The conundrum of antibodies of undetermined significance (AUS) masking clinically significant alloantibodies: what is your laboratory protocol?

Clameo Chimfombo
SydPath Pathology (St Vincent Hospital Sydney)
Moree Hospital, NSW
Australia
Antibodies of Undetermined Significance (AUS)

- Some clinically significant alloantibodies can weaken and evanesce over time, thus making them difficult to detect.

- 18% of reported alloantibodies are antibodies of undetermined significance (AUS) also known as non-specific antibodies and are generally unexplained agglutination reactions.

- Current Australia and New Zealand Society of Blood Transfusion (ANZBST) guidelines for transfusion and immunohaematology laboratory practice (1st ed, November 2016) section 2.7.7 states “Using a variety of different techniques – for example, enzyme-treated cells, polyethylene glycol (PEG)-IAT, prewarmed reagents or neutralisation – may assist in confirming the presence of Rh antibodies, antibodies weakly reactive by IAT or suspected mixture of antibodies” p15.
AIM

- Discuss a protocol recently published in a peer reviewed article and the ramifications of investigating AUS.

- Learn from peers their respective protocols and discuss their practicality and challenges.
Science

Ficin-Treated Red Cells Help Identify Clinically Significant Alloantibodies Masked as Reactions of Undetermined Specificity in Gel Microtubes

Ben C. Hill, MD,¹ Courtney A. Hanna, MD,¹ Jill Adamski, MD, PhD,² Huy P. Pham, MD, MPH,¹ Marisa B. Marques, MD,¹ Lance A. Williams III, MD¹

Laboratory Medicine 48:1:24-26
DOI: 10.1093/labmed/lmv062

ABSTRACT

Non-specific antibodies or antibodies of undetermined significance (AUS) often pose problems for a blood bank technologist and physician. It is well known that antibodies can weaken and evanescce over time, thus eluding detection by routine blood bank techniques. Special enhancement techniques exist (eg, ficin treatment); however, they are often underutilized due to concerns over expense. Ficin is known to enhance reactivity caused by antibodies in the ABO, Rh, Kidd, Lewis, I, and P blood group systems, while destroying reactivity of antibodies in the Duffy, and MNS blood group systems. Herein, we discuss our protocol for using ficin treatment to determine the specificity of antibodies that would otherwise be classified as AUS. Of the 97 AUS specimens that were treated with ficin, we were able to identify 25 new alloantibodies that would have otherwise been missed without ficin treatment. Thus, we believe our protocol enhances transfusion safety, while minimizing additional workload and cost.

Keywords: antibodies of undetermined significance, AUS, gel, ficin, evanescce, alloantibodies
Index Case

- Patient with history of multiple transfusion.
- AUS identified (previously identified 18 months earlier)
- Ficin-treated reagent applied to patient plasma (ficin is a proteolytic enzyme which enhances reactivity in ABO, Rh, Kidd, Lewis, P an I antigens while destroying Duffy and MSN antigens)
- Two clinically significant antibodies; anti- C and anti-e identified (patient phenotypically negative for these antigens)
From: Ficin-Treated Red Cells Help Identify Clinically Significant Alloantibodies Masked as Reactions of Undetermined Specificity in Gel Microtubes
Lab Med | © American Society for Clinical Pathology, 2016. All rights reserved.
• Of the 97 AUS investigated with ficin-treated red cells, 25 new alloantibodies were identified with 22 being clinically significant.

• Concluded: Ficin-treated red cells help identify clinically significant alloantibodies masked as reactions of undetermined specificity in gel microtubes.
Summary of New Alloantibodies Requiring Ficin for Identification

<table>
<thead>
<tr>
<th>Antibody Specificity</th>
<th>Antibodies Identified (All Methods), No.</th>
<th>Antibodies Requiring Ficin-Treated Cells for Identification, No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>61</td>
<td>8 (13.1%)</td>
</tr>
<tr>
<td>C</td>
<td>22</td>
<td>2 (9.1%)</td>
</tr>
<tr>
<td>E</td>
<td>51</td>
<td>10 (19.6%)</td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td>1 (50.0%)</td>
</tr>
<tr>
<td>Jk<sup>a</sup></td>
<td>11</td>
<td>1 (9.1%)</td>
</tr>
<tr>
<td>Le<sup>a</sup></td>
<td>7</td>
<td>2 (28.6%)</td>
</tr>
<tr>
<td>Le<sup>b</sup></td>
<td>1</td>
<td>1 (100%)</td>
</tr>
<tr>
<td>Total</td>
<td>155</td>
<td>25 (16.1%)</td>
</tr>
</tbody>
</table>
Discussion

- Should AUS only be reported after utilising different techniques for example enzyme-treated cells as was done in index case?
- What are the reasonable approaches in establishing a similar protocol noting that 75 of the 97 of AUS workup still showed AUS?
- Let’s share protocols aiming to improve current practises.
Our protocol

- Screening CAT screen (AUS)

Do Tube, no additive IAT AbSc

- neg
 - Report screen neg

- pos
 - Do tube panel

AUS

- Do Rh, K, Fy, Jk, Ss phenotype if able
 - CXM with Rh K matched
 - Send Red Cell Ref
 - Discretion of senior scientist

Discretion of senior scientist
Acknowledgements

- Ms Rosemary Marando, Senior Scientist, Transfusion, SydPath, St Vincent's Hospital Sydney
References

