
With the exception of any logos and registered trademarks, and where otherwise noted, all material presented in this document is provided under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Australia (http://creativecommons.org/licenses/by-nc-sa/3.0/au/) licence.

You are free to copy, communicate and adapt the work for non-commercial purposes, as long as you attribute the authors and distribute any derivative work (i.e. new work based on this work) only under this licence.

If you adapt this work in any way or include it in a collection, and publish, distribute or otherwise disseminate that adaptation or collection to the public, it should be attributed in the following way:

This work is based on/includes The National Blood Authority’s Patient Blood Management Guideline: Module 2 – Perioperative which is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Australia licence.

Where this work is not modified or changed, it should be attributed in the following way:

ISBN 978-0-9775298-8-9

For more information:
Patient Blood Management Guidelines
National Blood Authority
Locked Bag 8430
Canberra ACT 2601
Telephone: (02) 6211 8300
Email: guidelines@nba.gov.au
Website: www.nba.gov.au

Disclaimer
This document is a general guide to appropriate practice, to be followed subject to the circumstances, clinician’s judgement and patient’s preferences in each individual case. It is designed to provide information to assist decision making. Recommendations contained herein are based on the best available evidence published up to the dates shown in Appendix D in the module. The relevance and appropriateness of the information and recommendations in this document depend on the individual circumstances. Moreover, the recommendations and guidelines are subject to change over time.

Each of the parties involved in developing this document expressly disclaims and accepts no responsibility for any undesirable consequences arising from relying on the information or recommendations contained herein.
Patient Blood Management Guidelines: Module 2 - Perioperative

Development of this module was achieved through clinical input and expertise of representatives from the Colleges and Societies listed below and an independent consumer advocate (see Appendix A in the module).

Australasian College for Emergency Medicine
Australian and New Zealand College of Anaesthetists
Australian and New Zealand Intensive Care Society
Australian and New Zealand Society of Blood Transfusion
Australian Orthopaedic Association
Australian Red Cross Blood Service
College of Intensive Care Medicine of Australia and New Zealand
Haematology Society of Australia and New Zealand
Royal Australian and New Zealand College of Obstetricians and Gynaecologists
Royal Australasian College of Physicians
Royal Australasian College of Surgeons
Royal College of Nursing Australia
Royal College of Pathologists of Australasia
Thalassaemia Australia

The National Blood Authority gratefully acknowledges these contributions. College and Society endorsement of this Module can be found at http://www.nba.gov.au

Funding, Secretariat and Project Management was provided by the National Blood Authority Australia. The systematic review methods, writing of the document or development of the final recommendations and practice points have not been influenced by the views or interests of the funding body.
Patient Blood Management Guidelines: Module 2 | Perioperative
Abbreviations and acronyms

ANH acute normovolemic haemodilution
ASBT Australasian Society of Blood Transfusion
CABG coronary artery bypass surgery
CPB cardiopulmonary bypass surgery
CRG Clinical/Consumer Reference Group
ESA erythropoiesis-stimulating agent
FFP fresh frozen plasma
ICU intensive care unit
INR international normalised ratio
MAP mean arterial blood pressure
NBA National Blood Authority
NHMRC National Health and Medical Research Council
NSAID nonsteroidal anti-inflammatory drug
OPCAB off-pump coronary artery bypass
PAD preoperative autologous donation
PP practice point
R recommendation
RBC red blood cell
rFVIIa recombinant activated factor VIIa
TEG thromboelastography
TGA Therapeutic Goods Administration
Contents

Abbreviations and acronyms

1. Introduction

2. Development of recommendations and practice points

3. Categorisation of recommendations and practice points

4. Recommendations and practice points
 4.1 Patient blood management program
 4.2 Anaemia and haemostasis
 4.3 Blood conservation strategies
 4.4 Appropriate transfusion practices

5. Preoperative haemoglobin assessment and optimisation template

6. Blood component product information

7. References
1. Introduction

The Patient Blood Management Guidelines: Module 2 – Perioperative (Module 2 – Perioperative), is the second in a series of six modules that focus on evidence-based patient blood management. The other five modules are critical bleeding/massive transfusion, medical, critical care, obstetrics and paediatrics/neonates. Together, the six modules supersede the 2001 National Health and Medical Research Council/Australasian Society of Blood Transfusion (NHMRC/ASBT) Clinical Practice Guidelines on the Use of Blood Components.1

Module 2 – Perioperative was developed by a Clinical/Consumer Reference Group (CRG) representing specialist colleges, organisations and societies, with the active participation of the clinical community.

This quick reference guide of Module 2 – Perioperative includes:

- a summary of the recommendations that were developed by the CRG, based on evidence from a systematic review
- a summary of the practice points that were developed by the CRG through consensus decision making
- a preoperative haemoglobin assessment and optimisation template.

Details of the systematic reviews used in the development of Module 2 – Perioperative, for which the search cut-off dates were in mid-2009, are given in the technical reports2,3,4,5 available on the National Blood Authority (NBA) website.
2. Development of recommendations and practice points

Recommendations

The CRG developed recommendations where sufficient evidence was available from the systematic review of the literature. The recommendations have been carefully worded to reflect the strength of the body of evidence. Each recommendation has been given a grade, using the following definitions, which were set by the NHMRC:

<table>
<thead>
<tr>
<th>GRADE A</th>
<th>Body of evidence can be trusted to guide practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRADE B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>GRADE C</td>
<td>Body of evidence provides some support for recommendation(s) but care should be taken in its application</td>
</tr>
<tr>
<td>GRADE D</td>
<td>Body of evidence is weak and recommendations must be applied with caution</td>
</tr>
</tbody>
</table>

Practice Points

The CRG developed practice points where the systematic review found insufficient high-quality data to produce evidence-based recommendations, but the CRG felt that clinicians require guidance to ensure good clinical practice. These points are based on consensus among the members of the committee.

This quick reference guide summarises the recommendations and practice points in a sequence that reflects clinical practice.
3. Categorisation of recommendations and practice points

The following table categorises the recommendations and practice points according to different elements of patient blood management. It also identifies where to find the recommendations and practice points within this quick reference guide and Module 2 – Perioperative, where references are provided.

This section is followed by a series of tables giving the full recommendations and practice points for each element.

<table>
<thead>
<tr>
<th>ELEMENT OF PATIENT BLOOD MANAGEMENT</th>
<th>RECOMMENDATION</th>
<th>PRACTICE POINT</th>
<th>RELEVANT SECTION OF THIS QUICK REFERENCE GUIDE</th>
<th>RELEVANT SECTION OF MODULE 2 – PERIOPERATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient blood management program</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establishment</td>
<td>R1</td>
<td>PP12–13</td>
<td>4.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Implementation</td>
<td>R1</td>
<td>PP12–13</td>
<td>4.1</td>
<td>3.3</td>
</tr>
<tr>
<td>Procedural guidelines</td>
<td>R1</td>
<td>PP12–13</td>
<td>4.1</td>
<td>3.6.5, 3.6.6</td>
</tr>
<tr>
<td>Anaemia and haemostasis management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative anaemia assessment</td>
<td>R2–3</td>
<td>PP1, PP4–5</td>
<td>4.2</td>
<td>3.3, 3.4</td>
</tr>
<tr>
<td>Iron and ESA therapy</td>
<td>R4–6</td>
<td>PP6–7</td>
<td>4.2</td>
<td>3.4</td>
</tr>
<tr>
<td>Haemostasis management</td>
<td>R7–10</td>
<td>PP8–10</td>
<td>4.2</td>
<td>3.5</td>
</tr>
<tr>
<td>Blood conservation strategies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative autologous donation</td>
<td>R11</td>
<td></td>
<td>4.3</td>
<td>3.6.1</td>
</tr>
<tr>
<td>Intraoperative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgical haemostasis</td>
<td></td>
<td></td>
<td></td>
<td>3.6</td>
</tr>
<tr>
<td>Prevention of hypothermia</td>
<td>R12</td>
<td></td>
<td>4.3</td>
<td>3.6.2</td>
</tr>
<tr>
<td>ELEMENT OF PATIENT BLOOD MANAGEMENT</td>
<td>RECOMMENDATION</td>
<td>PRACTICE POINT</td>
<td>RELEVANT SECTION OF THIS QUICK REFERENCE GUIDE</td>
<td>RELEVANT SECTION OF MODULE 2 – PERIOPERATIVE</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Appropriate patient positioning</td>
<td></td>
<td>PP11</td>
<td>4.3</td>
<td>3.6.3</td>
</tr>
<tr>
<td>Deliberate induced hypotension</td>
<td>R13</td>
<td></td>
<td>4.3</td>
<td>3.6.4</td>
</tr>
<tr>
<td>Acute normovolemic haemodilution</td>
<td>R14</td>
<td>PP12</td>
<td>4.3</td>
<td>3.6.5</td>
</tr>
<tr>
<td>Intraoperative cell salvage</td>
<td>R15</td>
<td>PP13</td>
<td>4.3</td>
<td>3.6.6</td>
</tr>
<tr>
<td>Haemostasis analysis</td>
<td>R16</td>
<td></td>
<td>4.3</td>
<td>3.6.8</td>
</tr>
<tr>
<td>Medications</td>
<td>R17–19</td>
<td>PP14–16</td>
<td>4.3</td>
<td>3.6.9</td>
</tr>
<tr>
<td>Postoperative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postoperative cell salvage</td>
<td>R20</td>
<td></td>
<td>4.3</td>
<td>3.6.10</td>
</tr>
<tr>
<td>Appropriate transfusion practices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triggers for component transfusion</td>
<td></td>
<td>PP2–3, PP17–18</td>
<td>4.4</td>
<td>3.3, 3.7</td>
</tr>
<tr>
<td>Fresh frozen plasma</td>
<td>R21</td>
<td></td>
<td>4.4</td>
<td>3.8</td>
</tr>
<tr>
<td>Platelets</td>
<td></td>
<td>PP19</td>
<td>4.4</td>
<td>3.8</td>
</tr>
<tr>
<td>Recombinant activated factor VII</td>
<td>R22</td>
<td>PP20</td>
<td>4.4</td>
<td>3.9</td>
</tr>
</tbody>
</table>
4. Recommendations and practice points

4.1 Patient blood management program

RECOMMENDATION – establishment

| R1 | Health-care services should establish a multidisciplinary, multimodal perioperative patient blood management program (Grade C). This should include preoperative optimisation of red cell mass and coagulation status; minimisation of perioperative blood loss, including meticulous attention to surgical haemostasis; and tolerance of postoperative anaemia. |
| GRADE C |

PRACTICE POINT – implementation

| PP1 | To implement the above recommendations, a multimodal, multidisciplinary patient blood management program is required. All surgical patients should be evaluated as early as possible to coordinate scheduling of surgery with optimisation of the patient’s haemoglobin and iron stores. |

PRACTICE POINTS – procedural guidelines

| PP12 | ANH requires a local procedural guideline that addresses patient selection, vascular access, volume of blood withdrawn, choice of replacement fluid, blood storage and handling, and timing of reinfusion. |
| PP13 | Intraoperative cell salvage requires a local procedural guideline that should include patient selection, use of equipment and reinfusion. All staff operating cell salvage devices should receive appropriate training, to ensure knowledge of the technique and proficiency in using it. |

ANH, acute normovolemic haemodilution
4.2 Anaemia and haemostasis management

RECOMMENDATIONS – preoperative anaemia assessment

<table>
<thead>
<tr>
<th>R2</th>
<th>GRADE C</th>
</tr>
</thead>
<tbody>
<tr>
<td>In patients undergoing cardiac surgery, preoperative anaemia should be identified, evaluated and managed to minimise RBC transfusion, which may be associated with an increased risk of morbidity, mortality, ICU length of stay and hospital length of stay (Grade C).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R3</th>
<th>GRADE C</th>
</tr>
</thead>
<tbody>
<tr>
<td>In patients undergoing noncardiac surgery, preoperative anaemia should be identified, evaluated and managed to minimise RBC transfusion, which may be associated with an increased risk of morbidity, mortality, ICU length of stay and hospital length of stay (Grade C).</td>
<td></td>
</tr>
</tbody>
</table>

PRACTICE POINTS – preoperative anaemia assessment

| PP1 | |
|-----| |
| To implement the above recommendations, a multimodal, multidisciplinary patient blood management program is required. All surgical patients should be evaluated as early as possible to coordinate scheduling of surgery with optimisation of the patient’s haemoglobin and iron stores. |

| PP4 | |
|-----| |
| All surgical patients should be evaluated as early as possible to manage and optimise haemoglobin and iron stores. |

| PP5 | |
|-----| |
| Elective surgery should be scheduled to allow optimisation of patients’ haemoglobin and iron stores. |

RECOMMENDATIONS – iron and erythropoiesis-stimulating agents

<table>
<thead>
<tr>
<th>R4</th>
<th>GRADE B</th>
</tr>
</thead>
<tbody>
<tr>
<td>In surgical patients with, or at risk of, iron-deficiency anaemia, preoperative oral iron therapy is recommended (Grade B). Refer to the preoperative haemoglobin assessment and optimisation template [Section 5] for further information on the optimal dosing strategy.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R5</th>
<th>GRADE A</th>
</tr>
</thead>
<tbody>
<tr>
<td>In patients with preoperative anaemia, where an ESA is indicated, it must be combined with iron therapy (Grade A).</td>
<td></td>
</tr>
</tbody>
</table>
RECOMMENDATION – iron and erythropoiesis-stimulating agent

R6
In patients with postoperative anaemia, early oral iron therapy is not clinically effective; its routine use in this setting is not recommended (Grade B).

PP6
Surgical patients with suboptimal iron stores (as defined by a ferritin level <100 μg/L) in whom substantial blood loss (blood loss of a volume great enough to induce anaemia that would require therapy) is anticipated, should be treated with preoperative iron therapy.

Refer to the preoperative haemoglobin assessment and optimisation template [Section 5] for further information on the evaluation and management of preoperative patients.

PP7
In patients with preoperative iron-deficiency anaemia or depleted iron stores, treatment should be with iron alone. In patients with anaemia of chronic disease (also known as anaemia of inflammation), ESAs may be indicated.

Refer to the preoperative haemoglobin assessment and optimisation template [Section 5] for further information on the evaluation and management of preoperative patients.

RECOMMENDATIONS – haemostasis management

R7
In patients undergoing CABG either with or without CPB (OPCAB), clopidogrel therapy should be stopped, where possible, at least 5 days before surgery (Grade C).

R8
In patients undergoing noncardiac surgery, it is reasonable to continue low dose aspirin therapy. This may require specific evaluation in neurosurgery and intraocular surgery (Grade C).

R9
In patients undergoing elective orthopaedic surgery, NSAID therapy should be ceased preoperatively to reduce blood loss and transfusion (Grade C). The timing of the cessation should reflect the agent’s pharmacology.
RECOMMENDATIONS – haemostasis management

| R10 | In patients undergoing minor dental procedures, arthrocentesis, cataract surgery, upper gastrointestinal endoscopy without biopsy or colonoscopy without biopsy, warfarin may be continued (Grade B). |

PRACTICE POINTS – haemostasis management

PP8	In patients undergoing cardiac surgery, aspirin may be continued until the time of surgery.
PP9	In patients receiving clopidogrel who are scheduled for elective noncardiac surgery or other invasive procedures, a multidisciplinary approach should be used to decide whether to cease therapy or defer surgery, balancing the risk of bleeding and thrombotic events. Specific evaluation is required for patients who had a recent stroke, or received a drug-eluting stent within the last 12 months or a bare metal stent within the last 6 weeks. If a decision is made to cease therapy preoperatively, this should occur 7–10 days before surgery.
PP10	In patients receiving warfarin who are scheduled for elective noncardiac surgery or other invasive procedures (excluding minor procedures—see Recommendation 10), specific management according to current guidelines is required (e.g. guidelines from the American College of Chest Physicians\(^6\) and the Australasian Society of Thrombosis and Haemostasis).\(^2\)

CABG, coronary artery bypass surgery; CPB, cardiopulmonary bypass; NSAID, nonsteroidal anti-inflammatory drug; OPCAB, off-pump coronary artery bypass
4.3 Blood conservation strategies

Preoperative

RECOMMENDATION – preoperative autologous donation

R11

The *routine* use of PAD is not recommended because, although it reduces the risk of allogeneic RBC transfusion, it increases the risk of receiving any RBC transfusion (allogeneic and autologous) (Grade C).

PAD, preoperative autologous donation; RBC, red blood cell

Intraoperative

RECOMMENDATION – prevention of hypothermia

R12

In patients undergoing surgery, measures to prevent hypothermia should be used (Grade A).

PRACTICE POINT – appropriate patient positioning

PP11

Excessive venous pressure at the site of surgery should be avoided by appropriate patient positioning, both during and after the procedure.

RECOMMENDATION – deliberate induced hypotension

R13

In patients undergoing radical prostatectomy or major joint replacement, if substantial blood loss (blood loss of a volume great enough to induce anaemia that would require therapy) is anticipated, deliberate induced hypotension (MAP 50–60 mmHg) should be considered, balancing the risk of blood loss and the preservation of vital organ perfusion (Grade C).

MAP, mean arterial blood pressure
RECOMMENDATION – acute normovolemic haemodilution

R14
GRADE C
In adult patients undergoing surgery in which substantial blood loss (blood loss of a volume great enough to induce anaemia that would require therapy) is anticipated, the use of ANH should be considered (Grade C).

PRACTICE POINT – acute normovolemic haemodilution

PP12
ANH requires a local procedural guideline that addresses patient selection, vascular access, volume of blood withdrawn, choice of replacement fluid, blood storage and handling, and timing of reinfusion.

ANH, acute normovolemic haemodilution

RECOMMENDATION – intraoperative cell salvage

R15
GRADE C
In adult patients undergoing surgery in which substantial blood loss (blood loss of a volume great enough to induce anaemia that would require therapy) is anticipated, intraoperative cell salvage is recommended (Grade C).

PRACTICE POINT – intraoperative cell salvage

PP13
Intraoperative cell salvage requires a local procedural guideline that should include patient selection, use of equipment and reinfusion. All staff operating cell salvage devices should receive appropriate training, to ensure knowledge of the technique and proficiency in using it.

RECOMMENDATION – haemostasis analysis

R16
GRADE C
In adult patients undergoing cardiac surgery, the use of TEG should be considered (Grade C).

TEG, thromboelastography
PRACTICE POINT – medications (aprotinin)

PP14

There is evidence for the beneficial effect of intravenous aprotinin on incidence and volume of transfusion, blood loss, and the risk of reoperation for bleeding. However, the drug has been withdrawn due to concerns that it is less safe than alternative therapies.\(^a\)

\(^a\) Websites of the Therapeutic Goods Administration (www.tga.gov.au), MedSafe (www.medsafe.govt.nz) and United States Food and Drug Administration (www.fda.gov)

RECOMMENDATIONS – medications (tranexamic acid)

R17

GRADE A

In adult patients undergoing cardiac surgery, the use of intravenous tranexamic acid is recommended (Grade A).

R18

GRADE B

In adult patients undergoing noncardiac surgery, if substantial blood loss (blood loss of a volume great enough to induce anaemia that would require therapy) is anticipated, the use of intravenous tranexamic acid is recommended (Grade B).

RECOMMENDATION – medications (ε-aminocaproic acid)

R19

GRADE C

In adult patients undergoing cardiac surgery, the use of intravenous ε-aminocaproic acid is recommended (Grade C).

PRACTICE POINT – medications (ε-aminocaproic acid)

PP15

There is evidence for the beneficial effect of intravenous ε-aminocaproic acid on reduction of perioperative blood loss and volume of transfusion (Grade C). However, the drug is not marketed in Australia and New Zealand.
Practice Point – medications (desmopressin)

PP16 In adult patients undergoing surgery in which substantial blood loss (blood loss of a volume great enough to induce anaemia that would require therapy) is anticipated, the *routine* use of desmopressin is not supported, due to uncertainty about the risk of stroke and mortality.

Postoperative

Recommendation – postoperative cell salvage

R20 In adult patients undergoing cardiac surgery or total knee arthroplasty, in whom significant postoperative blood loss is anticipated, postoperative cell salvage should be considered (Grade C).
4.4 Appropriate transfusion practices

<table>
<thead>
<tr>
<th>PRACTICE POINTS – triggers for blood component transfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP2</td>
</tr>
<tr>
<td>PP3</td>
</tr>
<tr>
<td>PP17</td>
</tr>
<tr>
<td>PP18</td>
</tr>
</tbody>
</table>

INR, international normalised ratio; RBC, red blood cell

RECOMMENDATION – fresh frozen plasma

| **R21** | The prophylactic use of FFP in cardiac surgery is not recommended (Grade B). |

FFP, fresh frozen plasma

PRACTICE POINT – platelets

| **PP19** | The prophylactic use of platelets after cardiac surgery is not supported. |
RECOMMENDATION – recombinant activated factor VII

R22
GRADE C
The prophylactic or routine therapeutic use of rFVIIa is not recommended because concerns remain about its safety profile, particularly in relation to thrombotic adverse events (Grade C).

PRACTICE POINT – recombinant activated factor VII

PP20
The administration of rFVIIa may be considered in the perioperative patient with life-threatening haemorrhage after conventional measures, including surgical haemostasis, use of antifibrinolytics and appropriate blood component therapy have failed.

rFVIIa, recombinant activated factor VII
Preoperative tests
- Full blood count
- Iron studies including ferritin
- CRP and renal function

Is the patient anaemic?
Hb <130 g/L (male) or Hb <120 g/L (female)

NO

Ferritin <30 mcg/L
- No anaemia: ferritin <100 mcg/L
 - Consider iron therapy* if anticipated postoperative Hb decrease is ≥30 g/L
 - Determine cause and need for GI investigations if ferritin is suggestive of iron deficiency <30 mcg/L

Iron deficiency anaemia
- Evaluate possible causes based on clinical findings
- Discuss with gastroenterologist regarding GI investigations and their timing in relation to surgery
- Commence iron therapy*

Possible iron deficiency
- Consider clinical context
- Consider haematology advice or, in the presence of chronic kidney disease, renal advice
- Discuss with gastroenterologist regarding GI investigations and their timing in relation to surgery
- Commence iron therapy*

YES

Ferritin 30–100 mcg/L
- Raised
- Normal

Ferritin >100 mcg/L
- CRP
- Raised
- Normal

Possible iron deficiency
- Consider clinical context
- Review renal function, MCV/MCH and blood film
- Check B12/folate levels and reticulocyte count
- Check liver and thyroid function
- Seek haematology advice or, in the presence of chronic kidney disease, renal advice

Possible anaemia of chronic disease or inflammation, or other cause
- Consider clinical context
- Check liver and thyroid function
- Seek haematology advice or, in the presence of chronic kidney disease, renal advice

Preoperative haemoglobin assessment and optimisation template

This template is for patients undergoing procedures in which substantial blood loss is anticipated such as cardiac surgery, major orthopaedic, vascular and general surgery. Specific details, including reference ranges and therapies, may need adaptation for local needs, expertise or patient groups.

An editable electronic copy of this template is available on the National Blood Authority’s website (www.nba.gov.au).
Iron therapy

Oral iron in divided daily doses. Evaluate response after 1 month. Provide patient information material.

IV iron if oral iron contraindicated, is not tolerated or effective; and consider if rapid iron repletion is clinically important (e.g. <2 months to non deferrable surgery).

NOTE: 1 mcg/L of ferritin is equivalent to 8–10 mg of storage iron. It will take approximately 165 mg of storage iron to reconstitute 10 g/L of Hb in a 70 kg adult. If preoperative ferritin is <100 mcg/L, blood loss resulting in a postoperative Hb drop of ≥30 g/L would deplete iron stores.

In patients not receiving preoperative iron therapy, if unanticipated blood loss is encountered, 150 mg IV iron per 10 g/L Hb drop may be given to compensate for bleeding related iron loss (1 ml blood contains ~0.5 mg elemental iron)

Abbreviations

- CRP = C-reactive protein
- GI = gastrointestinal
- Hb = haemoglobin
- IV = intravenous
- MCV = mean cell/corpuscular volume (fL)
- MCH = mean cell/corpuscular haemoglobin (pg)

Footnotes

1. Anaemia may be multifactorial, especially in the elderly or in those with chronic disease, renal impairment, nutritional deficiencies or malabsorption.

2. In an anaemic adult, a ferritin level <15 mcg/L is diagnostic of iron deficiency, and levels between 15–30 mcg/L are highly suggestive. However, ferritin is elevated in inflammation, infection, liver disease and malignancy. This can result in misleadingly elevated ferritin levels in iron-deficient patients with coexisting systemic illness. In the elderly or in patients with inflammation, iron deficiency may still be present with ferritin values up to 60–100 mcg/L.

3. Patients without a clear physiological explanation for iron deficiency (especially men and postmenopausal women) should be evaluated by gastroscopy/colonoscopy to exclude a source of GI bleeding, particularly a malignant lesion. Determine possible causes based on history and examination; initiate iron therapy; screen for coeliac disease; discuss timing of scopes with a gastroenterologist.

4. CRP may be normal in the presence of chronic disease and inflammation.

5. Consider thalassaemia if MCH or MCV is low and not explained by iron deficiency, or if long standing. Check B12/folate if macrocytic or if there are risk factors for deficiency (e.g. decreased intake or absorption), or if anaemia is unexplained. Consider blood loss or haemolysis if reticulocyte count is increased. Seek haematology advice or, in presence of chronic kidney disease, nephrology advice

Disclaimer

The information above, developed by consensus, can be used as a guide. Any algorithm should always take into account the patient’s history and clinical assessment, and the nature of the proposed surgical procedure.
6. Blood component production information

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>CONTENT AND CHARACTERISTICS</th>
<th>VOLUME PER BAG*</th>
<th>TYPICAL ADULT DOSE (~ 70 KG)</th>
<th>NUMBER OF BAGS TO PROVIDE TYPICAL DOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFP</td>
<td>• Plasma recovered from a whole blood donation or apheresis collection
• Contains all coagulation factors</td>
<td>250–334 mL</td>
<td>10–15 mL/kg</td>
<td>3–4</td>
</tr>
<tr>
<td>Platelets: pooled</td>
<td>• A pool of platelets derived from the buffy coat of four whole blood donations
• Leucodepleted</td>
<td>>160 mL</td>
<td>1 bag</td>
<td>1</td>
</tr>
<tr>
<td>Platelets: apheresis</td>
<td>• A suspension of platelets prepared from a single apheresis donor
• Leucodepleted</td>
<td>100–400 mL</td>
<td>1 bag</td>
<td>1</td>
</tr>
<tr>
<td>Cryoprecipitate</td>
<td>• Prepared from a single donated whole blood unit
• Contains an average of >0.35 g/bag
• Contains high levels of fibrinogen, factor VIII, von Willebrand factor, factor XIII, fibronectin</td>
<td>30–40 mL</td>
<td>3–4 g fibrinogen</td>
<td>8–10</td>
</tr>
<tr>
<td>Cryoprecipitate: apheresis</td>
<td>• Prepared from FFP obtained from a plasmapheresis donor
• Contains an average of >0.8 g/bag</td>
<td>60 mL (± 10%)</td>
<td>3–4 g fibrinogen</td>
<td>4–5</td>
</tr>
</tbody>
</table>

FFP, fresh frozen plasma
*Actual volume indicated on label
Table 2 Blood component product information and dosage – New Zealand

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>CONTENT AND CHARACTERISTICS</th>
<th>VOLUME PER BAG(^a)</th>
<th>TYPICAL ADULT DOSE (~ 70 KG)</th>
<th>NUMBER OF BAGS TO PROVIDE TYPICAL DOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFP</td>
<td>• Plasma recovered from a whole blood donation or apheresis collection</td>
<td>180–300 mL</td>
<td>10–15 mL/kg</td>
<td>3–4</td>
</tr>
<tr>
<td></td>
<td>• Contains all coagulation factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Leucodepleted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platelet: pooled</td>
<td>• A pool of platelets derived from the buffy coat of four whole blood donations</td>
<td>200–350 mL</td>
<td>NA</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• Leucodepleted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platelet: apheresis</td>
<td>• A suspension of platelets prepared from a single apheresis donor</td>
<td>180–400 mL</td>
<td>NA</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• Leucodepleted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryoprecipitate</td>
<td>• Prepared from FFP obtained from a plasmapheresis donor with a fibrinogen level > 2.4 g/L</td>
<td>80–120 mL</td>
<td>3–4 g</td>
<td>2–3</td>
</tr>
<tr>
<td></td>
<td>• Contains an average of 1.4 g/bag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Contains high levels of factor VIII, von Willebrand factor, factor XIII, fibronectin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Leucodepleted</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FFP, fresh frozen plasma; NA, not applicable
\(^a\) Actual volume indicated on label
References

1. National Health and Medical Research Council (NHMRC) and Australasian Society of Blood Transfusion (ASBT) (2001). *Clinical practice guidelines on the use of blood components*, NHMRC, Canberra, Australia.

