role of the clinical/consumer reference group

The CRG provided expert opinion for the development of practice points relevant to the recommendation being considered under the consensus process.

The consensus process was followed only for recommendations where:

- the systematic review found no Level I to IV evidence to address the relevant clinical question, or where recommendations developed by the systematic review process were ranked with a Grade D (poor) quality evidence base
- the CRG determined that additional clinical practice guidance is required for recommendations developed by the systematic review process that are graded above D.

Applying the consensus process to recommendations with Grade D (poor) evidence could result in:

- the rejection of the recommendation
- the confirmation of the recommendation
- the development of a "practice point" to supplement the recommendation, or
- rejection of the recommendation and the development of a practice point on its own.

#### 4.4.3 Chair of CRG meetings

The Chair of CRG meetings facilitated and guided the process of reaching a consensus decision on practice points. Specifically, the Chair's role was to:

- assist the CRG in defining decisions that need to be made
- help the CRG through the stages of reaching an agreement
- keep the meeting moving
- focus discussion to the point at hand
- ensure everyone has the opportunity to participate
- test whether consensus has been reached.

The Chair helped to direct the consensus process, not its content, and did not make decisions for the CRG.

#### 4.4.4 Pre-meeting process

Before CRG meetings, the systematic reviewer/technical writer distributed draft versions of the results of the systematic review. Where evidence was not found or the body of evidence was graded D, this was indicated in the draft report to highlight the need for the consensus process to develop practice points. In addition:

- A consensus response template and a list of numbered Grade D evidence statements for clinical questions for which no evidence could be found was developed by the systematic reviewer/technical writer and distributed to the CRG/NBA members and the systematic review expert 2 weeks in advance of the meeting in which a decision was required, using the evidence statement format proposed in the research protocol for Phase I.
- The CRG/NBA members and the systematic review expert were asked to consider and rate proposals taking into account the research literature, clinical opinion and expertise and the realities of the relevant healthcare settings.
- The completed consensus templates were sent to the systematic reviewer/technical writer a few days before the CRG meeting date for consolidation.
- The systematic reviewer/technical writer collated all responses and distributed the results 2 days before the meeting. These were then reviewed and deliberated on at the face-to-face consensus meeting.

#### 4.4.5 Development of practice points: overview of consensus decisionmaking process

The process outlined below was used to develop practice points through consensus.

#### 4.4.6 Stage 1 – Introduction

- **Describe the process.** The Chair described the consensus process, participants' roles and responsibilities, ground rules and guiding principles.
- State where there was a need for practice point development. The Chair described where evidence was not found or was inadequate to develop recommendations above Grade D, or where a practice point might be required to supplement recommendations.

#### 4.4.7 Stage 2 – Open discussion

- **Clarify the practice point.** The Chair opened the floor to a general discussion and suggestions for practice point content. This time was not used for raising objections or concerns but for suggesting content for the practice point. Suggestions were recorded in the relevant section of the draft results report.
- **State concerns.** When the CRG was satisfied that the practice point was complete, the Chair provided an opportunity for concerns or issues to be raised.

#### 4.4.8 Stage 3 – Resolve concerns

- **Review concerns.** The group reviewed any concerns raised. If the concerns were many and the time was short, the discussion on practice point development was carried over to a later meeting.
- **Resolve concerns.** The Chair had the first option to resolve the listed concerns by:

- clarifying the wording of the practice point
- changing the wording of the practice point or adding a practice point to supplement the recommendation
- explaining why the recommendation as stated was not in conflict with the group's values
- see whether those with concerns would stand aside (i.e. "have concerns, but can live with them").

#### 4.4.9 Stage 4 – First call for consensus

• When all concerns had been resolved, the Chair called for consensus.

# 4.4.10 Stage 5 – Consideration of group principles and values and second call for consensus

- When concerns had been adequately discussed but remain unresolved, the group assessed how the unresolved concerns related to group principles and values.
- After considering these principles, the Chair made one of the following conclusions:
  - the member withdrew the concern, consensus was reached and a practice point could be made (or a Grade D evidence-based recommendation could be confirmed)
  - the member stood aside so a practice point could be made (or Grade D evidencebased recommendation could be confirmed), and the differing schools of thought were documented
  - the member was not willing to withdraw the concern or stand aside, and the CRG declared itself blocked—the recommendation or practice point was not accepted.

#### 4.4.11 Guiding principles and values

These principles and values were used through the development of consensus-based practice points:

- Consensus is reached when all members of the CRG strongly agree or agree with the practice point. Consensus is not achieved on the basis of a "majority".
- The opinions of all members of the group are equally valid and important, notwithstanding that some members may have discipline-specific expert opinion.
- Where consensus is not reached (one or more members disagree or strongly disagree with the practice point), the dissenting members are allowed to present their case. This may be done immediately in the current meeting, or be carried over to the subsequent meeting to allow the members to succinctly formulate their concerns or provide other documentation or research.
- Issues of semantics, language or content, while recognised as important, should preferably not absorb discussion time within CRG meetings.
- CRG members are respectfully asked to reflect on their own values and conflicts of interests, and be mindful of the extent to which these may influence their opinions.

#### 4.4.12 Ground rules

• Members agree to take turns speaking and not interrupt each other.

- Members agree to call each other by their first names, not "he" or "she".
- Members agree not to blame, attack or engage in put-downs, and will ask questions of each other for the purposes of gaining clarity and understanding.
- Members agree to stay away from establishing hard positions and express themselves in terms of personal needs and interests and the outcomes that they wish to realise.
- Members agree to listen respectfully and to try sincerely to understand the other person's needs and interests.
- Members recognise that, even when they do not agree, each of them is entitled to their own perspective.
- Members will not dwell on things that did not work in the past, but instead will focus on the future they would like to create.
- Members agree to make a conscious, sincere effort to refrain from unproductive argument, venting or narration, and agree to use their time during the meeting to work toward what they perceive to be the fairest and most constructive agreement possible.
- Members will speak up when something is not working for them during the consensus process.
- Members will request a break when they need to.
- Members will point out when they feel the Chair is not being impartial as to person and neutral as to result.
- CRG members not present at the meeting will have the opportunity to provide feedback via email when developed practice points are circulated to the entire CRG after the meeting.

#### 4.4.13 Post-meeting process

After the CRG meeting, the systematic reviewers/technical writers consolidated the outcomes from the meeting and circulated the results of the consensus process (all resultant practice points) to all members of the CRG, the NBA and the systematic review expert (including members who were not present at the meeting), together with a consensus response template.

All CRG/NBA members and the systematic review expert were asked to consider all resultant practice points and to provide any additional concerns or suggestions for amendments to these.

The completed consensus templates and all responses were sent to the systematic reviewers for consolidation.

The systematic reviewers/technical writers collated all responses and distributed the results 2 days before the following CRG–NBA consensus meeting. These were then reviewed and amended as appropriate, and consensus for each of the practice points was ratified at the face-to-face consensus meeting.

### References

1 National Health and Medical Research Council (NHMRC) and Australasian Society of Blood Transfusion (ASBT) (2001). *Clinical practice guidelines on the use of blood components*, NHMRC, Canberra, Australia. http://www.nhmrc.gov.au/ files nhmrc/file/publications/synopses/cp78.pdf

2 National Health and Medical Research Council (NHMRC) (2000). *Nutrition in Aboriginal and Torres Strait Islander Peoples – an information paper*,

NHMRC. http://www.nhmrc.gov.au/guidelines/publications/n26

3 National Health and Medical Research Council (NHMRC) (1999). *A guide to the development, implementation and evaluation of clinical practice guidelines*, NHMRC, Canberra, Australia. http://www.nhmrc.gov.au/publications/synopses/cp30syn.htm

4 National Health and Medical Research Council (NHMRC) (2009). *NHMRC additional levels of evidence and grades for recommendations for developers of guidelines*, NHMRC, Canberra, Australia. http://www.nhmrc.gov.au/guidelines/consult/consultations/add_levels_grades_dev_guide lines2.htm

5 National Health and Medical Research Council (NHMRC) (2000). *How to use the evidence: assessment and application of scientific evidence*. NHMRC handbook series, NHMRC, Canberra, Australia. http://www.nhmrc.gov.au/publications/synopses/cp69syn.htm

6 National Health and Medical Research Council (NHMRC) (2007). *NHMRC standards and procedures for externally developed guidelines*, NHMRC, Canberra,

Australia. http://www.nhmrc.gov.au/publications/synopses/nh56syn.htm

7 Grech ED and Ramsdale DR (2003). Acute coronary syndrome: unstable angina and non-ST segment elevation myocardial infarction. *BMJ* 326(7401):1259-

1261. http://www.ncbi.nlm.nih.gov/pubmed/12791748

8 Anker SD, Voors A, Okonko D, Clark AL, James MK, von Haehling S, et al. (2009). Prevalence, incidence, and prognostic value of anaemia in patients after an acute myocardial infarction: Data from the OPTIMAAL trial. *European Heart Journal* 30(11):1331–1339.

9 Archbold RA, Balami D, Al-Hajiri A, Suliman A, Liew R, Cooper J, et al. (2006). Hemoglobin concentration is an independent determinant of heart failure in acute coronary syndromes: Cohort analysis of 2310 patients. *American Heart Journal* 152(6):1091–1095.

10 Aronson D, Suleiman M, Agmon Y, Suleiman A, Blich M, Kapeliovich M, et al. (2007). Changes in haemoglobin levels during hospital course and long-term outcome after acute myocardial infarction. *European Heart Journal* 28(11):1289–1296.

Bassand JP, Afzal R, Eikelboom J, Wallentin L, Peters R, Budaj A, et al. (2010). Relationship between baseline haemoglobin and major bleeding complications in acute coronary syndromes. *European Heart Journal* 31(1):50–58.

12 Cavusoglu E, Chopra V, Gupta A, Clark LT, Eng C and Marmur JD (2006). Usefulness of anemia in men as an independent predictor of two-year cardiovascular outcome in patients presenting with acute coronary syndrome. *American Journal of Cardiology* 98(5):580–584.

13 Giraldez RR, Sabatine MS, Morrow DA, Mohanavelu S, McCabe CH, Antman EM, et al. (2009). Baseline hemoglobin concentration and creatinine clearance composite laboratory index improves risk stratification in ST-elevation myocardial infarction. *American Heart Journal* 157(3):517–524.

14 Hasin T, Sorkin A, Markiewicz W, Hammerman H and Aronson D (2009). Prevalence and prognostic significance of transient, persistent, and new-onset anemia after acute myocardial infarction. *American Journal of Cardiology* 104(4):486–491.

15 Keough-Ryan TM, Kiberd BA, Dipchand CS, Cox JL, Rose CL, Thompson KJ, et al. (2005). Outcomes of acute coronary syndrome in a large Canadian cohort: Impact of chronic renal insufficiency, cardiac interventions, and anemia. *American Journal of Kidney Diseases* 46(5):845–855. Sabatine MS, Morrow DA, Giugliano RP, Burton PBJ, Murphy SA, McCabe CH, et al. (2005). Association of hemoglobin levels with clinical outcomes in acute coronary syndromes. *Circulation* 111(16):2042–2049.

17 Valeur N, Nielsen OW, McMurray JJV, Torp-Pedersen C and Kober L (2006). Anaemia is an independent predictor of mortality in patients with left ventricular systolic dysfunction following acute myocardial infarction. *European Journal of Heart Failure* 8(6):577–584.

18 Mahaffey KW, Yang Q, Pieper KS, Antman EM, White HD, Goodman SG, et al. (2008). Prediction of one-year survival in high-risk patients with acute coronary syndromes: Results from the SYNERGY trial. *Journal of General Internal Medicine* 23(3):310–316.

19 Burr ML, Holliday RM, Fehily AM and Whitehead PJ (1992). Haematological prognostic indices after myocardial infarction: Evidence from the diet and reinfarction trial (DART). *European Heart Journal* 13(2):166–170.

20 Huerre C, Guiot A, Marechaux S, Auffray JL, Bauchart JJ, Montaigne D, et al. (2010). Functional decline in elderly patients presenting with acute coronary syndromes: Impact on midterm outcome. *Archives of Cardiovascular Diseases* 103(1):19–25.

Groenveld HF, Januzzi JL, Damman K, van Wijngaarden J, Hillege HL, van Veldhuisen DJ, et al. (2008). Anemia and Mortality in Heart Failure Patients. A Systematic Review and Meta-Analysis. *Journal of the American College of Cardiology* 52(10):818-827.

He SW and Wang LX (2009). The impact of anemia on the prognosis of chronic heart failure: A meta-analysis and systemic review. *Congestive Heart Failure* 15(3):123–130.

Lindenfeld J (2005). Prevalence of anemia and effects on mortality in patients with heart failure. *American Heart Journal* 149(3):391–401.

Adams, Jr., Pina IL, Ghali JK, Wagoner LE, Dunlap SH, Schwartz TA, et al. (2009). Prospective evaluation of the association between hemoglobin concentration and quality of life in patients with heart failure. *American Heart Journal* 158(6):965–971.

Anand IS, Kuskowski MA, Rector TS, Florea VG, Glazer RD, Hester A, et al. (2005). Anemia and change in hemoglobin over time related to mortality and morbidity in patients with chronic heart failure: Results from Val-HeFT. *Circulation* 112(8):1121–1127.

Baggish AL, van Kimmenade R, Bayes-Genis A, Davis M, Lainchbury JG, Frampton C, et al. (2007). Hemoglobin and N-terminal pro-brain natriuretic peptide: Independent and synergistic predictors of mortality in patients with acute heart failure. Results from the International Collaborative of NT-proBNP (ICON) study. *Clinica Chimica Acta* 381(2):145–150.

27 Ceresa M, Capomolla S, Pinna G, Aiolfi E, La Rovere MT, Febo O, et al. (2005). Anemia in chronic heart failure patients: Comparison between invasive and non-invasive prognostic markers. *Monaldi Archives for Chest Disease - Cardiac Series* 64(2):124-133.

Felker GM, Gattis WA, Leimberger JD, Adams K, Cuffe MS, Gheorghiade M, et al. (2003). Usefulness of anaemia as a predictor of death and rehospitalization in patients with decompensated heart failure. *The American journal of cardiology* 92:625-628.

29 Garty M, Shotan A, Gottlieb S, Mittelman M, Porath A, Lewis BS, et al. (2007). The management, early and one year outcome in hospitalized patients with heart failure: A national heart failure survey in Israel - HFSIS 2003. *Israel Medical Association Journal* 9(4):227–233.

30 Ingle L, Rigby AS, Carroll S, Butterly R, King RF, Cooke CB, et al. (2007). Prognostic value of the 6 min walk test and self-perceived symptom severity in older patients with chronic heart failure. *European Heart Journal* 28(5):560–568.

Hamaguchi S, Tsuchihashi-Makaya M, Kinugawa S, Yokota T, Takeshita A, Yokoshiki H, et al. (2009). Anemia is an independent predictor of long-term adverse outcomes in patients hospitalized with heart failure in Japan - A report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). *Circulation Journal* 73(10):1901-

1908. http://www.jstage.jst.go.jp/article/circj/73/10/1901/_pdf

Kalra PR, Collier T, Cowie MR, Fox KF, Wood DA, Poole-Wilson PA, et al. (2003). Haemoglobin concentration and prognosis in new cases of heart failure. *Lancet* 362(9379):211–212.

33 Komajda M, Anker SD, Charlesworth A, Okonko D, Metra M, Di Lenarda A, et al. (2006). The impact of new onset anaemia on morbidity and mortality in chronic heart failure: Results from COMET. *European Heart Journal* 27(12):1440–1446.

34 Maggioni AP, Opasich C, Anand I, Barlera S, Carbonieri E, Gonzini L, et al. (2005). Anemia in patients with heart failure: Prevalence and prognostic role in a controlled trial and in clinical practice. *Journal of Cardiac Failure* 11(2):91–98.

35 Maraldi C, Volpato S, Cesari M, Onder G, Pedone C, Woodman RC, et al. (2006). Anemia, physical disability and survival in older patients with heart failure. *Journal of Cardiac Failure* 12(7):533–539.

³⁶ Poole-Wilson PA, Uretsky BF, Thygesen K, Cleland JGF, Massie BM and Ryden L (2003). Mode of death in heart failure: Findings from the ATLAS trial. *Heart* 89(1):42–48.

37 Young JB, Abraham WT, Albert NM, Gattis Stough W, Gheorghiade M, Greenberg BH, et al. (2008). Relation of low hemoglobin and anemia to morbidity and mortality in patients hospitalized with heart failure (insight from the OPTIMIZE-HF Registry). *American Journal of Cardiology* 101(2):223–230.

38 Bruch C, Reinecke H, Stypmann J, Rothenburger M, Schmid C, Breithardt G, et al. (2006). Nterminal pro-brain natriuretic peptide, kidney disease and outcome in patients with chronic heart failure. *Journal of Heart and Lung Transplantation* 25(9):1135–1141.

39 Gardner RS, Chong KS, Morton JJ and McDonagh TA (2005). N-terminal brain natriuretic peptide, but not anemia, is a powerful predictor of mortality in advanced heart failure. *Journal of Cardiac Failure* 11(5 Suppl):S47-S53.

40 Grigorian-Shamagian L, Varela-Roman A, Garcia-Acu¤a JM, Mazon-Ramos P, Virgos-Lamela A and Gonzalez-Juanatey JR (2006). Anaemia is associated with higher mortality among patients with heart failure with preserved systolic function. *Cardiovascular Medicine* 92:780–784.

Jindrich S, Ondrej L, Viktor M, Zbynek P, Tomas P, Ladislav D, et al. (2008). The profile and prognosis of patients hospitalised with heartf failure: The value of discharge blood pressure and cholesterol. *International Heart Journal* 49(6):691–

705. http://www.jstage.jst.go.jp/article/ihj/49/6/691/_pdf

42 Latado AL, Passos LC, Darz, ES and Lopes AA (2006). Comparison of the effect of anaemia on in-hospital mortality in patients with versus without preserved left ventricular ejection fraction. *American Journal of Cardiology* 98:1631–1634.

43 MacGowan GA, Kormos RL, McNamara DM, Alvarez RJ, Rosenblum WD, Pham S, et al. (1998). Predicting short-term outcome in severely ill heart failure patients: Implications regarding listing for urgent cardiac transplantation and patient selection for temporary ventricular assist device support. *Journal of Cardiac Failure* 4(3):169–175.

44 Passino C, Pingitore A, Landi P, Fontana M, Zyw L, Clerico A, et al. (2009). Prognostic value of combined measurement of brain natriuretic peptide and triiodothyronine in heart failure. *Journal of Cardiac Failure* 15(1):35–40.

45 Schou M, Gustafsson F, Kistorp CN, Corell P, Kjaer A and Hildebrandt PR (2007). Prognostic usefulness of anemia and N-terminal pro-brain natriuretic peptide in outpatients with systolic heart failure. *American Journal of Cardiology* 100(10):1571–1576.

Siswanto BB, Sunanto, Munawar M, Kusmana D, Hanafiah A, Waspadji S, et al. (2006). Predictor of mortality and rehospitalization of acute decompensated heart failure at six months follow up. *Critical Care and Shock* 9(3):61–67.

47 Szachniewicz J, Petruk-Kowalczyk J, Majda J, Kaczmarek A, Reczuch K, Kalra PR, et al. (2003). Anaemia is an independent predictor of poor outcome in patients with chronic heart failure. *International Journal of Cardiology* 90(2–3):303–308.

Tada T, Shiba N, Watanabe J, Matsuki M, Kagaya Y, Shinozaki T, et al. (2008). Prognostic value of anemia in predicting sudden death of patients with diastolic heart failure. *International Journal of Cardiology* 128(3):419–421.

49 Terrovitis JV, Anastasiou-Nana MI, Alexopoulos GP, Tsolakis EJ, Margari ZJ, Drakos SG, et al. (2006). Prevalence and prognostic significance of anemia in patients with congestive heart failure treated with standard vs high doses of enalapril. *J Heart Lung Transplant* 25:333-338.

50 Chaves PHM, Xue QL, Guralnik JM, Ferrucci L, Volpato S and Fried LP (2004). What constitutes normal hemoglobin concentration in community-dwelling disabled older women? *Journal of the American Geriatrics Society* 52(11):1811–1816.

51 Denny SD, Kuchibhatla MN and Cohen HJ (2006). Impact of anemia on mortality, cognition, and function in community-dwelling elderly. *American Journal of Medicine* 119(4):327–334.

52 Dong X, Mendes de Leon C, Artz A, Tang Y, Shah R and Evans D (2008). A population-based study of hemoglobin, race and mortality in elderly persons. *Journal of Gerontology: Medical Sciences* 63A(8):873–878.

53 Endres HG, Wedding U, Pittrow D, Thiem U, Trampisch HJ and Diehm C (2009). Prevalence of anemia in elderly patients in primary care: Impact on 5-year mortality risk and differences between men and women. *Current Medical Research and Opinion* 25(5):1143–

1158. http://www.informapharmascience.com/doi/pdf/10.1185/03007990902860325

⁵⁴ Izaks GJ, Westendorp RGJ and Knook DL (1999). The definition of anemia in older persons. *Journal of the American Medical Association* 281(18):1714–1717.

Lucca U, Tettamanti M, Mosconi P, Apolone G, Gandini F, Nobili A, et al. (2008). Association of mild anemia with cognitive, functional, mood and quality of life outcomes in the elderly: The "health and anemia" study. *PLoS ONE* 

**3(4):e1920**. http://www.plosone.org/article/fetchObjectAttachment.action?uri=info%3Adoi%2F10.1 371%2Fjournal.pone.0001920&representation=PDF

56 Patel KV, Harris TB, Faulhaber M, Angleman SB, Connelly S, Bauer DC, et al. (2007). Racial variation in the relationship of anemia with mortality and mobility disability among older adults. *Blood* 109:4663–4670.

57 Patel KV, Longo DL, Ershler WB, Yu B, Semba RD, Ferrucci L, et al. (2009). Haemoglobin concentration and the risk of death in older adults: Differences by race/ethnicity in the NHANES III follow-up. *British Journal of Haematology* 145(4):514–523.

58 Penninx BWJH, Pahor M, Woodman RC and Guralnik JM (2006). Anemia in old age is associated with increased mortality and hospitalization. *Journal of Gerontology: Medical Sciences* 61A(5):474–479.

59 Riva E, Tettamanti M, Mosconi P, Apolone G, Gandini F, Nobili A, et al. (2009). Association of mild anemia with hospitalization and mortality in the elderly: The Health and Anemia population-based study. *Haematologica* 94(1):22–28. http://www.haematologica.org/cgi/reprint/94/1/22

Thein M, Ershler WB, Artz AS, Tecson J, Robinson BE, Rothstein G, et al. (2009). Diminished quality of life and physical function in community-dwelling elderly with anemia. *Medicine* 88(2):107–114.

⁶¹Zakai NA, Katz R, Hirsch C, Shlipak MG, Chaves PHM, Newman AB, et al. (2005). A prospective study of anemia status, hemoglobin concentration, and mortality in an elderly cohort: The cardiovascular health study. *Archives of Internal Medicine* 165(19):2214–2220. http://archinte.ama-assn.org/cgi/reprint/165/19/2214

62 Kitamura K, Nakamura K, Nishiwaki T, Ueno K and Hasegawa M (2010). Low body mass index and low serum albumin are predictive factors for short-term mortality in elderly Japanese requiring home care. *Tohoku Journal of Experimental Medicine* 221(1):29–

34. http://www.jstage.jst.go.jp/article/tjem/221/1/29/_pdf

63 Caro JJ, Salas M, Ward A and Goss G (2001). Anemia as an independent prognostic factor for survival in patients with cancer: A systematic, quantitative review. *Cancer* 91(12):2214–2221.

64 Hauser CA, Stockler MR and Tattersall MHN (2006). Prognostic factors in patients with recently diagnosed incurable cancer: A systematic review. *Supportive Care in Cancer* 14(10):999–1011.

65 Knight K, Wade S and Balducci L (2004). Prevalence and outcomes of anemia in cancer: A systematic review of the literature. *American Journal of Medicine* 116(7, Supplement 1):11–26.

66 Varlotto J and Stevenson MA (2005). Anemia, tumor hypoxemia, and the cancer patient. International Journal of Radiation Oncology Biology Physics 63(1):25–36. PM:16111569

67 Liou SY, Stephens JM, Carpiuc KT, Feng W, Botteman MF and Hay JW (2007). Economic burden of haematological adverse effects in cancer patients: A systematic review. *Clinical Drug Investigation* 27(6):381–

**396.** http://druginvestigation.adisonline.com/pt/re/dri/pdfhandler.00044011-200727060-00002.pdf;jsessionid=GIJT2H3hgmVQDcNFhF8CQH48bq6L4BQTq4vB8PdC1ZDvINGQy166!-1584860634!-949856145!8091!-1

68 Armstrong AJ, Garrett-Mayer E, De Wit R, Tannock I and Eisenberger M (2010). Prediction of survival following first-line chemotherapy in men with castration-resistant metastatic prostate cancer. *Clinical Cancer Research* 16(1):203–

211. http://clincancerres.aacrjournals.org/content/16/1/203.full.pdf+html

69 Beer TM, Tangen CM, Bland LB, Hussain M, Goldman BH, DeLoughery TG, et al. (2006). The prognostic value of hemoglobin change after initiating androgen-deprivation therapy for newly diagnosed metastatic prostate cancer: A multivariate analysis of southwest oncology group study 8894. *Cancer* 107(3):489–496.

Cook RJ, Coleman R, Brown J, Lipton A, Major P, Hei YJ, et al. (2006). Markers of bone metabolism and survival in men with hormone-refractory metastatic prostate cancer. *Clinical Cancer Research* 12(11 I):3361–3367.

71 Halabi S, Vogelzang NJ, Ou SS, Owzar K, Archer L and Small EJ (2009). Progression-free survival as a predictor of overall survival in men with castrate-resistant prostate cancer. *Journal of Clinical Oncology* 27(17):2766–2771.

72 Kohne CH, Cunningham D, Di CF, Glimelius B, Blijham G, Aranda E, et al. (2002). Clinical determinants of survival in patients with 5-fluorouracil-based treatment for metastatic colorectal cancer: results of a multivariate analysis of 3825 patients. *Ann Oncol* 13(2):308-317. http://www.ncbi.nlm.nih.gov/pubmed/11886010

The impact of A control of Canada Clinical Trials Group. Annals of Oncology 18(6):1051–1055.

74 Mandrekar SJ, Schild SE, Hillman SL, Allen KL, Marks RS, Mailliard JA, et al. (2006). A prognostic model for advanced stage nonsmall cell lung cancer: Pooled analysis of north central cancer treatment group trials. *Cancer* 107(4):781–792.

Negrier S, Escudier B, Gomez F, Douillard JY, Ravaud A, Chevreau C, et al. (2002). Prognostic factors of survival and rapid progression in 782 patients with metastatic renal carcinomas treated by cytokines: A report from the Groupe Francais d'Immunotherapie. *Annals of Oncology* 13(9):1460–1468.

Nieboer P, Buijs C, Rodenhuis S, Seynaeve C, Beex LVAM, Van Der Wall E, et al. (2005). Fatigue and relating factors in high-risk breast cancer patients treated with adjuvant standard or high-dose chemotherapy: A longitudinal study. *Journal of Clinical Oncology* 23(33):8296–8304.

77 Osterlind K and Andersen PK (1986). Prognostic factors in small cell lung cancer: Multivariate model based on 778 patients treated with chemotherapy with or without irradiation. *Cancer Research* 46(8):4189–4194.

Paesmans M, Sculier JP, Libert P, Bureau G, Dabouis G, Thiriaux J, et al. (1995). Prognostic factors for survival in advanced non-small-cell lung cancer: univariate and multivariate analyses including recursive patitioning and amalgamation algorithms in 1,052 patients. *Journal of Clinical Oncology* 13:1221-1230.

Paesmans M, Sculier JP, Lecomte J, Thiriaux J, Libert P, Sergysels R, et al. (2000). Prognostic factors for patients with small cell lung carcinoma: Analysis of a series of 763 patients included in 4 consecutive prospective trials with a minimum follow-up of 5 years. *Cancer* 89(3):523–533.

80 Wisloff F, Gulbrandsen N, Hjorth M, Lenhoff S and Fayers P (2005). Quality of life may be affected more by disease parameters and response to therapy than by haemoglobin changes. *European Journal of Haematology* 75(4):293–298.

81 Bremnes RM, Sundstrom S, Aasebo U, Kaasa S, Hatlevoll R and Aamdal S (2003). The value of prognostic factors in small cell lung cancer: Results from a randomised multicenter study with minimum 5 year follow-up. *Lung Cancer* 39(3):303–313.

62 Gauthier I, Ding K, Winton T, Shepherd FA, Livingston R, Johnson DH, et al. (2007). Impact of hemoglobin levels on outcomes of adjuvant chemotherapy in resected non-small cell lung cancer: The JBR.10 trial experience. *Lung Cancer* 55(3):357–363.

83 Hong JH, Tsai CS, Chang JT, Wang CC, Lai CH, Lee SP, et al. (1998). The prognostic significance of pre- and posttreatment SCC levels in patients with squamous cell carcinoma of the cervix treated by radiotherapy. *International Journal of Radiation Oncology Biology Physics* 41(4):823–830.

Kao YH, Chen CN, Chiang JK, Chen SS and Huang WW (2009). Predicting factors in the last week of survival in elderly patients with terminal cancer: A prospective study in Southern Taiwan. *Journal of the Formosan Medical Association* 108(3):231–239.

85 Karolewski K, Korzeniowski S, Sokolowski A, Urbanski K and Kojs Z (1999). Prognostic significance of pretherapeutic and therapeutic factors in patients with advanced cancer of the uterine cervix treated with radical radiotherapy alone. *Acta Oncologica* 38(4):461–468.

Lee WR, Berkey B, Marcial V, Fu KK, Cooper JS, Vikram B, et al. (1998). Anemia is associated with decreased survival and increased locoregional failure in patients with locally advanced head and neck carcinoma: A secondary analysis of RTOG 85-27. *International Journal of Radiation Oncology Biology Physics* 42(5):1069–1075.

87 Motzer RJ, Bacik J, Murphy BA, Russo P and Mazumdar M (2002). Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. *Journal of Clinical Oncology* 20(1):289–296.

88 Ohlhauser C, Bulzebruck H, Ebert W, Drings P and Wannenmacher M (1997). Prognostic factors for survival in inoperable non-small-cell lung cancer: A multivariate regression analysis of 456 patients with radiation therapy. *Onkologie* 20(2):126–131.

89 Overgaard J, Hansen HS, Overgaard M, Bastholt L, Berthelsen A, Specht L, et al. (1998). A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. *Radiotherapy and Oncology* 46(2):135-146.

90 Volkova N and Arab L (2006). Evidence-based systematic literature review of hemoglobin/hematocrit and all-cause mortality in dialysis patients. *American Journal of Kidney Diseases* 47(1):24–36.

91 Abramson JL, Jurkovitz CT, Vaccarino V, Weintraub WS and McClellan W (2003). Chronic kidney disease, anemia, and incident stroke in a middle-aged, community-based population: The ARIC study. *Kidney International* 64(2):610–615.

92 Astor BC, Coresh J, Heiss G, Pettitt D and Sarnak MJ (2006). Kidney function and anemia as risk factors for coronary heart disease and mortality: The atherosclerosis risk in communities (ARIC) study. *American Heart Journal* 151(2):492–500.

Avram MM, Blaustein D, Fein PA, Goel N, Chattopadhyay J and Mittman N (2003). Hemoglobin predicts long-term survival in dialysis patients: A 15-year single-center longitudinal study and a correlation trend between prealbumin and hemoglobin. *Kidney International, Supplement* 64(87):S6-S11.

⁹⁴ Finkelstein FO, Story K, Firanek C, Mendelssohn D, Barre P, Takano T, et al. (2009). Healthrelated quality of life and hemoglobin levels in chronic kidney disease patients. *Clinical Journal of the American Society of Nephrology* 4(1):33–38. http://cjasn.asnjournals.org/cgi/reprint/4/1/33 95 Fort J, Cuevas X, Garcia F, Perez-Garcia R, Llados F, Lozano J, et al. (2010). Mortality in incident haemodialysis patients: Time-dependent haemoglobin levels and erythropoiesis-stimulating agent dose are independent predictive factors in the ANSWER study. *Nephrology Dialysis Transplantation* 25(8):2702–2710.

⁹⁶ Leeder SR, Mitchell P, Liew G, Rochtchina E, Smith W and Wang JJ (2006). Low hemoglobin, chronic kidney disease, and risk for coronary heart disease-related death: The Blue Mountains eye study. *Journal of the American Society of Nephrology* 17(1):279–284.

97 Plantinga LC, Fink NE, Jaar BG, Huang IC, Wu AW, Meyer KB, et al. (2007). Relation between level or change of hemoglobin and generic and disease-specific quality of life measures in hemodialysis. *Quality of Life Research* 16(5):755–765.

98 Portoles J, Lopez-Gomez JM and Aljama P (2007). A prospective multicentre study of the role of anaemia as a risk factor in haemodialysis patients: The MAR study. *Nephrology Dialysis Transplantation* 22(2):500–507.

99 Robinson BM, Joffe MM, Berns JS, Pisoni RL, Port FK and Feldman HI (2005). Anemia and mortality in hemodialysis patients: Accounting for morbidity and treatment variables updated over time. *Kidney International* 68(5):2323–2330.

100 Mollaoglu M (2004). Depression and health-related quality of life in hemodialysis patients. *Dialysis and Transplantation* 33(9):544–555.

101 Stevens LA, Djurdjev O, Cardew S, Cameron EC and Levin A (2004). Calcium, phosphate, and parathyroid hormone levels in combination and as a function of dialysis duration predict mortality: Evidence for the complexity of the association between mineral metabolism and outcomes. *Journal of the American Society of Nephrology* 15(3):770–779.

102 Turk S, Guney I, Altintepe L, Tonbul Z, Yildiz A and Yeksan M (2004). Quality of life in male hemodialysis patients: Role of erectile dysfunction. *Nephron - Clinical Practice* 96(1):c21-c27.

103 Yen TH, Lin JL, Lin-Tan DT and Hsu CW (2010). Association between body mass and mortality in maintenance hemodialysis patients. *Therapeutic Apheresis and Dialysis* 14(4):400–408.

104 Perlman RL, Finkelstein FO, Liu L, Roys E, Kiser M, Eisele G, et al. (2005). Quality of life in chronic kidney disease (CKD): A cross-sectional analysis in the Renal Research Institute-CKD study. *American Journal of Kidney Diseases* 45(4):658–666.

105 Merkus MP, Jager KJ, Dekker FW, Boeschoten EW, Stevens P, Krediet RT, et al. (1997). Quality of life in patients on chronic dialysis: Self-assessment 3 months after the start of treatment. *American Journal of Kidney Diseases* 29(4):584–592.

106 Foley RN, Parfrey PS, Harnett JD, Kent GM, Murray DC and Barre PE (1996). The impact of anemia on cardiomyopathy, morbidity, and mortality in end- stage renal disease. *American Journal of Kidney Diseases* 28(1):53–61.

107 Iliescu EA, Coo H, McMurray MH, Meers CL, Quinn MM, Singer MA, et al. (2003). Quality of sleep and health-related quality of life in haemodialysis patients. *Nephrology Dialysis Transplantation* 18(1):126–132.

108 Pisoni RL, Bragg-Gresham JL, Young EW, Akizawa T, Asano Y, Locatelli F, et al. (2004). Anemia management and outcomes from 12 countries in the dialysis outcomes and practice patterns study (DOPPS). *American Journal of Kidney Diseases* 44(1):94–111.

Locatelli F, Pisoni RL, Combe C, Bommer J, Andreucci VE, Piera L, et al. (2004). Anaemia in haemodialysis patients of five European countries: Association with morbidity and mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS). *Nephrology Dialysis Transplantation* 19(1):121–132.

110 Anonymous (2011). *Patient blood management guidelines: Module 1 – Critical bleeding/Massive transfusion*. National Blood Authority, Canberra, Australia.

111 Carless PA, Henry DA, Carson JL, Hebert PC, McLelland B and Ker K (2010). Tranfusion threshold and other strategies for guiding allogeneic red blood cell transfusion. *Cochrane Database of Systematic Reviews* 2010(Issue 10).

112 Blair SD, Janvrin SB, McCollum CN and Greenhalgh RM (1986). Effect of early blood transfusion on gastrointestinal haemorrhage. *British Journal of Surgery* 73(10):783–

785. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L16007117

113 Alexander KP, Chen AY, Wang TY, Rao SV, Newby LK, LaPointe NMA, et al. (2008). Transfusion practice and outcomes in non-ST-segment elevation acute coronary syndromes. *American Heart Journal* 155(6):1047–

1053. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L50082874, http://dx.doi.org/10.1016/j.ahj.2008.01.009

114 Rao SV, Jollis JG, Harrington RA, Granger CB, Newby LK, Armstrong PW, et al. (2004). Relationship of blood transfusion and clinical outcomes in patients with acute coronary syndromes. *Journal of the American Medical Association* 292(13):1555–

1562. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L39314961, http://dx.doi.org/10.1001/jama.292.13.1555

115 Shishehbor MH, Madhwal S, Rajagopal V, Hsu A, Kelly P, Gurm HS, et al. (2009). Impact of Blood Transfusion on Short- and Long-Term Mortality in Patients With ST-Segment Elevation Myocardial Infarction. *JACC: Cardiovascular Interventions* 2(1):46-

53. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L354071658

#### http://dx.doi.org/10.1016/j.jcin.2008.09.011

116 Wu WC, Rathore SS, Wang Y, Radford MJ and Krumholz HM (2001). Blood transfusion in elderly patients with acute myocardial infarction. *The New England journal of medicine* 345(17):1230-1236. PM:11680442

117 Yang X, Alexander KP, Chen AY, Roe MT, Brindis RG, Rao SV, et al. (2005). The implications of blood transfusions for patients with non-ST-segemnt elevation acute coronary syndromes. *Journal of the American College of Cardiology* 46(8):1490-1495.

118 Garty M, Cohen E, Zuchenko A, Behar S, Boyko V, lakobishvili Z, et al. (2009). Blood transfusion for acute decompensated heart failure – friend or foe? *American Heart Journal* 158(4):653–

658. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L355285461, http://dx.doi.org/10.1016/j.ahj.2009.08.001

119 Khorana AA, Francis CW, Blumberg N, Culakova E, Refaai MA and Lyman GH (2008). Blood transfusions, thrombosis, and mortality in hospitalized patients with cancer. *Archives of Internal Medicine* 168(21):2377–

**2381.** http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L35274399 4, http://archinte.ama-assn.org/cgi/reprint/168/21/2377

Santin AD, Bellone S, Parrish RS, Coke C, Dunn D, Roman J, et al. (2003). Influence of allogeneic blood transfusion on clinical outcome during radiotherapy for cancer of the uterine cervix. *Gynecologic and Obstetric Investigation* 56(1):28–

34. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L37025944 121 Jairath V, Hearnshaw S, Brunskill SJ, Doree C, Hopewell S, Hyde C, et al. (2010). Red cell transfusion for the management of upper gastrointestinal haemorrhage. *Cochrane Database of Systematic* 

*Reviews*(2). http://www.mrw.interscience.wiley.com/cochrane/clsysrev/articles/CD006613/pdf_fs.ht ml

122 Hearnshaw SA, Logan RFA, Palmer KR, Card TR, Travis SPL and Murphy MF (2010). Outcomes following early red blood cell transfusion in acute upper gastrointestinal bleeding. *Alimentary Pharmacology and Therapeutics* 32(2):215–

224. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L359041055, http://dx.doi.org/10.1111/j.1365-2036.2010.04348.x

123 Tonelli M, Hemmelgarn B, Reiman T, Manns B, Reaume MN, Lloyd A, et al. (2009). Benefits and harms of erythropoiesis-stimulating agents for anemia related to cancer: A meta-analysis. *CMAJ* 180(11):E62-E71. http://www.cmaj.ca/cgi/reprint/180/11/E62

Bohlius J, Wilson J, Seidenfeld J, Piper M, Schwarzer G, Sandercock J, et al. (2006). Recombinant human erythropoietins and cancer patients: Updated meta-analysis of 57 studies including 9353 patients. *Journal of the National Cancer Institute* 98(10):708–714.

125 Christodoulou C, Dafni U, Aravantinos G, Koutras A, Samantas E, Karina M, et al. (2009). Effects of epoetin-(alpha) on quality of life of cancer patients with solid tumors receiving chemotherapy. *Anticancer Research* 29(2):693–702.

Hoskin PJ, Robinson M, Slevin N, Morgan D, Harrington K and Gaffney C (2009). Effect of epoetin alfa on survival and cancer treatment-related anemia and fatigue in patients receiving radical radiotherapy with curative intent for head and neck cancer. *Journal of Clinical Oncology* 27(34):5751–5756. http://jco.ascopubs.org/cgi/reprint/27/34/5751

127 Pronzato P, Cortesi E, van der Rijt CC, Bols A, Moreno-Nogueira JA, de Oliveira CF, et al. (2010). Epoetin alfa improves anemia and anemia-related, patient-reported outcomes in patients with breast cancer receiving myelotoxic chemotherapy: Results of a European, multicenter, randomized, controlled trial. *Oncologist* 15(9):935–

943. http://theoncologist.alphamedpress.org/cgi/reprint/15/9/935.pdf

Tsuboi M, Ezaki K, Tobinai K, Ohashi Y and Saijo N (2009). Weekly administration of epoetin beta for chemotherapy-induced anemia in cancer patients: Results of a multicenter, phase III, randomized, double-blind, placebo-controlled study. *Japanese Journal of Clinical Oncology* 39(3):163–168.

129 Hernandez E, Ganly P, Charu V, DiBenedetto J, Tomita D, Lilliee T, et al. (2009). Randomized, double-blind, placebo-controlled trial of every-3-week darbepoetin alfa 300 micrograms for treatment of chemotherapy-induced anemia. *Current Medical Research and Opinion* 25(9):2109–2120. http://www.informahealthcare.com/doi/pdf/10.1185/03007990903084164

Borg S, Glenngard AH, Osterborg A and Persson U (2008). The cost-effectiveness of treatment with erythropoietin compared to red blood cell transfusions for patients with chemotherapy induced anaemia: A Markov model. *Acta Oncologica* 47(6):1009–1017.

131 Cremieux PY, Finkelstein SN, Berndt ER, Crawford J and Slavin MB (1999). Cost effectiveness, quality-adjusted life-years and supportive care: Recombinant human erythropoietin as a treatment of cancer-associated anaemia. *PharmacoEconomics* 16(5 I):459–472.

Roungrong J, Teerawattananon Y and Chaikledkaew U (2008). Cost-utility analysis of recombinant human erythropoietin in anemic cancer patients induced by chemotherapy in Thailand. *Journal of the Medical Association of Thailand = Chotmaihet thangphaet* 91 Suppl 2:S119-S125.

Auerbach M, Silberstein PT, Webb RT, Averyanova S, Ciuleanu TE, Shao J, et al. (2010). Darbepoetin alfa 300 or 500 (mu)g once every 3 weeks with or without intravenous iron in patients with chemotherapy-induced anemia. *American Journal of Hematology* 85(9):655–663. http://onlinelibrary.wiley.com/doi/10.1002/ajh.21779/pdf

Bastit L, Vandebroek A, Altintas S, Gaede B, Pint, r T, Suto TS, et al. (2008). Randomized, multicenter, controlled trial comparing the efficacy and safety of darbepoetin alpha administered every 3 weeks with or without intravenous iron in patients with chemotherapy-induced anemia. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* 26:1611-1618.

135 Dangsuwan P and Manchana T (2010). Blood transfusion reduction with intravenous iron in gynecologic cancer patients receiving chemotherapy. *Gynecologic Oncology* 116(3):522–525.

Pedrazzoli P, Farris A, Del Prete S, Del Gaizo F, Ferrari D, Bianchessi C, et al. (2008). Randomized trial of intravenous iron supplementation in patients with chemotherapy-related anemia without iron deficiency treated with darbepoetin alfa. *Journal of Clinical Oncology* 26(10):1619– 1625. http://jco.ascopubs.org/cgi/reprint/26/10/1619 137 Hedenus M, Birgegard G, Nasman P, Ahlberg L, Karlsson T, Lauri B, et al. (2007). Addition of intravenous iron to epoetin beta increases hemoglobin response and decreases epoetin dose requirement in anemic patients with lymphoproliferative malignancies: A randomized multicenter study. *Leukemia* 21(4):627–632.

138 National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand (2011). *Guidelines for the prevention, detection and management of chronic heart failure in Australia, 2006 (update).* 

139 Desai A, Lewis E, Solomon S, McMurray JJV and Pfeffer M (2010). Impact of erythropoiesisstimulating agents on morbidity and mortality in patients with heart failure: An updated, post-TREAT meta-analysis. *European Journal of Heart Failure* 12(9):936–942.

Jin B, Luo X, Lin H, Li J and Shi H (2010). A meta-analysis of erythropoiesis-stimulating agents in anaemic patients with chronic heart failure. *European Journal of Heart Failure* 12(3):249–253.

Lawler PR, Filion KB and Eisenberg MJ (2010). Correcting anemia in heart failure: The efficacy and safety of erythropoiesis-stimulating agents. *Journal of Cardiac Failure* 16(8):649–658.

142 Ngo K, Kotecha D, Walters JA, Manzano L, Palazzuoli A, van Veldhuisen DJ, et al. (2010). Erythropoiesis-stimulating agents for anaemia in chronic heart failure patients. *Cochrane database of systematic reviews (Online)*(1):CD007613.

143 Tehrani F, Dhesi P, Daneshvar D, Phan A, Rafique A, Siegel RJ, et al. (2009). Erythropoiesis stimulating agents in heart failure patients with anemia: A meta-analysis. *Cardiovascular Drugs and Therapy* 23(6):511–518.

144 Van Der Meer P, Groenveld HF, Januzzi, Jr. and van Veldhuisen DJ (2009). Erythropoietin treatment in patients with chronic heart failure: A meta-analysis. *Heart* 95(16):1309–1314. http://heart.bmj.com/cgi/reprint/95/16/1309

145 Pfeffer MA, Burdmann EA, Chen CY, Cooper ME, De Zeeuw D, Eckardt KU, et al. (2009). A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. *The New England journal of medicine* 361:2019-2032.

146 Klapholz M, Abraham WT, Ghali JK, Ponikowski P, Anker SD, Knusel B, et al. (2009). The safety and tolerability of darbepoetin alfa in patients with anaemia and symptomatic heart failure. *European Journal of Heart Failure* 11(11):1071–1077.

147 Anker SD, Colet JC, Filippatos G, Willenheimer R, Dickstein K, Drexler H, et al. (2009). Ferric carboxymaltose in patients with heart failure and iron deficiency. *New England Journal of Medicine* 361(25):2436-2448. http://content.nejm.org/cgi/reprint/361/25/2436.pdf

148 Okonko DO, Grzeslo A, Witkowski T, Mandal AKJ, Slater RM, Roughton M, et al. (2008). Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency. FERRIC-HF: A randomized, controlled, observer-blinded trial. *Journal of the American College of Cardiology* 51(2):103–112.

149 McMahon LP and MacGinley R (2012). KHA-CARI guideline: biochemical and haematological targets: haemoglobin concentrations in patients using erythropoietin-stimulating agents. *Nephrology* (*Carlton*) 17(1):17-19. http://www.ncbi.nlm.nih.gov/pubmed/22044720

Gandra SR, Finkelstein FO, Bennett AV, Lewis EF, Brazg T and Martin ML (2010). Impact of erythropoiesis-stimulating agents on energy and physical function in nondialysis CKD patients with anemia: A systematic review. *American Journal of Kidney Diseases* 55(3):519–534.

151 Tonelli M, Klarenbach S, Wiebe N, Shrive F, Hemmelgarn B and Manns B (2008). Erythropoiesis-stimulating agents for anemia of chronic kidney disease: systematic review and economic evaluation (Structured abstract). *Canadian Agency.for Drugs and Technologies in Health*:1.

152 Cody J, Daly C, Campbell M, Donaldson C, Khan I, Rabindranath K, et al. (2005). Recombinant human erythropoietin for chronic renal failure anaemia in pre-dialysis patients. *Cochrane database of systematic reviews (Online)*(3):CD003266.

153 Johansen KL, Finkelstein FO, Revicki DA, Gitlin M, Evans C and Mayne TJ (2010). Systematic review and meta-analysis of exercise tolerance and physical functioning in dialysis patients treated with erythropoiesis-stimulating agents. *American Journal of Kidney Diseases* 55(3):535–548. 154 Strippoli GF, Navaneethan SD and Craig JC (2006). Haemoglobin and haematocrit targets for the anaemia of chronic kidney disease. *Cochrane Database Syst* 

Rev(4):CD003967. http://www.ncbi.nlm.nih.gov/pubmed/17054191

155 Cianciaruso B, Ravani P, Barrett BJ, Levin A, Torraca S, Procaccini DA, et al. (2008). Italian randomized trial of hemoglobin maintenance to prevent or delay left ventricular hypertrophy in chronic kidney disease. *Journal of Nephrology* 21(6):861–

**870.** http://www.jnephrol.com/public/JN/Article/Attach.action?cmd=Download&uid=CB3DA7F3-8652-4D77-B629-3536017A7CB8

156 Macdougall IC, Temple RM and Kwan JTC (2007). Is early treatment of anaemia with epoetin-(alpha) beneficial to pre-dialysis chronic kidney disease patients? Results of a multicentre, openlabel, prospective, randomized, comparative group trial. *Nephrology Dialysis Transplantation* 22(3):784–793.

157 Klinkmann H, Wieczorek L and Scigalla P (1993). Adverse events of subcutaneous recombinant human erythropoietin therapy: results of a controlled multicenter European study. *Artif Organs* 17(4):90-106.

158 Churchill D, Keown P, Laupacis A, Muirhead N, Sim D, Slaughter D, et al. (1990). Association between recombinant human erythropoietin and quality of life and exercise capacity of patients receiving haemodialysis. *British Medical Journal* 300(6724):573–578.

159 Keown PA, Churchill DN, Poulin-Costello M, Lei L, Gantotti S, Agodoa I, et al. (2010). Dialysis patients treated with Epoetin alfa show improved anemia symptoms: A new analysis of the Canadian Erythropoietin Study Group trial. *Hemodialysis International* 14(2):168–173.

160 Rozen-Zvi B, Gafter-Gvili A, Paul M, Leibovici L, Shpilberg O and Gafter U (2008). Intravenous versus oral iron supplementation for the treatment of anemia in CKD: Systematic review and metaanalysis. *American Journal of Kidney Diseases* 52(5):897–906.

161 Stoves J, Inglis H and Newstead CG (2001). A randomized study of oral vs intravenous iron supplementation in patients with progressive renal insufficiency treated with erythropoietin. *Nephrology Dialysis Transplantation* 16(5):967–974.

162 Van Wyck DB, Roppolo M, Martinez CO, Mazey RM and McMurray S (2005). A randomized, controlled trial comparing IV iron sucrose to oral iron in anemic patients with nondialysis-dependent CKD. *Kidney International* 68:2846–2856.

Agarwal R, Rizkala AR, Bastani B, Kaskas MO, Leehey DJ and Besarab A (2006). A randomized controlled trial of oral versus intravenous iron in chronic kidney disease. *American Journal of Nephrology* 26(5):445–

454. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L44971735

164 Provenzano R, Schiller B, Rao M, Coyne D, Brenner L and Pereira BJG (2009). Ferumoxytol as an intravenous iron replacement therapy in hemodialysis patients. *Clinical Journal of the American Society of Nephrology* 4(2):386–393. http://cjasn.asnjournals.org/cgi/reprint/4/2/386

Singh H, Reed J, Noble S, Cangiano JL and Van Wyck DB (2006). Effect of intravenous iron sucrose in peritoneal dialysis patients who receive erythropoiesis-stimulating agents for anemia: a randomized, controlled trial. *Clinical journal of the American Society of Nephrology : CJASN* 1(3):475-482.

Agnihotri P, Telfer M, Butt Z, Jella A, Cella D, Kozma CM, et al. (2007). Chronic anemia and fatigue in elderly patients: Results of a randomized, double-blind, placebo-controlled, crossover exploratory study with epoetin alfa. *Journal of the American Geriatrics Society* 55(10):1557–1565.

167 Afdhal NH, Dieterich DT, Pockros PJ, Schiff ER, Shiffman ML, Sulkowski MS, et al. (2004). Epoetin alfa maintains ribavirin dose in HCV-infected patients: A prospective, double-blind, randomized controlled study. *Gastroenterology* 126(5):1302–1311.

168 Dieterich DT, Wasserman R, Brau N, Hassanein TI, Bini EJ, Bowers PJ, et al. (2003). Once-Weekly Epoetin Alfa Improves Anemia and Facilitates Maintenance of Ribavirin Dosing in Hepatitis C Virus-Infected Patients Receiving Ribavirin Plus Interferon Alfa. *American Journal of Gastroenterology* 98(11):2491-2499. 169 Marti-Carvajal AJ and Sola I (2007). Treatment for anemia in people with AIDS. *Cochrane Database of Systematic* 

*Reviews*(1). http://www.mrw.interscience.wiley.com/cochrane/clsysrev/articles/CD004776/pdf_fs.ht ml

170 Grossman HA, Goon B, Bowers P and Leitz G (2003). Once-weekly epoetin alfa dosing is as effective as three times-weekly dosing in increasing hemoglobin levels and is associated with improved quality of life in anemic HIV-infected patients. *Journal of Acquired Immune Deficiency Syndromes* 34:368–378.

171 Rendo P, Freigeiro D, Barboni G, Donato H, Drelichman G and Gonzalez F (2001). A multicenter, randomized, double-blind trial with recombinant human erythropoietin (rHuEPO) in anemic HIV-infected children treated with antiretrovirals. *International Journal of Pediatric Hematology/Oncology* 7:235–239.

172 Fischl M, Galpin JE, Levine JD, Groopman JE, Henry DH and Kennedy P (1990). Recombinant human erythropoietin for patients with AIDS treated with zidovudine. *New England Journal of Medicine* 332:1488–1493.

173 Sulkowski MS, Dieterich DT, Bini EJ, Brau N, Alvarez D and DeJesus E (2005). Epoetin alfa once weekly improves anemia in HIV/Hepatitis C virus-coinfected patients treated with interferon/ribavirin: a randomized controlled trial. *Journal of Acquired Immune Deficiency Syndromes* 39:504-506.

174 Kulnigg S, Stoinov S, Simanenkov V, Dudar LV, Karnafel W, Garcia LC, et al. (2008). A novel intravenous iron formulation for treatment of anemia in inflammatory bowel disease: The ferric carboxymaltose (FERINJECT(registered trademark)) randomized controlled trial. *American Journal of Gastroenterology* 103(5):1182-

1192. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L35167796 7

175 Schroder O, Mickisch O, Seidler U, De Weerth A, Dignass AU, Herfarth H, et al. (2005). Intravenous iron sucrose versus oral iron supplementation for the treatment of iron deficiency anemia in patients with inflammatory bowel disease - A randomized, controlled, open-label, multicenter study. *American Journal of Gastroenterology* 100(11):2503-2509.

Greenberg PL, Sun Z, Miller KB, Bennett JM, Tallman MS, Dewald G, et al. (2009). Treatment of myelodysplastic syndrome patients with erythropoietin with or without granulocyte colonystimulating factor: Results of a prospective randomized phase 3 trial by the Eastern Cooperative Oncology Group (E1996). *Blood* 114(12):2393–

2400. http://bloodjournal.hematologylibrary.org/cgi/reprint/114/12/2393

177 Thompson JA, Gilliland DG, Prchal JT, Bennett JM, Larholt K, Nelson RA, et al. (2000). Effect of recombinant human erythropoietin combined with granulocyte/macrophage colony-stimulating factor in the treatment of patients with myelodysplastic syndrome. *Blood* 95(4):1175–

1179. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L30099823

Ferrini PR, Grossi A, Vannucchi AM, Barosi G, Guarnone R, Piva N, et al. (1998). A randomized double-blind placebo-controlled study with subcutaneous recombinant human erythropoietin in patients with low-risk myelodysplastic syndromes. *British Journal of Haematology* 103(4):1070–1074. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L29012646

179 Anonymous (2012). *Patient blood management guidelines: Module 2 – Perioperative*. National Blood Authority, Canberra, Australia.

180 Baker RI, Coughlin PB, Gallus AS, Harper PL, Salem HH and Wood EM (2004). Warfarin reversal: consensus guidelines, on behalf of the Australasian Society of Thrombosis and Haemostasis. *Med J Aust* 181(9):492-497. http://www.ncbi.nlm.nih.gov/pubmed/15516194

181 O'Shaughnessy DF, Atterbury C, Bolton Maggs P, Murphy M, Thomas D, Yates S, et al. (2004). Guidelines for the use of fresh-frozen plasma, cryoprecipitate and cryosupernatant. *British Journal of Haematology* 126(1):11–28. http://www.ncbi.nlm.nih.gov/pubmed/15198728

182 Murad MH, Stubbs JR, Gandhi MJ, Wang AT, Paul A, Erwin PJ, et al. (2010). The effect of plasma transfusion on morbidity and mortality: A systematic review and meta-analysis. *Transfusion* 50(6):1370–1383.

183 Mannucci PM, Citterio LE and Panajotopoulos N (1976). Low dose heparin and deep vein thrombosis after total hip replacement. *Thrombosis and Haemostasis* 36(1):157–

164. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L7179111 184 Stanworth SJ, Brunskill SJ, Hyde CJ, Murphy MF and McClelland DBL (2006). Appraisal of the evidence for the clinical use of FFP and plasma fractions. *Best Practice and Research: Clinical Haematology* 19(1):67–82.

Stanworth SJ, Brunskill SJ, Hyde CJ, McClelland DBL and Murphy MF (2004). Is fresh frozen plasma clinically effective? A systematic review of randomized controlled trials. *British Journal of Haematology* 126(1):139–152.

186 Raphael JC, Chevret S, Hughes RA and Annane D (2002). Plasma exchange for Guillain-Barre syndrome. *Cochrane Database of Systematic Reviews*(2):CD001798.

187 Leese T, Holliday M, Watkins M, Neoptolemos JP, Thomas WM, Attard A, et al. (1991). A multicentre controlled clinical trial of high-volume fresh frozen plasma therapy in prognostically severe acute pancreatitis. *Annals of the Royal College of Surgeons of England* 73(4):207–

214. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L21235231
Leese T, Holliday M, Heath D, Hall AW and Bell PRF (1987). Multicentre clinical trial of low volume fresh frozen plasma therapy in acute pancreatitis. *British Journal of Surgery* 74(10):907–911. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L18010985

189 Gazzard BG, Henderson JM and Williams R (1975). The use of fresh frozen plasma or a concentrate of factor IX as replacement therapy before liver biopsy. *Gut* 16(8):621–

625. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L6135493
190 Anonymous (2003). Guidelines for the use of platelet transfusions. *British Journal of Haematology* 122(1):10-23. http://www.ncbi.nlm.nih.gov/pubmed/12823341

191 Cid J and Lozano M (2007). Lower or higher doses for prophylactic platelet transfusions: Results of a meta-analysis of randomized controlled trials. *Transfusion* 47(3):464–

470. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L46272494
Solomon J, Bofenkamp T, Fahey JL, Chillar RK and Beutel E (1978). Platelet prophylaxis in acute non-lymphoblastic leukaemia. *Lancet* 1:267.

Higby DJ, Cohen E, Holland JF and Sinks L (1974). The prophylactic treatment of
thrombocytopenic leukemic patients with platelets: A double blind study. *Transfusion* 14(5):440–
446. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L5164451

194 Slichter SJ (1997). Leukocyte reduction and ultraviolet B irradiation of platelets to prevent alloimmunization and refractoriness to platelet transfusions. *New England Journal of Medicine* 337(26):1861–

1869. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L28053025
 195 McCullough J, Vesole DH, Benjamin RJ, Slichter SJ, Pineda A, Snyder E, et al. (2004).
 Therapeutic efficacy and safety of platelets treated with a photochemical process for pathogen inactivation: The SPRINT trial. *Blood* 104(5):1534–

1541. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L39166535
Heim D, Passweg J, Gregor M, Buser A, Theocharides A, Arber C, et al. (2008). Patient and product factors affecting platelet transfusion results. *Transfusion* 48(4):681–

687. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L351430354 197 Osselaer JC, Messe N, Hervig T, Bueno J, Castro E, Espinosa A, et al. (2008). A prospective observational cohort safety study of 5106 platelet transfusions with components prepared with photochemical pathogen inactivation treatment. *Transfusion* 48(6):1061–

1071. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L35179347
9

198 Slichter SJ, Kaufman RM, Assmann SF, McCullough J, Triulzi DJ, Strauss RG, et al. (2010). Dose of prophylactic platelet transfusions and prevention of hemorrhage. *New England Journal of Medicine* 362(7):600–

613. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L358334244

199 Heddle NM, Cook RJ, Tinmouth A, Kouroukis CT, Hervig T, Klapper E, et al. (2009). A randomized controlled trial comparing standard- and low-dose strategies for transfusion of platelets (STOP) to patients with thrombocytopenia. *Blood* 113(7):1564–

**1573.** http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L35428670 0

Tinmouth A, Tannock IF, Crump M, Tomlinson G, Brandwein J, Minden M, et al. (2004). Lowdose prophylactic platelet transfusions in recipients of an autologous peripheral blood progenitor cell transplant and patients with acute leukemia: A randomized controlled trial with a sequential Bayesian design. *Transfusion* 44(12):1711–

1719. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L39644055
201 Goodnough LT, Kuter DJ, McCullough J, Slichter SJ, DiPersio J, Romo J, et al. (2001).

Prophylactic platelet transfusions from healthy apheresis platelet donors undergoing treatment with thrombopoietin. *Blood* 98(5):1346–

1351. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L35119599 202 Sensebé L, Giraudeau B, Bardiaux L, Deconinck E, Schmidt A, Bidet ML, et al. (2005). The efficiency of transfusing high doses of platelets in hematologic patients with thrombocytopenia: Results of a prospective, randomized, open, blinded end point (PROBE) study. *Blood* 105(2):862– 864. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L40070776

203 Stanworth SJ, Hyde C, Heddle N, Rebulla P, Brunskill S and Murphy MF (2004). Prophylactic platelet transfusion for haemorrhage after chemotherapy and stem cell transplantation. *Cochrane database of systematic reviews (Online)*(4):CD004269.

204 Rebulla P, Finazzi G, Marangoni F, Avvisati G, Gugliotta L, Tognoni G, et al. (1997). The threshold for prophylactic platelet transfusion in adults with acute myeloid leukemia. *New England Journal of Medicine* 337:1870–1875.

Heckman KD, Weiner GJ, Davis CS, Strauss RG, Jones MP and Burns CP (1997). Randomized study of prophylactic platelet transfusion threshold during induction therapy for adult acute leukemia: 10,000/microL versus 20,000/microL. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* 15:1143-1149.

206 Zumberg MS, Del Rosario MLU, Nejame CF, Pollock BH, Garzarella L, Kao KJ, et al. (2002). A prospective randomized trial of prophylactic platelet transfusion and bleeding incidence in hematopoietic stem cell transplat recipients: 10,000/(mu)L versus 20,000/(mu)L trigger. *Biology of Blood and Marrow Transplantation* 8(10):569-576.

Diedrich B, Remberger M, Shanwell A, Svahn BM and Ringden O (2005). A prospective randomized trial of a prophylactic platelet transfusion trigger of 10 109 per L versus 30 109 per L in allogeneic hematopoietic progenitor cell transplant recipients. *Transfusion* 45:1064–1072.

208 Garden OJ, Motyl H and Gilmour WH (1985). Prediction of outcome following acute variceal haemorrhage. *British Journal of Surgery* 72(2):91–

95. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L15170120 209 Violi F, Ferro D, Basili S, Cimminiello C, Saliola M, Vezza E, et al. (1995). Prognostic value of clotting and fibrinolytic systems in a follow-up of 165 liver cirrhotic patients. *Hepatology* 22(1):96– 100. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L25231490

Le Moine O, Adler M, Bourgeois N, Delhaye M, Deviere J, Gelin M, et al. (1992). Factors related to early mortality in cirrhotic patients bleeding from varices and treated by urgent sclerotherapy. *Gut* 33(10):1381–

1385. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L22310741

211 Krige JEJ, Kotze UK, Distiller G, Shaw JM and Bornman PC (2009). Predictive factors for rebleeding and death in alcoholic cirrhotic patients with acute variceal bleeding: A multivariate analysis. *World Journal of Surgery* 33(10):2127–

2135. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L50609151

212 Kim H, Lee JH, Choi SJ, Seol M, Lee YS, Kim WK, et al. (2006). Risk score model for fatal intracranial hemorrhage in acute leukemia. *Leukemia* 20(5):770–

776. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L43630916 213 Dally N, Hoffman R, Haddad N, Sarig G, Rowe JM and Brenner B (2005). Predictive factors of bleeding and thrombosis during induction therapy in acute promyelocytic leukemia - A single center experience in 34 patients. *Thrombosis Research* 116(2):109-

114. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L40720186

Nallamothu BK, Bates ER, Hochman JS, Granger CB, Guetta V, Wilcox RG, et al. (2005).
 Prognostic implication of activated partial thromboplastin time after reteplase or half-dose reteplase plus abciximab: Results from the GUSTO-V trial. *European Heart Journal* 26(15):1506–

1512. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L41373491 215 Masera G, Terzoli S and Avanzini A (1982). Evaluation of the supertransfusion regimen in homozygous beta-thalassaemia children. *British Journal of Haematology* 52(1):111–113.

Torcharus K, Withayathawornwong W, Sriphaisal T, Krutvacho T, Arnutti P and Suwanasophorn C (1993). High transfusion in children with beta-thalassemia/Hb E: Clinical and laboratory assessment of 18 cases. *The Southeast Asian Journal of Tropical Medicine and Public Health* 24 Suppl 1:96–99.

217 Cazzola M, Borgna-Pignatti C, Locatelli F, Ponchio L, Beguin Y and De Stefano P (1997). A moderate transfusion regimen may reduce iron loading in (beta)-thalassemia major without producing excessive expansion of erythropoiesis. *Transfusion* 37(2):135–140.

Roudbari M, Soltani-Rad M and Roudbari S (2008). The survival analysis of beta thalassemia major patients in south east of Iran. *Saudi Medical Journal* 29(7):1031–

1035. http://www.smj.org.sa/PDFFiles/Jul08/19Survival20071262.pdf

219 Pinchon DJ, Stanworth SJ, Doree C, Brunskill S and Norfolk DR (2009). Quality of life and use of red cell transfusion in patients with myelodysplastic syndromes. A systematic review. *American Journal of Hematology* 84(10):671–677. http://www3.interscience.wiley.com/cgi-bin/fulltext/122514446/PDFSTART

Jansen AJG, Essink-Bot ML, Beckers EAM, Hop WCJ, Schipperus MR and Van Rhenen DJ (2003). Quality of life measurement in patients with transfusion-dependent myelodysplastic syndromes. *British Journal of Haematology* 121(2):270–274.

221 Michaux JL and Martiat P (1991). Chronic myelomonocytic leukemia: Single entity or heterogeneous disorder? A prospective multicenter study of 100 patients. *Cancer Genetics and Cytogenetics* 55(1):57–

65. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L21312498

Aul C, Gattermann N, Heyll A, Germing U, Derigs G and Schneider W (1992). Primary myelodysplastic syndromes: Analysis of prognostic factors in 235 patients and proposals for an improved scoring system. *Leukemia* 6(1):52–59.

223 Breccia M, Latagliata R, Cannella L, Carmosino I, De Cuia R, Frustaci A, et al. (2009). Analysis of prognostic factors in patients with refractory anemia with excess of blasts (RAEB) reclassified according to WHO proposal. *Leukemia Research* 33(3):391–394.

224 Catalano L, Improta S, De Laurentiis M, Molica S, Majolino I, Musto P, et al. (1996). Prognosis of chronic myelomonocytic leukemia. *Haematologica* 81(4):324–

329. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L28020628

225 Demirkan F, Alacacioglu I, Piskin O, Ozsan GH, Ozcan MA and Undar B (2008). Prognostic factors and scoring systems in chronic myelomonocytic leukemia: A retrospective analysis of 37 patients. *UHOD - Uluslararasi Hematoloji-Onkoloji Dergisi* 18(4):193-200.

Fenaux P, Beuscart R, Lai JL, Jouet JP and Bauters F (1988). Prognostic factors in adult chronic myelomonocytic leukemia: An analysis of 107 cases. *Journal of Clinical Oncology* 6(9):1417–1424.

227 Garcia S, Sanz MA, Amigo V, Colomina P, Dolores Carrera M, Ignacio Lorenzo J, et al. (1988). Prognostic factors in chronic myelodysplastic syndromes: A multivariate analysis in 107 cases. *American Journal of Hematology* 27(3):163–168.

228 Germing U, Gattermann N, Minning H, Heyll A and Aul C (1998). Problems in the classification of CMML - Dysplastic versus proliferative type. *Leukemia Research* 22(10):871-

878. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L28438295

229 Gonzalez-Medina I, Bueno J, Torrequebrada A, Lopez A, Vallespi T and Massague I (2002). Two groups of chronic myelomonocytic leukaemia: Myelodysplastic and myeloproliferative. Prognostic implications in a series of a single center. *Leukemia Research* 26(9):821–

824. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L34778496

230 Guerci AP, Feldmann L, Humbert JC and Guerci O (1995). Refractory anemia with excess of blasts: A multivariate analysis of prognostic factors in 91 patients and a simplified scoring system for predicting survival. *European Journal of Haematology* 54(4):241–244.

231 Kao JM, McMillan A and Greenberg PL (2008). International MDS risk analysis workshop (IMRAW)/IPSS reanalyzed: Impact of cytopenias on clinical outcomes in myelodysplastic syndromes. *American Journal of Hematology* 83(10):765–770.

Onida F, Kantarjian HM, Smith TL, Ball G, Keating MJ, Estey EH, et al. (2002). Prognostic factors and scoring systems in chronic myelomonocytic leukemia: A retrospective analysis of 213 patients. *Blood* 99(3):840–849.

233 Riccardi A, Giordano M, Giordano P, Cassano E, Girino M, Cazzola M, et al. (1988). Prognostic parameters in myelodysplastic syndromes: A multiple regression analysis. *European Journal of Haematology* 40(2):158–162.

Sanz GF, Sanz MA, Vallespi T, Canizo MC, Torrabadella M, Garcia S, et al. (1989). Two regression models and a scoring system for predicting survival and planning treatment in myelodysplastic syndromes: A multivariate analysis of prognostic factors in 370 patients. *Blood* 74(1):395–408.

Solal-Celigny P, Desaint B and Herrera A (1984). Chronic myelomonocytic leukemia according to FAB classification: Analysis of 35 cases. *Blood* 63(3):634–

638. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L14199151
236 Takahashi M, Koike T, Kishi K, Moriyama Y, Hayashi S and Shibata A (1990). Prognostic
features in the myelodysplastic syndromes: Importance of morphological atypia in the marrow cell

lineages. *Leukemia and Lymphoma* 1(2):141–146.
237 Tefferi A, Hoagland HC, Therneau TM and Pierre RV (1989). Chronic myelomonocytic
leukemia: Natural history and prognostic determinants. *Mayo Clinic Proceedings* 64(10):1246–1254.